POS Tagging Using Relaxation Labelling

Lluis Padré

Departament de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya
Pau Gargallo, 5. 08071 Barcelona, Spain
padro@lsi.upc.es

Abstract

Relaxation labelling is an optimization
technique used in many fields to solve
constraint satisfaction problems. The al-
gorithm finds a combination of values
for a sct of variables such that satis-
fies -to the maximum possible degree- a
set of given constraints. This paper de-
scribes some experiments performed ap-
plying it to POS tagging, and the results
obtained. It also ponders the possibil-
ity of applying it to Word Sense Disam-
biguation.

1 Introduction and Motivation

Relaxation is a well-known technique used to solve
consistent labelling problems. Actually, relax-
ation is a family of energy-function-minimizing al-
gorithms closely rclated to Boltzmann machines,
gradient step, and Hopfield nets.

A consistent labelling problem consists of, given
a set of variables, assigning to each variable a la-
bel compatible with the labels of the other ones,
according to a set of compatibility constraints.

Many problems can be stated as a labelling
problem: the travelling salesman problem, n-
queens, corner and edge recoguition, image
smoothing, etc.

In this paper we will try to make a first insight
into applying relaxation labelling to natural lan-
guage processing. The main idea of the work is
that NLP problems such as POS tagging or WSD
can be stated as constraint satisfaction problems,
thus, they could be addressed with the usual tech-
niques of that field, such as rclaxation labelling.

It scems reasonable to consider POS tagging or
WSD as combinatorial problems in which we have
a set of variables (words in a sentence) a set of
possible labels for cach one (POS tags or senscs),
and a sct of constraints for these labels. We might
also combine both problems in only one, and ex-
press constraints between the two types of tags,
using semantic information to disambiguate POS

877

tags and visceversa. This is not the point in this
paper, but it will be addressed in further work.

2 Relaxation Labelling Algorithm

Relaxation labelling is a generic name for a family
of iterative algorithms which perform function op-
timization, basced on local information. See (‘Tor-
ras 89) for a clear exposition.

Lot V = {v1,v2,...,0,} be a sct of variables

Let t; = {ti, ¢, ... ,tfnl,} be the set of possible
labels for variable v;.

Let CS be a set of constraints between the la-
bels of the variables. Each constraint C' € CS
states a “compatibility value” C, for a combina-
tion of pairs variable-label. Constraints can be of
any order (that is, any number of variables may
be involved in a coustraint).

The aim of the algorithm is to find a weighted
labelling such that “global consistency” is maxi-
mized. A weighted labelling is a weight assigna-
tion for cach possible label of each variable. Max-
imizing “Global consistency” is defined as maxi-
mizing i p;'» x Sij , Vu;. Where pj is the weight
for label 7 in variable v; and Sj; the support re-
ceived by the same combination. The support for
a pair variable-label expresses how compatible is
that pair with the labels of neighbouring variables,
according to the constraint set.

The relaxation algorithm consists of:

e start in a random weighted labelling.
e for cach variable, compute the “support” that

cach label receives from the current -weights
for the labels of the other variables.

¢ Update the weight of cach variable label ac-
cording to the support obtained.

e iterate the process until a convergence crite-
rion is met.

The support computing and label weight chang-
ing must be performed in parallel, to avoid that
changing the a variable weights would affect the
support computation of the others.

The algorithin requires a way to compute which
is the support for a variable label given the others

and the constraints. This is called the “support
function”.

Several support functions are used in the liter-
ature to define the support received by label j of
variable i (S;;).

Being:

Ry ={r|r=1{(v, ,tzll),...,(vi,t;-), oy (U, BEO1)

the set of constraints on label j for variable i,
i.c. the constraints formed by any combination of
pairs variable-label that includes the pair (v;, t;)
i, (m) the weight assigned to label ¢! for variable
vy, at time m.

P(V) the set of all possible subsets of variables in
V.

RS (for G € P(V)) the set of constraints on tag
1 for word j in which the involved variables are
exactly those of G.

Usual support functions are based on comput-
ing, for each constraint r involving (Ui,t;'-), the
“constraint influence”, Inf(r) = C,. x pi!(m) x
... X ppt(m), which is the product of the current
weights for the labels appearing the constraint
except (vi,t;) (representing how applicable is the
constraint in the current context) multiplied by C,.
which is the constraint compatibility valuc (stat-
ing how compatible is the pair with the context).

The first formula combines influences just
adding them:

(L) Sy = Y Inf(r)
re;;

The next formula adds the constraint influences
grouped according to the variables they involve,
then multiplics the results of each group to get
the final value:

128, = [[> mf@)

GeP(V) reRE,

The last formula is the same than the previous
one, but instead of adding the constraint influ-
cnces in the same group, just picks the maximum.

(L3) S =] max {Inf(r)}

aep(v) =

The algorithm also nceds an “updating func-
tion” to compute at cach iteration which is the
new weight for a variable label, and this compu-
tation must be done in such a way that it can be
proven to meet a certain convergence criterion, at
least under appropriate conditions!

Several formulas have becn proposed and some
of them have been proven to be approximations of
a gradient step algorithm.

Usual updating functions arc the following.

!Convergence has been proven under certain con-
ditions, but in a complex application such as POS
tagging we will {find cases where it is not necessarily
achieved. Alternative stopping criterions will require
further attention.

878

The first. formula increases weights for labels
with support greater than 1, and decreases thosc
with support smaller than 1. The denominator
expression is a normalization factor.
. i (m) x Sy
2.1 pim+1) = k,-] (m) x Sy
p;.c (’ITL) X Sik

k=1

where S;; > 0

The second formula increases weight for labels
with support greater than 0 and decrcases weight
for those with support smaller than 0.

p§ (m) x (L4 5)
ki
Zpi(m) x (1 4+ Sig)
k=1

where —1 < 5;; < +1

(2.2) pi(m +1) =

Advantages of the algorithm are:

e Its highly local character {only the state
at previous time step is necded to compute
each new weight). This makes the algorithm
highly parallelizable.

e Its expressivity, since we state the problem in
terms of constraints between labels.

o Its flexibility, we don’t have to check absolute
coherence of constraints.

e Its robustness, since it can give an answer to
problems without an exact solution (incom-
patible constraints, insufficient data...)

e Itg ability to find local-optima solutions to
NP problems in a non-cxponential time.
(Only if we have an upper bound for the num-
ber of iterations, i.e. convergence is fast or
the algorithm is stopped after a fixed number
of iterations. Sce section 4 for further details)

Drawbacks of the algorithm are:

e Its cost. Being n the number of variables,
v the average number of possible labels per
variable, ¢ the average number of constraints
per label, and I the average number of iter-
ations until convergence, the average cost is
nxvxcex I, an expression in which the multi-
plying terms might be much bigger than n if
we deal with problems with many values and
constraints, or if convergence is not quickly
achicved.

e Since it acts as an approximation of gradi-
ent step algorithms, it has similar weakness:
Found optima are local, and convergence is
not always guaranteed.

e In gencral, constraints must be written manu-
ally, since they arce the modelling of the prob-
lem. This is good for easily modeclable or
reduced constraint-set problems, but in the
case of POS tagging or WSD constraints arc
too many and too complicated to be written
by hand.

¢ The difficulty to state which is the “compat-
ibility value” for cach constraint.

e The difficulty to choose the support and up-
dating functions more suitable for cach par-
ticular problem.

3 Application to POS Tagging

In this section we expose our application of relax-
ation labelling to assign part of specch tags to the
words in a sentence.

Addressing tagging problems through optimiza-
tion methods has been done in (Schmid 94) (POS
tagging using neural networks) and in (Cowice ¢t
al. 92) (WSD using simulated anncaling). (Pelillo
& Refice 94) use a toy POS tagging problem to ex-
periment their methods to improve the quality of
compatibility coeflicients for the constraints used
by a relaxation labelling algorithm.

The model used is the following: each word in
the text is a variable and may take several labels,
which are its POS tags.

Since -the number of variables and word po-
sition will vary from one sentcnce to another,
constraints are cxpressed in relative terms (e.g.
[(vs, Determiner)(viy., Adjective)(viq.0, Noun))).

The Constraint Set

Relaxation labelling is able to deal with con-
straints between any subset of variables.

Any relationship between any subset of words
and tags may be expressed as constraint and used
to feed the algorithm. So, linguists are free to ex-
press any kind of constraint and arc not restricted
to previously decided patterns like in (Brill 92).

Constraiuts for subscts of two and three vari-
ables are automatically acquired, and any other
subsets are left to the linguists’ criterion. That is,
we arc establishing two clagses of constraints: the
automatically acquired, and the manually writ-
ten. This means that we have a great model flex-
ibility: we can choose among a completely hand
written model, where a linguist has written all
the constraints, a completely automatically de-
rived model, or any intermediate combination of
constraints from cach type.

We can use the same information than HMM
taggers to obtain automatic constraints: the
probability?. of transition from one tag to an-
other (bigram -or binary constraint- probability)
will give us an idea of how compatible they arce in
the positions ¢ and 74 1, and the same for trigram
-or ternary constraint- probabilities. Extending

stimated from occurrences in tagged corpora.
We prefer the use of supervised training (since large
enough corpora are available) because of the diffi-
culty of using an unsupervised method (such as Baum-
Welch re-estimation) when dealing, as in our case,
with heterogeneous constraints.

879

this to higher order constraints is possible, but
would result in prohibitive computational costs.

Dealing with hand-written constraints will not
be so casy, since it is not obvious how o com-
pute “transition probabilities” for a complex con-
straint.

Although accurate -but costly- methods to esti-
mate compatibility values have been proposed in
(Pelillo & Relice 94), we will choose a simpler and
much cheaper computationally solution: Comput-
ing the compatibility degree for the manually writ-
ten constraints using the number of occurrences
of the constraint pattern in the training corpus to
compute the probability of the restricted word-tag
pair given the context defined by the constraint ®.

Relaxation doesn’t need -as HMMs do- the prior
probability of a certain tag for a word, since it is
not, a constraint, but it can be used to set the
initial state to a not completely random one. Ini-
tially we will assign to cach word its most probable
tag, so we start optimization in a biassed point.

Alternative Support Functions

The support functions described in section 2
are traditionally used in relaxation algorithms. [t
scems better for our purpose to choose an addi-
tive one, since the multiplicative functions might
yield zero or tiny values when -as in our casce- for a
cerfain variable or tag no constraints are available
for a given subscet of variables.

Since that functions are general, we may try to
find a support function more specific for our prob-
lery. Since HMMs find the maximum sequence
probability and relaxation is a maximizing algo-
rithm, we can make relaxation maximize the se-
quence probability and we should get the same
results. To achieve this we define a new support
function, which is the sequence probability:

Being;:
t* the tag for variable vy, with highest weight value
at the current time step.
w(vy, 1) the probability for the sequence to start
in tag '
P(uv i) the lexical probability for the word repre-
sented by v to have tag .
U'(t1,19) the probability of tag £s given that the
previous one is #).
[?;I the set of all ternary constraints on tag j for
word 1.
R the set of all hand-written constraints on tag
7 tor word 1.

We define:
]}ij == 7('(’(/[y 'lfl) X P('Ui, t‘l) X

N1
C 1L Ploe %) x D@ 51) oy, 1V
k=1,k#1

3This is an issue that will require further atten-
tion, since as constraints can be expressed in several
degrees of generality, the estimated probabilities may
vary greatly depending on how the constraint was
expressed.

To obtain the new support function:
(3.1)
Sij =B x (1+ Y Inf(r)) x (L+ Y Inf(r))

3 H
re Rij. rER'.j

Compatibility Values

Identifying compatibility values with transition
probabilities may be good for n-gram models, but
it is dubious whether it can be generalized to
higher degree constraints. In addition we can
question the appropriateness of using probability
values to express compatibilities, and try to find
another set of values that fits better our needs.

We tried several candidates to represent com-
patibility: Mutual Information, Association Ratio
and Relative Entropy.

This new compatibility measures are not lim-
ited to [0, 1] as probabilities. Since relaxation up-
dating functions (2.2) and (2.1) need support val-
ues to be normalized, we must choose some func-
tion to normalize compatibility values.

Although the most intuitive and direct scal-
ing would be the linear function, we will test as
well some sigmoid-shaped functions widely used
in ncural networks and in signal theory to scale
free-ranging values in a finite interval.

All this possibilities together with all the pos-
sibilities of the relaxation algorithm, give a large
amount of combinations and each one of them is
a possible tagging algorithm.

4 Experiments

To this extent, we have presented the relaxation
labelling algorithm family, and stated some con-~
siderations to apply them to POS tagging.

In this section we will describe the experiments
performed on applying this technique to our par-
ticular problem.

Our experiments will consist of tagging a corpus
with all logical combinations of the following pa-
rameters: Support function, Updating function,
Compatibility values, Normalization function and
Constraints degree, which can be binary, ternary,
or hand-written constraints, we will experiment
with any combination of them, as well as with
a particular combination consisting of a back-off
technique described below.

In order to have a comparison reference we will
evaluate the performance of two taggers: A blind
most-likely-tag tagger and a HMM tagger (Elwor-
thy 93) performing Viterbi algorithim . The train-
ing and test corpora will be the same for all tag-
gors.

All results are given as precision percentages
over ambiguous words.

4.1 Results

We performed the same experiments on three dif-
ferent corpora:

880

Corpus SN (Spanish Novel) train: 15Kw, test:
2Kw, tag set size: 70. This corpus was
chosen to test the algorithm in a language
distinct than English, and because previous
work (Moreno-Torres 94) on it provides us
with a good test bench and with linguist writ-
ten constraints.

Corpus Sus (Susannc) train: 141Kw, test: 6Kw,
tag set size: 150. The interest of this corpus
is to test the algorithm with a large tag set.

Corpus WSJ (Wall Street Journal)
train: 1055Kw, test: 6Kw, tag sct size: 45
The interest of this corpus is obviously its
size, which gives a good statistical evidence
for automatic constraints acquisition.

Baseline results.
Results obtained by the baseline taggers are
found in table 1.

SN Sus WSJ
Most-likely | 69.62% | 86.01% | 88.52%
HMM 94.62% | 93.20% | 93.63%

Table 1: Results achieved by conventional taggers.

First row of table 2 shows the best results ob-
tained by relaxation when using only binary con-
straints (B). That is, in the same conditions than
HMM taggers. In this conditions, relaxation only
performs better than HMM for the small corpus
SN, and the bigger the corpus is, the worse results
rclaxation obtains.

Adding hand-written constraints (C).

Relaxation can deal with more constraints, so
we added between 30 and 70 hand-written con-
straints depending on the corpus. The constraints
were derived analyzing the most frequent errors
committed by the HMM tagger, except for SN
where we adapted the context constraints pro-
posed by (Moreno-Torres 94).

The constraints do not intend to be a general
language model, they cover only some common er-
ror cases. S0, experiments with only hand-written
constraints are not performed.

The compatibility value for these constraints is
computed from their occurrences in the corpus,
and may be positive (compatible) or negative (in-
compatible).

Second row of table 2 shows the results obtained
when using binary plus hand-written constraints.

In all corpora results improve when adding
hand-written constraints, except in WS8J. This
is because the constraints used in this case are
few (about 30) and only cover a few specific er-
ror cases (mainly the distinction past/participle
following verbs to have or to be).

Using trigram information (T).

We have also available ternary constraints, ex-
tracted from trigram occurrences. Results ob-

SN Sus WSJ |
(B 195.77% | 91.65% | 89.34%
[BC 196.54% | 92.50% | 89.24%]
[T 190.00% [88.60% | 90.87% |
| BT]93.85% | 89.33% | 90.81%
| TC | 92.31% | 89.02% | 90.78%
| BTC | 95.00% | 89.83% | 90.94% |

Table 2: Best relaxation results using every combina-
tion of constraint kinds.

tained using ternary constraints in combination
with other kinds of information are shown in rows
T, BT, TC and BTC in table 2

There scem to be two tendencies in this table:

First, using trigrams is only helpful in WSJ.
This is because the training corpus for WSJ is
much bigger than in the other cases, and so the tri-
gram model obtained is good, whlle for the other
corpora, the training set secms to be too small to
provide a good trigram information.

Secondly, we can observe that there is a general
tendency to “the more information, the better re-
sults”, that is, when using BT'C we get. better re-
sults that with BT, which is in turn better than
T alone.

Stopping before convergence.

All above results are obtained stopping the re-
laxation algorithm when it reaches convergence
(no significant changes are produced from one it-
eration to the next), but relaxation algorithms not,
necessarily give their best results at convergence?,
or not always need to achieve convergence to know
what the result will be (Zucker et al. 81). So they
arc often stopped after a few iterations. Actually,
what we are doing is changing our convergence cri-
terion to one more sophisticated than “stop when
therc are no more changes”.

The results presented in table 3 arc the best
overall results that we would obtain if we had a
criterion which stopped the iteration process when
the result obtained was an optimum. The number
in parenthesis is the itcration at which the algo-
rithm should be stopped. Finding such a criterion
is a point that will require further rescarch.

94, 17W

Table 3: Best results stopping before convergence.

SN Sus
96.92% (12) | 93.78% (6)

4This is due to two main reasons: (1)The optimum
of the support function doesn’t correspond ezactly to
the best solution for the problem, that is, the chosen
function is only an approximation of the desired oune.
And (2) performing too much iterations can produce
a more probable solution, which will not necessarily
be the correct one.

881

These results are clearly better than those ob-
tained at relaxation convergence, and they also
outperform HMM taggers.

Searching a more specific support function.

We have been using support functions that are
traditionally used in relaxation, but we might try
to specialize relaxation labelling to POS tagging.

Results obtained with this specific support func-
tion (3.1) arc suwimmarized in table 4

SN J sus| WSI
9. ZJ%(-3) 92 92.31% (6) | 93.60%(1)
‘able 4: Best results using a specific support func-
tion.

Using this new support function we obtain re-
sults slightly below those of the IIMM tagger.

Our support function is the sequence probabil-
ity, which is what Viterbi maximizes, but we get
worse results. There are two main reasons for
that. The first ouc is that rclaxation does not
maximize the support function but the weighted
support for each variable, so we are not doing
exactly the same than a HMM tagger. Second
rcason is that relaxation is not an algorithm that
finds global optima and can be trapped in local
maxima.

Combining information in a Back-off hierarchy.

We can combine bigram and trigranm infroma-
tion in a back-off mechanisin: Use trigrams if
available and bigrams when not.

Results obtained with that technique are shown
in table 5

(SN[Sus|

02.31% (3-0) [93.66% (1) |

WST
04.29% (4)

Table 5: Best results using a back-off technique.

The results here point to the same conclusions
than the use of trigramns: if we have a good trigram
model (as in WSJT) then the back-off technique
is useful, and we get here the best overall result
for this corpus. If the trigram model is not so
good, results are not better than the obtained with
bigrams alone.

5 Application to Word Sense
Disambiguation

We can apply the same algorithm to the task of
disambiguating the sense of a word in a certain
context. All we need is to state the constraints
between senses of neighbour words. We can com-
bine this task with POS tagging, since therc arc
also coustraints between the POS tag of a word
and its sense, or the sensc of a neighbour word.

Preliminary experiments have been performed
on SemCor (Miller et al. 93). The problem con-
sists in assigning to each word its correct POS tag
and the WordNet file code for its right sense.

A most-likely algorithm got 62% (over nouns
apperaring in WN), We obtained 78% correct,
only adding a constraint stating that the sense
chosen for a word must be compatible with its
POS tag.

Next steps should be adding more constraints
(cither hand written or automatically derived) on
word senses to improve performance and tagging
each word with its sensc in WordNet instead of its
file code.

6 Conclusions

We have applied relaxation labelling algorithm to
the task of POS tagging. Results obtained show
that the algorithm not only can equal markovian
taggers, but also outperform them when given
enough constraints or a good enough model.

The main advantages of relaxation over Marko-
vian taggers are the following: First of all, relax-
ation can deal with more information (constraints
of any degree), secondly, we can decide whether
we want to use only automatically acquired con-
straints, only linguist-written constraints, or any
combination of both, and third, we can tune the
model (adding or changing constraints or compat-
ibility cocflicients).

We can state that in all experiments, the re-
finement of the model with hand written con-
straints led to an improvement in performance.
We improved performance adding few constraints
which were not linguistically motivated. Probably
adding more “linguistic” constraints would yield
more significant improvements.

Several parametrizations for relaxation have
been tested, and results seem to indicate that:

¢ support function (1.2) produces clearly worse
results than the others. Support function
(1.1) is slightly ahead (1.3).

e using mutual information as compatibility
values gives better results.

* waiting for convergence is not a good policy,
and so alternative stopping criterions must be
studied.

e the back-off technique, as well as the trigram
model, requires a really big training corpus.

7 Future work

The experiments reported and the conclusions
stated in this paper seem to provide a solid back-
ground for further work. We intend to follow sev-
eral lines of research:

e Applying relaxation to WSD and to WSD
plus POS-tagging.

882

o Experiment with different stopping criteri-
ons.

e Consider automatically extracted constraints
(Marquez & Rodriguez 95).

o Investigatc alternative ways to compute
compatibility degrees for hand-written con-
straints.

¢ Study back-off techniques that take into ac-
count all classes and degrees of constraints.

o Iixperiment stochastic relaxation (Simulated
anncaling).

e Compare with other optimization or con-

straint satisfaction techniques applied to
NLP tasks.

Acknowledgements

I thank Horacio Rodiguez for his help, support
and valuable comments on this paper. I also thank
Kikn Ribas, German Rigau and Pedro Meseguer
for their interesting suggestions.

References

Brill, E.; A simple rule-based part-of-specch tag-
ger. ANLP 1992

Cowie, J.; Guthrie, J.; Guthrie, L.; Lexical Disam-
biguation wsing Simulated Annealing DARPA
Speech and Natural Language; Feb. 1992

Elworthy, D.; Part of Speech and Phrasal Tagging.
ESPRIT BRA-7315 Acquilex 11, Working Paper
10, 1993

Marquez, L.; Rodriguez, H.; Towards Learning a
Constraint Grammar from Annotated Corpora
Using Decision Trees. ESPRIT BRA-7315 Ac-
quilex I, Working Paper, 1995

Miller, G.A.; Leacock, C.; Tengi, R.; Bunker,
R.T.; A semantic concordance ARPA Wks on
Human Language Technology, 1993

Moreno-Torres, 1.; A morphological disambigua-
tion tool (MDS). An application to Spanish. ES-
PRIT BRA-7315 Acquilex II, Working Paper
24, 1994

Pelillo, M.; Refice M.; Learning Compatibility
Coefficients for Relazation Labeling Processes.
IEEE Trans. on Patt. An. & Mach. Int. 16, n.
9 (1994)

Schmid, I.; Part of Speech Tagging with Newral
Networks COLING 1994

Torras, C.; Relaxzation and Neuwral Learning:
Points of Convergence and Divergence. Jour-
nal of Parallel and Distributed Computing 6,
pp.217-244 (1989)

Zucker, S.W.; Leclerc, Y.G.; Mohammed, J.L.;
Continuous Relaxation and local maxima selec-

tion: Conditions for equivalence. IEEE Trans.
on Patt. An. & Mach. Int. 3, n. 2 (1981)

