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Abstract  

Relaxation labelling is an optimization 
technique used in many fields to solve 
constraint satisfael,ion problems. The al- 
gori thm finds a combination of values 
for a set of variables such that  satis- 
fies -to the maximum possible degree- a 
set of given constraints. This paper  de- 
scribes some experiments performed ap- 
plying it to POS tagging, and the results 
obtained, it also ponders the possibil- 
ity of applying it to Word Sense Disam- 
biguation. 

1 Introduct ion and Motivat ion 

Relaxation is a well-known technique used to solve 
consistent labelling problems. Actually, relax- 
ation is a family of energy-function-minimizing al- 
gorithms closely related to Bol tzmann machines, 
gradient step, and Hopfield nets. 

A consistent labelling problem consists of, giwm 
a set of variables, assigning to each variable a la- 
bc'l compatible with the labels of the other ones, 
according to a set of compatibili ty constraints. 

Many problems can be stated as a labelling 
problem: the travelling salesman problen 4 n- 
queens, corner and edge recognition, image 
smoothing, etc. 

In this paper  we will t ry to make a first, insight 
into applying relaxation labelling to natural  lan- 
guage processing. The main idea of the work is 
that  NLP problems such as POS tagging or WSD 
can be stated as constraint satisfaction problems, 
thus, they could be addressed with the usual tech- 
niques of that  field, such as relaxation labelling. 

It  seems reasonable to consider POS tagging or 
WSD as combinatorial problenrs in which we have 
a set of variables (words in a sentence) a set, of 
possible labels for each one (POS tags or senses), 
and a set of constraints for these labels. We might 
also coinbine both problems in only one, and ex- 
press constraints between the two types of tags, 
using semantic information to disambiguate POS 

tags and visceversa. This is not the point; in this 
paper,  but it will be addressed in fllrther work. 

2 Relaxat ion Labell ing Algor i thm 

Relaxation labelling is a generic name for a family 
of iterative algorittuns which perform function op- 
timization, based (m local infi~rmation. See (Tor- 
ras 89) for a clear exposition. 

Let V = {v l ,  v 2 , . . . ,  v,,~} be a set of variables 
Let t = , ,,,~ } be the set of possilfle 

labels for variable vi. 
Let Cb' be a set: of constraints between the la- 

bels of the variables. Each constraint C C CS  
states a "compatibility value" C,. ibr a colnbina- 
lion of pairs variable-label. Constraints can be of 
any order (that is, any number of variables may 
be involved in a constraint). 

The aim of the algorithm is to find a weighted 
labelling such tha t  "global consistency" is maxi- 
mized. A weighted labelling is a weight assigna- 
tion for each possibh', label of each variable. Max- 
infizing "Global consistency" is defined as maxi- 

)i )i is the weight mizing ~ j  t j x Sij , Vvi. Where I j 
for label j in wtriable vi and Si j  the suppor t  re- 
ceived by the same combination. The support  for 
a pair w~riable-label expresses how compatible is 
that  pair with the labels of neighbouring variables, 
according to the constraint set. 

The relaxation algorithm consists of: 

• s tar t  in a randoln weighted labelling. 

• fbr each variable, compute the "support" that  
each label receives froln the current .weights 
for the labels of the other variabh;s. 

• Update  the weight of each variable label ac- 
(:ording to the support  obtained. 

• iterate the process until a convergence crite- 
rion is met. 

The support  computing and label weight chang- 
ing must be perfornmd in parallel, to avoid that  
changing the a variable weights would affect t;he 
support  colnputation of the others. 

The algorithm requires a way to compute which 
is the support  for a wn'iable label given the others 
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and the constraints. This is called the "support  
function". 

Several support, functions are used in tire liter- 
ature to define the support  received by label j of 
variable i (Sij).  

Being: 
1"1 ?'d R~j = {," I r -- [(v,,, tk~),..., (~, * } ) , . . . ,  (v,.,, t.k,,)] 

tile set of constraints on label j for variable i, 
i.e. the constraints formed by any coinbination of 
pairs variable-label that  includes the pair (vi, t}). 

r l  l)k, (m) the weight assigned to label t~.~ for variable 
v,,~ at t ime m. 
TO(V) the set of all possible subsets of variables in 
V. 
R~ (for G E T°(V)) the set of constraints o n  tag 
i ieor word j in which the involved variables are 
exactly those of G. 

Usual support  flnmtions are based on coinput- 
ing, for each constraint r involving (vi, t}),  tile 
"constraint influence", I n f ( r )  = C,. x p~ ' (m)  x 
. . .  x p~Z., (m), which is the product  of tile current 
weights for the labels appearing the constraint 
except (vi,t}) (representing how applicable is tile 
constraint in the current context) multiplied by C.,. 
which is the constraint compatibil i ty value (stat- 
ing how compatible is the pair with the context). 

The first formula combines influences just 
adding them: 

(1.1) Sij = ~ I n f ( r )  
r G R i j  

The next fornmla adds the constraint influences 
grouped according to the variables they involve, 
then multiplies the results of each group to get 
the final value: 

(1.2) & - -  11 

The last formula is tile same than the previous 
one, but instead of adding the constraint influ- 
ences in the same group, just picks tile maximum. 

(1.3) Sij = I I  max { I n f ( r ) }  

The algorithm also needs art "updating func- 
tion" to compute at each iteration which is tile 
new weight for a variable label, arrd this compu- 
tation must be done in such a way tha t  it can be 
proven to meet a certain convergence criterkm, at 
least under appropriate  conditions 1 

Several formulas have been proposed and some 
of them have been proven to be approximations of 
a gradient step algorithin. 

Usual updat ing flmctions are the following. 

~Convergence has been proven under certain con- 
ditions, but in a complex application such as POS 
gagging we will lind cases where it is not necessarily 
achieved. Alternative stopping criterions will require 
further attention. 

Tile first formula increases weights for labels 
with support  greater than 1, and decreases those 
with support  smaller than 1. The denonfinator 
expression is a normalization factor. 

(2.1) p}(m + 1) = ~ ; ~  where S,ij > 0 
i 

k I 

The second formula increases weight for labels 
with support  greater than 0 and decreases weight, 
for those with support  smaller than 0. 

~ (~,,) x (1 + &j )  
(2.2) + 1) = 

k = l  

w h e r e - l < S i j  <_ +1 

Advantages of the algorithm are: 

• Its irighly local character (only the state 
at, previous t ime step is needed to compute 
each new weight). This makes the algorithm 
highly parallelizable. 

• Its expressivity, since we state the problem in 
terms of constraints between labels. 

• Its flexibility, we don' t  have to check absolute 
coherence of constraints. 

• Its robustness, sin(:(,' it can give an answer to 
problenls without an exact solution (incom- 
patible constraints, insufficient data...) 

• Its ability to find local-optima solutions to 
NP problems in a non-exponential time. 
(Only if we have an upper  bound for the nun> 
ber of iterations, i.e. convergence is fast, or 
the algorithm is s topped after a fixed number 
of iterations. See section 4 for further details) 

Drawbacks of tire algorithm are: 

• Its cost. Being n the number of variables, 
v the average number of possible labels per 
variable, c the average number of constraints 
per label, and I tire average number  of iter- 
ations until convergence, tile average cost is 
n x v x c x i ,  an expression in which the inulgi~ 
plying terms ,night; be much bigger than n if 
we deal with probh',ms with many values and 
constraints, or if convergence is not quickly 
achieved. 

• Since it acts as an approximation of gradi- 
ent step algorithms, it has similar weakness: 
Found opt ima are local, and convergence is 
not always guaranteed. 

• In ge, ne, ral, constraints must be written mann- 
ally, since they at(', the modelling of the prob- 
lem. This is good for easily modelable or 
reduced constraint-set problems, but in the 
case of POS tagging or WSD constraints are 
too many and too complicated l;o be written 
by hand. 
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• The  diificulty to s tate  which is the "(:omt)at- 
ibility value" for each constraint .  

• The, difficulty to choose the suppor t  and up- 
dat ing fun('tions more suitable for ea(:h l)ar- 
t i tu lar  prol)lem. 

3 A p p l i c a t i o n  t o  P O S  T a g g i n g  

In this section we expose our applicat ion of relax- 
at ion labelling to assign 1);u't of speech tags to the 
words in a sentenc, e. 

Addressing tagging problems th rough  ot)timiza- 
tion methods  has been done in (Schmid 94) (POS 
tagging using neural networks) and in (Cowie et 
al. 92) (WSD using sinmlated annealing). (Pelillo 
& I{efice 94) use a toy POS tagging l)i'oblenl to ex- 
t)eriment their methods  to improve the quali ty of 
eoInt)atibility coeflh:ients for the constraints  used 
by a relaxation labelling algorithm. 

The  model used is l i e  tblh)wing: each word ill 
the text is a variable and may take several hfl)els, 
which are its POS tags. 

Since t h e  number  of variabh~s lind word po- 
sition will vary from one senten(:e to another ,  
constraints  are expressed in relative terms (e.g. 
[(vi, Determiner)(v.i , , ,  Adjective)(vi ,2, Nou'r0]).  

The Conshnint Set 
l{elaxation labelling is a.bh~ to deal wil;h con- 

straints 1)etween any subset of wn'ial)les. 
Any rehttionship between any subset of words 

and tags may 1)e expressed as constraint  and used 
l;o feed th(: algorithm. So, linguisl;s are fre(, to ex- 
press ;my kind of constra int  an(l are not restricted 
I:o previously decided patl;erns like in (Brill 92). 

Constraints  for subsets of two and three vari- 
ables are automati( :al ly acquired, and any other  
subsets are left, to the linguists '  criterion. Tha t  is, 
we are establishing two classes of constraints:  the 
autoinat ical ly  acquired, and the mmmal ly  writ- 
ten. This means tha t  we ha.ve a great  model  flex- 
ibility: we can choose among  a completely hand  
writ ten model,  where, a linguist has writ ten all 
l;he constraint;s, a comph~tely mm)mat, ically lie- 
rived model,  or ally interinediate (:olnl)ination of 
(',onstrailfl;s fl'om ea, ch (;ype. 

We can use the same information than  HMM 
taggers to ot)tain au tomat ic  (:onstraints: the 
1)robability 2. of transit ion fl'om one tag to an- 
other  (bigram -or binary constraint-  probabil ity)  
will give us an idea of  how eomt)atible  they are in 
the pos i t ions  i and i + 1, ;rod the same for l;rigrain 
-or ternary cbnstraint-  probabilit ies.  Extending  

~Esl;imated fi'om occurrences in tagged (:ort)or~t. 
W(: prefer tll(: use of supervis(:d training (sin(:e large 
enough corpora arc available) because of the diffi- 
culty of using an unsut)ervised method (such as Bmm> 
Welch re-estimation) when dealing, as in our case, 
with heterogeneous constraints. 

this to higher order constraints  is possil)le, but; 
would result in prohibit ive comtmt;ational costs. 

l)ealing with han(l-writ ten constraints  will not  
be so easy, since it; is not  obvious ]low to com- 
pute "transition probabilities" for a comph:x con- 
s t r a in t  

Al though a c c u r a t e - b u t  costly- methods  to esti- 
mate  comt)al;ibility values have been proposed in 
(Pelillo & Hetice 94), we will choose a simpler an(t 
much (:heaptw (:Olntmtationally solution: (JOHll)llt- 
ing the compat ibi l i ty  degree fl)r the manual ly  writ- 
ten constraints  using the number  of occurr( 'nees 
of the consl;raint pa t t e rn  in the t ra ining (:orIms to 
comtmte  the prol)ability of the restr icted word- tag  
pair given the contexl; defined by the constraint  a 

II.elaxation doesn ' t  need -as HMMs (h)- the prior 
prot)at)ility of a certain tag for a word, since it is 
not a constraint ,  but il; Call ])e llSCd t o  SOt; t h e  
initial st;at(; to a 11ot templet;ely ral l ( lol[I  OllC. hfi- 
tially we will assign to each word il;s most  I)ro/)able 
tag, so we s tar t  opt imizat ion in a biassed point. 

Alternative Support l,%nctions 
The sut)port functions described in section 2 

are t radi t ional ly used in relaxation algorithnts, it 
seems bet ter  for our purt)ose to choose an addi- 
tive one, since the multiplicative flm(:tions might  
yiehl zero or t iny values when -as in Ollr cose- for ,q 
(:crtain val'iable or tag no constraints  are available 
for a given subsel; of vm'ial)les. 

Since tha t  fllnt:tions are general, we may try to 
lind ;~ suI)I)ort f lmctkm more speciiic tbr our t)rol)- 
h:m. Sin(:e I IMMs lind the max inmm sequ(:n(:e 
probat)ility and relaxation is a maximizing algo- 
rii;hm, we (:an make relaxation maximize th(,' se- 
(lllenc(? t)robability an(l we should gel; tile same 
results. To a(:hieve this we define a new Sul)port 
flmc, l;ion, which is the sequence i)robability: 

Being: 
t k tile tag for varial)h: 'vk with highest weight value 
a~ the current  tilne step. 
7r(Vt, t 1) [;he probal)ility for t~he sequence to sl;art 
in tag t I. 
P(v , t )  the lexical probabil i ty for the word repre- 
se]tted by v to have t;ag t. 
T(t l ,  I2) the probabi l i ty  of tag t2 given tha t  I;he 
previous one is tl. 
~itj the set of all ternm'y constrainl;s on tag j for 
word i. 

I I  ,q • H... the :(:t of all hand-wri t ten  constraints  On (;ag 
3 k)r word i. 

We define: 

= × t } ) ×  
N ! 

k - - l . , k / i  

aThis is an issue that will require fitrtl,er ati:en- 
lion, since as constraints can be expressed in several 
degrees of g(merality, l;he estimated probabilities may 
vary greatly del)ending on how t;he constraint was 
expressed. 
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To obtain the new support function: 

(3.1) 

Compatibility Values 
Identifying compatibility values with transition 

probabilities may be good for n-gram models, but 
it is dubious whether it can be generalized to 
higher degree constraints. In addition we can 
question the appropriateness of using probability 
values to express compatibilities, and try to find 
another set of values that  fits bet ter  our needs. 

We tried several candidates to represent com- 
patibility: Mutual Information, Association Ratio 
and Relative Entropy. 

This new compatibility measures are not lim- 
ited to [0, 1] as probabilities. Since relaxation up- 
dating functions (2.2) and (2.1) need support val- 
ues to be normalized, we must choose some func- 
tion to normalize compatibility values. 

Although the most intuitive and direct scal- 
ing would be the linear function, we will test as 
well some sigmoid-shaped hmctions widely used 
in neural networks and in signal theory to scale 
free-ranging values in a finite interval. 

All this possibilities together with all the pos- 
sibilities of the relaxation algorithm, give a large 
amount of combinations and each one of them is 
a possible tagging algorithm. 

4 E x p e r i m e n t s  

To this extent, we have presented the relaxation 
labelling algorithm family, and stated soine con- 
siderations to apply them to POS tagging. 

In this section we will describe the experiments 
performed on applying this technique to our par- 
tieular problem. 

Our experiments will consist of tagging a corpus 
with all logical combinations of the following pa- 
rameters: Support function, Updating function, 
Compatibility values, Normalization function and 
Constraints degree, which can be binary, ternary, 
or hand-written constraints, we will experiment 
with any combination of them, as well as with 
a particular combination consisting of a back-off 
technique described below. 

In order to have a comparison reference we will 
evaluate the pertbrmance of two tuggers: A blind 
most-likely-tag tagger and a HMM tagger (Elwor- 
thy 93) performing Viterbi algori thm. The train- 
ing and test corpora will be the same for all tag- 
germ 

All results are given as p r ec i s i on  percentages  
over ambiguous  words. 

4.1 Resu l t s  

We performed the same experiments on three dif- 
ferent corpora: 

Corpus S N  (Spanish Novel) train: 15Kw, test: 
2Kw, tag set size: 70. This corpus was 
chosen to test the algorithm in a language 
distinct than English, and because previous 
work (Moreno-Torres 94) on it provides us 
with a good test bench and with linguist writ- 
ten constraints. 

Corpus Sus (Susanne) train: 141Kw, test: 6Kw, 
tag set, size: 150. The interest of this corpus 
is to test the algorithm with a large tag set. 

Corpus W S J  (Wall Street Journal) 
train: 1055Kw, test: 6Kw, tag set size: 45 
The interest of this corpus is obviously its 
size, which gives a good statistical evidence 
for automatic constraints acquisition. 

Baseline results. 
Results obtained by the baseline tuggers are 

found in table 1. 

SN 
Most-likely 

[MM 94.62% 

Sus WSJ 
86.01% 88.52% 
93.20% 93.63% 

Table 1: Results achieved by conventional tuggers. 

First; row of table 2 shows the best results ob- 
tained by relaxation when using only binary con- 
straints (B). That  is, in the same conditions than 
HMM taggers. In this conditions, relaxation only 
performs better  than HMM for the small corpus 
SN, and tile bigger the corpus is, tile worse results 
relaxation obtains. 

Adding hand-written constraints (C). 
Relaxation can deal with more constraints, so 

we added between 30 and 70 hand-written con- 
straints depending on the corpus. The constraints 
were derived ~malyzing the most frequent errors 
committed by tile HMM tagger, except for SN 
where we adapted the context constraints pro- 
posed by (Moreno-Torres 94). 

The constraints do not intend to be a general 
language model, they cover only some common er- 
ror cases. So, experiments with only hand-written 
constraints are not performed. 

The compatibility value for these constraints is 
coinputed from their occurrences in the corpus, 
and may be positive (compatible) or negative (in- 
compatible). 

Second row of table 2 shows the results obtained 
when using binary plus hand-writ ten constraints. 

In all corpora results improve when adding 
hand-written constraints, except in W S J .  This 
is because the constraints used in this case are 
few (about 30) and only cover a few specific er- 
ror cases (mainly tile distinction past/participle 
following verbs to have or to be). 

Using trigram information (T). 
We have also available ternary constraints, ex- 

tracted from trigram occurrences. Results ob- 
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I _ _ ~ _  S N 
19"-5.77% 

 _cJ 96.54% 

Sus 
91.65% 

WSJ 
~79.34V7/0 

92.50% 89.24% 
88.6ooof 

8-97~3 3 ~-  

89.83% 
~ . y 8  0/~0, 

Table 2: Best relaxation results using every combina- 
tion of constraint kinds. 

ta ined using te rnary  constraints  in combinat ion 
with other  kinds of information are shown in rows 
T, BT,  TC  and B T C  in table 2. 

There  seem to be two tendencies in this table: 
First,  using tr igrmns is only helpflfl in W S J .  

This is becmme the t raining cortms for W S J  is 
much bigger than  in the other  cases, and so the tri- 
grmn model obtained is good, while, for the ()tiler 
c<)rpora, the training set; seems to t)e too small to 
provide a good t r igram iniormation.  

Secondly, we can observe tha t  there is a general 
t endency  to "the more information,  the bet ter  re- 
suits", tha t  ix, when using B T C  we get l)etter re- 
suits tha t  with B~,  which is in tu rn  bet ter  than 
T alone. 

Stopping before eonve~yenee. 
All above results at'(; obtaine.d stopt)ing the re- 

laxation ;algorithm whim it reaches convergence 
(no significant cbmges  are l)rodu(:ed fl'om one it- 
eration to the next),  but  relaxation algori thms not  
necessarily give their l)est results at  convergence 4, 
or not always need to achieve convergence to know 
what  the result will be (Zucker et al. 81). So they 
are often stoplmd after a few iterations. Actually, 
what  we arc (loing is changing our convergen('e cri- 
terion to one more sophist icated than  "sto 1) when 
dlere are no Inore changes".  

The results l)resented in table 3 are tit(; best 
overall results dm t  we wouM obtain if we had a 
criterion which s topped tit(; i terat ion f)rocess when 
the result obtained was an opt imum.  The  number  
in parenthesis is the i terat ion at, which the algo- 
r i thm should be stopped.  Finding such a criterion 
is ~ point  tha t  will require fllrther research. 

(12)] 93.78% (6) 

Table 3: Best results stopping before conw.~rgence. 

4This is due to two main reasons: (1)2}t,('. optimum 
of tit(*, supI)ort function doesn't correspond ea;actly to 
the best solution for the problem, that is, the chosen 
flmction is only a,n approximation of the desired one. 
And (2) performing too much iterations can produce 
a more probable solution, which will not necessarily 
be the correct one. 

These results are clearly bet ter  than  those ob- 
tained at; relaxation convergence, and they also 
outper form HMM taggers. 

Searching a more specific support flLnction. 
We have t)een using suppor t  fimctions tha t  are 

t radi t ional ly used in relaxation, but  we might  t ry  
to st)ecialize relaxation labelling to POS tagging. 

Results obta ined with this specific sut)t)ort fun(:- 
tion (3.1) are sumntarize.d in table 4 

SN Sus 

Table 4: Best results using a specific support fun<:- 
tkm. 

Using this new supt)ort fun(:tion we obtain re- 
suits slightly below those of the I IMM tagger,  

Our  sut)i)ort fun(:tion is tim sequence 1)robal)il- 
ity, which is what  Viterbi maxinfizes, 1)ut we get 
worse, results. Tlmrc are two main reasons for 
that.  The  first one is tha t  relaxation does not  
maximize the sui)t)ort; flln('tion but  the weigh, ted 
suppor t  for each variable, so we' are not doing 
exactly the same than  a HMM tagger.  Second 
reason is tha t  relaxation is not  an a lgor i thm tha t  
finds global op t ima  an(1 can be trapl)ed in local 
maxima.  

Combining information in a llack-off h, ierarchy. 
Wh can confl)ine bigram and ti ' igranl infi'oma- 

tion in a. back-off mechanism: Use t r igrams if 
available and bigrmns when not.  

Results o})tained with tha t  technique at'(', shown 
in table 5 

Sus WSJ  
[92.31% (3'-~)_ t 93.66% (4)t94.29% (4)] 

Table 5: Best; results using ~* back-off' technique. 

The  results he, re point  to the same conclusions 
than  the use of t r igrams:  il! we have a good t r igrmn 
model  (as in W S J )  then the back-off" technique 
is usefifl, and we get here the best  overall result 
for tiffs corlms. If  the t r igram model  ix not so 
good, results are not  bet ter  than  the obtained with 
l)igrams ahme. 

5 A p p l i c a t i o n  to Word  Sense  
D i s a m b i g u a t i o n  

We can apply the same a lgor i thm to the task of 
disambiguat ing tile sense of a word in a certain 
context.  All we need is to s tate  tile <',onslxaints 
between senses of neighbour  words. We can coin- 
bine this task with POS tagging, since t, here~ are 
also constraints  between the POS tag  of a word 
attd its sense, or the sense of a neighbour  word. 
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Preliminary experiments have been performed 
on SemCor (Miller et al. 93). The problem con- 
sists in assigning to each word its correct POS tag 
and the WordNet file code for its right sense. 

A most-likely algorithm got 62% (over nouns 
apperaring in WN). We obtained 78% correct, 
only adding a constraint stating that  the sense 
chosen for a word must be compatible with its 
POS tag. 

Next steps should be adding more constraints 
(either hand written or automatically derived) on 
word senses to improve performance and tagging 
each word with its sense in WordNet instead of its 
file code. 

6 Conclusions 

We have applied relaxation labelling algorithm to 
the task of POS tagging. Results obtained show 
that  the algorithm not only can equal markovian 
taggers, but also outperform them when given 
enough constraints or a good enough model. 

The main advantages of relaxation over Marko- 
vian taggers are the following: First of all, relax- 
ation can deal with more information (constraints 
of any degree), secondly, we can decide whether 
we want to use only automatically acquired con- 
straints, only linguist-written constraints, or any 
combination of both, and third, we can tune the 
model (,~dding or changing constraints or compat- 
ibility coefficients). 

We can state that  in all experiments, the re- 
finement of the model with hand written con- 
straints led to an improvement in performance. 
We improved performance adding few constraints 
which were not linguistically motiwtted. Probably 
adding more "linguistic" constraints would yield 
more significant improvements. 

Several parametrizations for relaxation have 
been tested, and results seem to indicate that: 

• support function (1.2) produces clearly worse 
results than the others. Support flmction 
(1.1) is slightly ahead (1.3). 

• using mutual information as compatibility 
values gives better results. 

• waiting for convergence is not a good policy, 
and so alternative stopping criterions must be 
studied. 

• the back-off technique, as well as the trigram 
model, requires a really big training corpus. 

7 F u t u r e  w o r k  

The experiments reported and the conclusions 
stated in this paper seem to provide a solid back- 
ground for further work. We intend to follow sev- 
eral lines of research: 

• Applying relaxation to WSD and to WSD 
p!us POS-tagging. 

• Experiment with different stopt)ing criteri- 
ons. 

• Consider automatically extracted constraints 
(Mhrquez & Rodrlguez 95). 

• Investigate alternative ways to compute 
compatibility degrees for hand-written con- 
straints. 

• Study back-off techniques that  take into ac- 
count all classes and degrees of constraints. 

• Experiment stochastic relaxation (Sinmlated 
annealing). 

• Compare with other optimization or con- 
straint satisfaction teehlfiques applied to 
NLP tasks. 
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