
P O S Tagg ing U s i n g R e l a x a t i o n Labe l l ing

Llufs Padr6

D e p a r t a m e n l ; de L l e n g u a t g e s i S i s t e m e s I n f o r m g t i c s

U n i v e r s i t a t P o l i t 6 c n i c a de C a t a h m y a

P a n G a r g a l l o , 5. 08071 B a r c e l o n a , S p a i n

padro~ls i , upc. es

Abstract

Relaxation labelling is an optimization
technique used in many fields to solve
constraint satisfael,ion problems. The al-
gori thm finds a combination of values
for a set of variables such that satis-
fies -to the maximum possible degree- a
set of given constraints. This paper de-
scribes some experiments performed ap-
plying it to POS tagging, and the results
obtained, it also ponders the possibil-
ity of applying it to Word Sense Disam-
biguation.

1 Introduct ion and Motivat ion

Relaxation is a well-known technique used to solve
consistent labelling problems. Actually, relax-
ation is a family of energy-function-minimizing al-
gorithms closely related to Bol tzmann machines,
gradient step, and Hopfield nets.

A consistent labelling problem consists of, giwm
a set of variables, assigning to each variable a la-
bc'l compatible with the labels of the other ones,
according to a set of compatibili ty constraints.

Many problems can be stated as a labelling
problem: the travelling salesman problen 4 n-
queens, corner and edge recognition, image
smoothing, etc.

In this paper we will t ry to make a first, insight
into applying relaxation labelling to natural lan-
guage processing. The main idea of the work is
that NLP problems such as POS tagging or WSD
can be stated as constraint satisfaction problems,
thus, they could be addressed with the usual tech-
niques of that field, such as relaxation labelling.

It seems reasonable to consider POS tagging or
WSD as combinatorial problenrs in which we have
a set of variables (words in a sentence) a set, of
possible labels for each one (POS tags or senses),
and a set of constraints for these labels. We might
also coinbine both problems in only one, and ex-
press constraints between the two types of tags,
using semantic information to disambiguate POS

tags and visceversa. This is not the point; in this
paper, but it will be addressed in fllrther work.

2 Relaxat ion Labell ing Algor i thm

Relaxation labelling is a generic name for a family
of iterative algorittuns which perform function op-
timization, based (m local infi~rmation. See (Tor-
ras 89) for a clear exposition.

Let V = {v l , v 2 , . . . , v,,~} be a set of variables
Let t = , ,,,~ } be the set of possilfle

labels for variable vi.
Let Cb' be a set: of constraints between the la-

bels of the variables. Each constraint C C CS
states a "compatibility value" C,. ibr a colnbina-
lion of pairs variable-label. Constraints can be of
any order (that is, any number of variables may
be involved in a constraint).

The aim of the algorithm is to find a weighted
labelling such tha t "global consistency" is maxi-
mized. A weighted labelling is a weight assigna-
tion for each possibh', label of each variable. Max-
infizing "Global consistency" is defined as maxi-

)i)i is the weight mizing ~ j t j x Sij , Vvi. Where I j
for label j in wtriable vi and Si j the suppor t re-
ceived by the same combination. The support for
a pair w~riable-label expresses how compatible is
that pair with the labels of neighbouring variables,
according to the constraint set.

The relaxation algorithm consists of:

• s tar t in a randoln weighted labelling.

• fbr each variable, compute the "support" that
each label receives froln the current .weights
for the labels of the other variabh;s.

• Update the weight of each variable label ac-
(:ording to the support obtained.

• iterate the process until a convergence crite-
rion is met.

The support computing and label weight chang-
ing must be perfornmd in parallel, to avoid that
changing the a variable weights would affect t;he
support colnputation of the others.

The algorithm requires a way to compute which
is the support for a wn'iable label given the others

877

and the constraints. This is called the "support
function".

Several support, functions are used in tire liter-
ature to define the support received by label j of
variable i (Sij).

Being:
1"1 ?'d R~j = {," I r -- [(v,,, tk~),..., (~, * }) , . . . , (v,.,, t.k,,)]

tile set of constraints on label j for variable i,
i.e. the constraints formed by any coinbination of
pairs variable-label that includes the pair (vi, t}).

r l l)k, (m) the weight assigned to label t~.~ for variable
v,,~ at t ime m.
TO(V) the set of all possible subsets of variables in
V.
R~ (for G E T°(V)) the set of constraints o n tag
i ieor word j in which the involved variables are
exactly those of G.

Usual support flnmtions are based on coinput-
ing, for each constraint r involving (vi, t}), tile
"constraint influence", I n f (r) = C,. x p~ ' (m) x
. . . x p~Z., (m), which is the product of tile current
weights for the labels appearing the constraint
except (vi,t}) (representing how applicable is tile
constraint in the current context) multiplied by C.,.
which is the constraint compatibil i ty value (stat-
ing how compatible is the pair with the context).

The first formula combines influences just
adding them:

(1.1) Sij = ~ I n f (r)
r G R i j

The next fornmla adds the constraint influences
grouped according to the variables they involve,
then multiplies the results of each group to get
the final value:

(1.2) & - - 11

The last formula is tile same than the previous
one, but instead of adding the constraint influ-
ences in the same group, just picks tile maximum.

(1.3) Sij = I I max { I n f (r) }

The algorithm also needs art "updating func-
tion" to compute at each iteration which is tile
new weight for a variable label, arrd this compu-
tation must be done in such a way tha t it can be
proven to meet a certain convergence criterkm, at
least under appropriate conditions 1

Several formulas have been proposed and some
of them have been proven to be approximations of
a gradient step algorithin.

Usual updat ing flmctions are the following.

~Convergence has been proven under certain con-
ditions, but in a complex application such as POS
gagging we will lind cases where it is not necessarily
achieved. Alternative stopping criterions will require
further attention.

Tile first formula increases weights for labels
with support greater than 1, and decreases those
with support smaller than 1. The denonfinator
expression is a normalization factor.

(2.1) p}(m + 1) = ~ ; ~ where S,ij > 0
i

k I

The second formula increases weight for labels
with support greater than 0 and decreases weight,
for those with support smaller than 0.

~ (~,,) x (1 + &j)
(2.2) + 1) =

k = l

w h e r e - l < S i j <_ +1

Advantages of the algorithm are:

• Its irighly local character (only the state
at, previous t ime step is needed to compute
each new weight). This makes the algorithm
highly parallelizable.

• Its expressivity, since we state the problem in
terms of constraints between labels.

• Its flexibility, we don' t have to check absolute
coherence of constraints.

• Its robustness, sin(:(,' it can give an answer to
problenls without an exact solution (incom-
patible constraints, insufficient data...)

• Its ability to find local-optima solutions to
NP problems in a non-exponential time.
(Only if we have an upper bound for the nun>
ber of iterations, i.e. convergence is fast, or
the algorithm is s topped after a fixed number
of iterations. See section 4 for further details)

Drawbacks of tire algorithm are:

• Its cost. Being n the number of variables,
v the average number of possible labels per
variable, c the average number of constraints
per label, and I tire average number of iter-
ations until convergence, tile average cost is
n x v x c x i , an expression in which the inulgi~
plying terms ,night; be much bigger than n if
we deal with probh',ms with many values and
constraints, or if convergence is not quickly
achieved.

• Since it acts as an approximation of gradi-
ent step algorithms, it has similar weakness:
Found opt ima are local, and convergence is
not always guaranteed.

• In ge, ne, ral, constraints must be written mann-
ally, since they at(', the modelling of the prob-
lem. This is good for easily modelable or
reduced constraint-set problems, but in the
case of POS tagging or WSD constraints are
too many and too complicated l;o be written
by hand.

8 '7 8

• The diificulty to s tate which is the "(:omt)at-
ibility value" for each constraint .

• The, difficulty to choose the suppor t and up-
dat ing fun('tions more suitable for ea(:h l)ar-
t i tu lar prol)lem.

3 A p p l i c a t i o n t o P O S T a g g i n g

In this section we expose our applicat ion of relax-
at ion labelling to assign 1);u't of speech tags to the
words in a sentenc, e.

Addressing tagging problems th rough ot)timiza-
tion methods has been done in (Schmid 94) (POS
tagging using neural networks) and in (Cowie et
al. 92) (WSD using sinmlated annealing). (Pelillo
& I{efice 94) use a toy POS tagging l)i'oblenl to ex-
t)eriment their methods to improve the quali ty of
eoInt)atibility coeflh:ients for the constraints used
by a relaxation labelling algorithm.

The model used is l i e tblh)wing: each word ill
the text is a variable and may take several hfl)els,
which are its POS tags.

Since t h e number of variabh~s lind word po-
sition will vary from one senten(:e to another ,
constraints are expressed in relative terms (e.g.
[(vi, Determiner)(v.i , , , Adjective)(vi ,2, Nou'r0]).

The Conshnint Set
l{elaxation labelling is a.bh~ to deal wil;h con-

straints 1)etween any subset of wn'ial)les.
Any rehttionship between any subset of words

and tags may 1)e expressed as constraint and used
l;o feed th(: algorithm. So, linguisl;s are fre(, to ex-
press ;my kind of constra int an(l are not restricted
I:o previously decided patl;erns like in (Brill 92).

Constraints for subsets of two and three vari-
ables are automati(:al ly acquired, and any other
subsets are left, to the linguists ' criterion. Tha t is,
we are establishing two classes of constraints: the
autoinat ical ly acquired, and the mmmal ly writ-
ten. This means tha t we ha.ve a great model flex-
ibility: we can choose among a completely hand
writ ten model, where, a linguist has writ ten all
l;he constraint;s, a comph~tely mm)mat, ically lie-
rived model, or ally interinediate (:olnl)ination of
(',onstrailfl;s fl'om ea, ch (;ype.

We can use the same information than HMM
taggers to ot)tain au tomat ic (:onstraints: the
1)robability 2. of transit ion fl'om one tag to an-
other (bigram -or binary constraint- probabil ity)
will give us an idea of how eomt)atible they are in
the pos i t ions i and i + 1, ;rod the same for l;rigrain
-or ternary cbnstraint- probabilit ies. Extending

~Esl;imated fi'om occurrences in tagged (:ort)or~t.
W(: prefer tll(: use of supervis(:d training (sin(:e large
enough corpora arc available) because of the diffi-
culty of using an unsut)ervised method (such as Bmm>
Welch re-estimation) when dealing, as in our case,
with heterogeneous constraints.

this to higher order constraints is possil)le, but;
would result in prohibit ive comtmt;ational costs.

l)ealing with han(l-writ ten constraints will not
be so easy, since it; is not obvious]low to com-
pute "transition probabilities" for a comph:x con-
s t r a in t

Al though a c c u r a t e - b u t costly- methods to esti-
mate comt)al;ibility values have been proposed in
(Pelillo & Hetice 94), we will choose a simpler an(t
much (:heaptw (:Olntmtationally solution: (JOHll)llt-
ing the compat ibi l i ty degree fl)r the manual ly writ-
ten constraints using the number of occurr('nees
of the consl;raint pa t t e rn in the t ra ining (:orIms to
comtmte the prol)ability of the restr icted word- tag
pair given the contexl; defined by the constraint a

II.elaxation doesn ' t need -as HMMs (h)- the prior
prot)at)ility of a certain tag for a word, since it is
not a constraint , but il; Call])e llSCd t o SOt; t h e
initial st;at(; to a 11ot templet;ely ral l (lol[I OllC. hfi-
tially we will assign to each word il;s most I)ro/)able
tag, so we s tar t opt imizat ion in a biassed point.

Alternative Support l,%nctions
The sut)port functions described in section 2

are t radi t ional ly used in relaxation algorithnts, it
seems bet ter for our purt)ose to choose an addi-
tive one, since the multiplicative flm(:tions might
yiehl zero or t iny values when -as in Ollr cose- for ,q
(:crtain val'iable or tag no constraints are available
for a given subsel; of vm'ial)les.

Since tha t fllnt:tions are general, we may try to
lind ;~ suI)I)ort f lmctkm more speciiic tbr our t)rol)-
h:m. Sin(:e I IMMs lind the max inmm sequ(:n(:e
probat)ility and relaxation is a maximizing algo-
rii;hm, we (:an make relaxation maximize th(,' se-
(lllenc(? t)robability an(l we should gel; tile same
results. To a(:hieve this we define a new Sul)port
flmc, l;ion, which is the sequence i)robability:

Being:
t k tile tag for varial)h: 'vk with highest weight value
a~ the current tilne step.
7r(Vt, t 1) [;he probal)ility for t~he sequence to sl;art
in tag t I.
P(v , t) the lexical probabil i ty for the word repre-
se]tted by v to have t;ag t.
T(t l , I2) the probabi l i ty of tag t2 given tha t I;he
previous one is tl.
~itj the set of all ternm'y constrainl;s on tag j for
word i.

I I ,q • H... the :(:t of all hand-wri t ten constraints On (;ag
3 k)r word i.

We define:

= × t }) ×
N !

k - - l . , k / i

aThis is an issue that will require fitrtl,er ati:en-
lion, since as constraints can be expressed in several
degrees of g(merality, l;he estimated probabilities may
vary greatly del)ending on how t;he constraint was
expressed.

8 7 9

To obtain the new support function:

(3.1)

Compatibility Values
Identifying compatibility values with transition

probabilities may be good for n-gram models, but
it is dubious whether it can be generalized to
higher degree constraints. In addition we can
question the appropriateness of using probability
values to express compatibilities, and try to find
another set of values that fits bet ter our needs.

We tried several candidates to represent com-
patibility: Mutual Information, Association Ratio
and Relative Entropy.

This new compatibility measures are not lim-
ited to [0, 1] as probabilities. Since relaxation up-
dating functions (2.2) and (2.1) need support val-
ues to be normalized, we must choose some func-
tion to normalize compatibility values.

Although the most intuitive and direct scal-
ing would be the linear function, we will test as
well some sigmoid-shaped hmctions widely used
in neural networks and in signal theory to scale
free-ranging values in a finite interval.

All this possibilities together with all the pos-
sibilities of the relaxation algorithm, give a large
amount of combinations and each one of them is
a possible tagging algorithm.

4 E x p e r i m e n t s

To this extent, we have presented the relaxation
labelling algorithm family, and stated soine con-
siderations to apply them to POS tagging.

In this section we will describe the experiments
performed on applying this technique to our par-
tieular problem.

Our experiments will consist of tagging a corpus
with all logical combinations of the following pa-
rameters: Support function, Updating function,
Compatibility values, Normalization function and
Constraints degree, which can be binary, ternary,
or hand-written constraints, we will experiment
with any combination of them, as well as with
a particular combination consisting of a back-off
technique described below.

In order to have a comparison reference we will
evaluate the pertbrmance of two tuggers: A blind
most-likely-tag tagger and a HMM tagger (Elwor-
thy 93) performing Viterbi algori thm. The train-
ing and test corpora will be the same for all tag-
germ

All results are given as p r ec i s i on percentages
over ambiguous words.

4.1 Resu l t s

We performed the same experiments on three dif-
ferent corpora:

Corpus S N (Spanish Novel) train: 15Kw, test:
2Kw, tag set size: 70. This corpus was
chosen to test the algorithm in a language
distinct than English, and because previous
work (Moreno-Torres 94) on it provides us
with a good test bench and with linguist writ-
ten constraints.

Corpus Sus (Susanne) train: 141Kw, test: 6Kw,
tag set, size: 150. The interest of this corpus
is to test the algorithm with a large tag set.

Corpus W S J (Wall Street Journal)
train: 1055Kw, test: 6Kw, tag set size: 45
The interest of this corpus is obviously its
size, which gives a good statistical evidence
for automatic constraints acquisition.

Baseline results.
Results obtained by the baseline tuggers are

found in table 1.

SN
Most-likely

[MM 94.62%

Sus WSJ
86.01% 88.52%
93.20% 93.63%

Table 1: Results achieved by conventional tuggers.

First; row of table 2 shows the best results ob-
tained by relaxation when using only binary con-
straints (B). That is, in the same conditions than
HMM taggers. In this conditions, relaxation only
performs better than HMM for the small corpus
SN, and tile bigger the corpus is, tile worse results
relaxation obtains.

Adding hand-written constraints (C).
Relaxation can deal with more constraints, so

we added between 30 and 70 hand-written con-
straints depending on the corpus. The constraints
were derived ~malyzing the most frequent errors
committed by tile HMM tagger, except for SN
where we adapted the context constraints pro-
posed by (Moreno-Torres 94).

The constraints do not intend to be a general
language model, they cover only some common er-
ror cases. So, experiments with only hand-written
constraints are not performed.

The compatibility value for these constraints is
coinputed from their occurrences in the corpus,
and may be positive (compatible) or negative (in-
compatible).

Second row of table 2 shows the results obtained
when using binary plus hand-writ ten constraints.

In all corpora results improve when adding
hand-written constraints, except in W S J . This
is because the constraints used in this case are
few (about 30) and only cover a few specific er-
ror cases (mainly tile distinction past/participle
following verbs to have or to be).

Using trigram information (T).
We have also available ternary constraints, ex-

tracted from trigram occurrences. Results ob-

880

I _ _ ~ _ S N
19"-5.77%

 _cJ 96.54%

Sus
91.65%

WSJ
~79.34V7/0

92.50% 89.24%
88.6ooof

8-97~3 3 ~-

89.83%
~ . y 8 0/~0,

Table 2: Best relaxation results using every combina-
tion of constraint kinds.

ta ined using te rnary constraints in combinat ion
with other kinds of information are shown in rows
T, BT, TC and B T C in table 2.

There seem to be two tendencies in this table:
First, using tr igrmns is only helpflfl in W S J .

This is becmme the t raining cortms for W S J is
much bigger than in the other cases, and so the tri-
grmn model obtained is good, while, for the ()tiler
c<)rpora, the training set; seems to t)e too small to
provide a good t r igram iniormation.

Secondly, we can observe tha t there is a general
t endency to "the more information, the bet ter re-
suits", tha t ix, when using B T C we get l)etter re-
suits tha t with B~, which is in tu rn bet ter than
T alone.

Stopping before eonve~yenee.
All above results at'(; obtaine.d stopt)ing the re-

laxation ;algorithm whim it reaches convergence
(no significant cbmges are l)rodu(:ed fl'om one it-
eration to the next), but relaxation algori thms not
necessarily give their l)est results at convergence 4,
or not always need to achieve convergence to know
what the result will be (Zucker et al. 81). So they
are often stoplmd after a few iterations. Actually,
what we arc (loing is changing our convergen('e cri-
terion to one more sophist icated than "sto 1) when
dlere are no Inore changes".

The results l)resented in table 3 are tit(; best
overall results dm t we wouM obtain if we had a
criterion which s topped tit(; i terat ion f)rocess when
the result obtained was an opt imum. The number
in parenthesis is the i terat ion at, which the algo-
r i thm should be stopped. Finding such a criterion
is ~ point tha t will require fllrther research.

(12)] 93.78% (6)

Table 3: Best results stopping before conw.~rgence.

4This is due to two main reasons: (1)2}t,('. optimum
of tit(*, supI)ort function doesn't correspond ea;actly to
the best solution for the problem, that is, the chosen
flmction is only a,n approximation of the desired one.
And (2) performing too much iterations can produce
a more probable solution, which will not necessarily
be the correct one.

These results are clearly bet ter than those ob-
tained at; relaxation convergence, and they also
outper form HMM taggers.

Searching a more specific support flLnction.
We have t)een using suppor t fimctions tha t are

t radi t ional ly used in relaxation, but we might t ry
to st)ecialize relaxation labelling to POS tagging.

Results obta ined with this specific sut)t)ort fun(:-
tion (3.1) are sumntarize.d in table 4

SN Sus

Table 4: Best results using a specific support fun<:-
tkm.

Using this new supt)ort fun(:tion we obtain re-
suits slightly below those of the I IMM tagger,

Our sut)i)ort fun(:tion is tim sequence 1)robal)il-
ity, which is what Viterbi maxinfizes, 1)ut we get
worse, results. Tlmrc are two main reasons for
that. The first one is tha t relaxation does not
maximize the sui)t)ort; flln('tion but the weigh, ted
suppor t for each variable, so we' are not doing
exactly the same than a HMM tagger. Second
reason is tha t relaxation is not an a lgor i thm tha t
finds global op t ima an(1 can be trapl)ed in local
maxima.

Combining information in a llack-off h, ierarchy.
Wh can confl)ine bigram and ti ' igranl infi'oma-

tion in a. back-off mechanism: Use t r igrams if
available and bigrmns when not.

Results o})tained with tha t technique at'(', shown
in table 5

Sus WSJ
[92.31% (3'-~)_ t 93.66% (4)t94.29% (4)]

Table 5: Best; results using ~* back-off' technique.

The results he, re point to the same conclusions
than the use of t r igrams: il! we have a good t r igrmn
model (as in W S J) then the back-off" technique
is usefifl, and we get here the best overall result
for tiffs corlms. If the t r igram model ix not so
good, results are not bet ter than the obtained with
l)igrams ahme.

5 A p p l i c a t i o n to Word Sense
D i s a m b i g u a t i o n

We can apply the same a lgor i thm to the task of
disambiguat ing tile sense of a word in a certain
context. All we need is to s tate tile <',onslxaints
between senses of neighbour words. We can coin-
bine this task with POS tagging, since t, here~ are
also constraints between the POS tag of a word
attd its sense, or the sense of a neighbour word.

881

Preliminary experiments have been performed
on SemCor (Miller et al. 93). The problem con-
sists in assigning to each word its correct POS tag
and the WordNet file code for its right sense.

A most-likely algorithm got 62% (over nouns
apperaring in WN). We obtained 78% correct,
only adding a constraint stating that the sense
chosen for a word must be compatible with its
POS tag.

Next steps should be adding more constraints
(either hand written or automatically derived) on
word senses to improve performance and tagging
each word with its sense in WordNet instead of its
file code.

6 Conclusions

We have applied relaxation labelling algorithm to
the task of POS tagging. Results obtained show
that the algorithm not only can equal markovian
taggers, but also outperform them when given
enough constraints or a good enough model.

The main advantages of relaxation over Marko-
vian taggers are the following: First of all, relax-
ation can deal with more information (constraints
of any degree), secondly, we can decide whether
we want to use only automatically acquired con-
straints, only linguist-written constraints, or any
combination of both, and third, we can tune the
model (,~dding or changing constraints or compat-
ibility coefficients).

We can state that in all experiments, the re-
finement of the model with hand written con-
straints led to an improvement in performance.
We improved performance adding few constraints
which were not linguistically motiwtted. Probably
adding more "linguistic" constraints would yield
more significant improvements.

Several parametrizations for relaxation have
been tested, and results seem to indicate that:

• support function (1.2) produces clearly worse
results than the others. Support flmction
(1.1) is slightly ahead (1.3).

• using mutual information as compatibility
values gives better results.

• waiting for convergence is not a good policy,
and so alternative stopping criterions must be
studied.

• the back-off technique, as well as the trigram
model, requires a really big training corpus.

7 F u t u r e w o r k

The experiments reported and the conclusions
stated in this paper seem to provide a solid back-
ground for further work. We intend to follow sev-
eral lines of research:

• Applying relaxation to WSD and to WSD
p!us POS-tagging.

• Experiment with different stopt)ing criteri-
ons.

• Consider automatically extracted constraints
(Mhrquez & Rodrlguez 95).

• Investigate alternative ways to compute
compatibility degrees for hand-written con-
straints.

• Study back-off techniques that take into ac-
count all classes and degrees of constraints.

• Experiment stochastic relaxation (Sinmlated
annealing).

• Compare with other optimization or con-
straint satisfaction teehlfiques applied to
NLP tasks.

Acknowledgements

I thank Horacio Rodfguez for his help, support
and valuable comments on this paper. I also thank
Kiku Ribas, German Rigau and Pedro Meseguer
for their interesting suggestions.

References

Brill, E.; A simple rule-based part-of-speech tag-
ger. ANLP 1992

Cowie, J.; Guthrie, J.; Guthrie, L.; Lexical Disam-
biguatio'n using Simulated Annealing DARPA
Speech and Natural Language; Feb. 1992

Elworthy, D.; Part of Speech and Phrasal Tagging.
ESPRIT BRA-7315 Acquilex iI, Working Paper
10, 1993

Mhrquez, L.; Rodrfguez, H.; Towards Learning a
Constraint Grammar from Annotated Cool, ova
Using Decision Trees. ESPRIT BRA-7315 Ac-
quilex II, Working Paper, 1995

Miller, G.A.; Leacock, C.; Tengi, R.; Bunker,
R.T.; A semantic concordance ARPA Wks on
Human Language Technology, 1993

Moreno-Torres, I.; A morphological disambigua~
tion tool (MDS). An application to Spanish. ES-
PRIT BRA-7315 Acquilex II, Working Paper
24, 1994

Pelillo, M.; Refice M.; Learning Compatibility
Coefficients for Relaxation Labeling Processes.
IEEE Trans. on Patt. An. & Maeh. Int. 16, n.
9 (1994)

Schmid, It.; Part of Speech lhgging with Neural
Networks COLING 1994

Torras, C.; Relaxation and Neural Learning:
Points of Convergence and Divergence. Jour-
nal of Parallel and Distributed Computing 6,
pp.217-244 (1989)

Zucker, S.W.; Leclerc, Y.G.; Mohammed, J.L.;
Continuous Relaxation and local maxima selec-
tion: Conditions for equivalence. IEEE Trans.
on Patt. An. &Mach. Int. 3, n. 2 (1981)

8 8 2

