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Abstract

More and more disciplines require NLP tools for performing automatic text analyses on various
levels of linguistic resolution. However, the usage of established NLP frameworks is often ham-
pered for several reasons: in most cases, they require basic to sophisticated programming skills,
interfere with interoperability due to using non-standard I/O-formats and often lack tools for vi-
sualizing computational results. This makes it difficult especially for humanities scholars to use
such frameworks. In order to cope with these challenges, we present TextImager, a UIMA-based
framework that offers a range of NLP and visualization tools by means of a user-friendly GUI.
Using TextImager requires no programming skills.

1 Introduction

Computational humanities and related disciplines require a wide range of NLP tools to perform auto-
matic text analyses on various levels of textual resolution. This includes, for example, humanities schol-
ars dealing with repositories of historical documents, forensic linguists analyzing unstructured texts of
online social media to create digital fingerprints of suspects or even doctors using clinical NLP to support
differential diagnosis based on physician-patient talks. However, established NLP frameworks still re-
quire basic to sophisticated programming skills for performing such analyses. This hampers their usage
for users who are not sufficiently trained neither in computational linguistics nor in computer science.
Further, these frameworks often lack interoperability due to using non-standard I/O-formats. We present
TextImager to cope with these challenges. The longer-term goal of TextImager is to provide a plat-
form into which any open source/access NLP tool can be integrated. To this end, TextImager provides a
web-based GUI whose usage does not require any programming skills while making accessible a range
of tools for visualizing results of text analyses. In order to ensure standardization and interoperability,
TextImager is based on the Unstructured Information Management Applications (UIMA) framework.
Currently, the scope of TextImager ranges from tokenizing, lemmatizing, POS-tagging, text similarity
measurements to sentiment analysis, text classification, topic modeling and many more.

2 Related Work

Frameworks of computational texts analysis have already been introduced and are now common in in-
dustrial use. This includes, for example, UIMA (Ferrucci and Lally, 2004), DKPro (Eckart de Castilho
and Gurevych, 2014), OpenNLP (OpenNLP, 2010) and Gate (Cunningham et al., 2011). Note that these
frameworks do not provide visualization interfaces and require versatile programming skills for set up.
Thus, they cannot be recommended for being used by computationally less trained users. We provide the
TextImager to cope with this problem while integrating most of the components of these frameworks.
On the other hand, Voyant Tools (Bird et al., 2009; Ruecker et al., 2011), WebNLP (Burghardt et al.,
2014) and conTEXT (Burghardt et al., 2014) are web-based NLP tools including visualization compo-
nents. In order to combine the best of both worlds, TextImager additionally subsumes the functionalities
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of these tools. It also shares functionalities with WebLicht (Hinrichs et al., 2010). However, unlike We-
bLicht, TextImager is based on open UIMA and, thus, complies to an industrial standard of modeling
text processing chains.

3 System Architecture of TextImager

TextImager consists of two parts, front-end and back-end. The front-end is a web application that makes
all functionalities and NLP processes available in a user-friendly way. It allows users for analyzing and
visualizing unstructured texts and text corpora. The back-end is a highly modular, expandable, scalable
and flexible architecture with parallel processing capabilities.

3.1 Back-end

Figure 1 shows the architecture of TextImager. Every NLP component of TextImager implements a
UIMA interface. Every UIMA compatible NLP-component can easily be integrated into TextImager.
Even modules not compatible with UIMA can be integrated with just a slight effort. Amongst others, we
have integrated DKPro (see Section 2), which offers a variety of UIMA-components. We also integrated
the UIMA Asynchronous Scaleout (UIMA-AS)1 add-on.

Figure 1: TextImager’s back-end.

TextImager allows users for dynamically
choosing NLP components in a pipeline. To this
end, we extended UIMA-AS by initiating com-
ponents without XML descriptors by means of
uimaFIT2. We extended this framework by al-
lowing for dynamic instantiations of pipelines.
These extensions make our framework highly
flexible, adaptive and extensible during runtime.

All TextImager components are configured
as UIMA-AS services, which may run stan-
dalone or in a pipeline. All services are located
on servers to allow for communication among
them. Note that we are not limited to run these
components on a single server; rather, they can
be distributed among different servers (see Fig-
ure 1). We developed a mechanism that automat-
ically selects and acquires components and their
resources: it arranges components into pipelines
and grants the ability to parallelize them. Thus,
components that do not depend on each other can run in parallel. For this we developed an advanced
UIMA flow controller. Take the examples displayed in Fig.2: suppose that vertices in these exam-
ples denote NLP components; suppose further that the corresponding arcs denote interdependencies
between these components. In Fig. 2a, the components C1, C2 and C3 do not depend on each other.
Thus, they can run in parallel. In Fig. 2b, components C1 and D1 do not depend on each other,
but on C and D, respectively. Thus, C and D can run in parallel as can do the components C1

and D1. In Fig. 2c, C depends on C1, C2 and C3. Thus, running C has to wait on the termina-
tion of C1, C2 and C3. Within TextImager, dependency hierarchies of components as exemplified by
these three examples are generated from information provided by each of the components supposed
that their input and output types have been defined appropriately (cf. the class specifications of type
org.apache.uima.fit.descriptor.TypeCapability). In this way, TextImager allows for
realizing a wide range of processing chains.

One advantage of our framework is that it does not rely on a central repository. Rather, TextImager
can be distributed across multiple servers. This allows developers for setting up their own TextImager

1https://uima.apache.org/doc-uimaas-what.html
2https://uima.apache.org/uimafit.html
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Figure 2: Component dependency types.

(a) Stylometric R-Module (b) LDA R-Module

server and to distribute their own NLP tools within the TextImager ecosystem.
TextImager can be used within a web application that offers a graphical user interface. Alternatively,

TextImager can be used via a WSDL webservice client.

3.2 Front-end

The front-end gives access to all NLP tools integrated into TextImager without requiring any program-
ming skills. This is done by means of a GUI that even provides three-dimensional text visualizations (see
Figure 4b). All visualizations are interactive in the sense of allowing for focusing and contextualizing
results of text analysis (e.g., the macro reference distribution of sentence similarity across multiple docu-
ments exemplified in Figure 4d). The GUI contains a text and a visualization panel. One of TextImager’s
guiding principles is to enable bidirectional interactivity. That is, any interaction with the visualization
panel is synchronized by automatically adjusting the content of the text panel and vice versa. The front-
end is based on Ext JS, a JavaScript framework for building interactive cross platform web applications.
The visualizations are done by means of D3.js3 and vis.js4 to enable browser-based visualizations while
handling large amounts of data.

Figure 4 exemplifies TextImager. With a focus on close reading, TextImager supports the interpre-
tation of single texts by determining, for example, their central topics or by depicting their unfolding
from constituent to constituent (see Figure 4g, 4a, 4h). Regarding distant reading (Jänicke et al., 2015),
TextImager provides more abstract overviews of the content of text corpora. Here, visualizations provide
summary information as exemplified in Figure 4b, 4c, 4d, 4f.

Last but not least, TextImager provides a generic interface to R5. The aim is to give access to any
NLP-related package in R once more without requiring programming skills. This is especially needed
for scholars in digital humanities who are not trained in using script languages for modeling statistical
procedures, but expect a versatile tool encapsulating this computational complexity. Thus, TextImager
users can process input texts using R packages like LDA (see Figure 3b), network analysis or stylometrics
(see Figure 3a) without the need to manipulate or to invoke any R script directly. All these R packages

3https://www.d3js.org
4http://visjs.org
5https://www.r-project.org
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are given a single entrance point in the form of TextImager. See (Mehler et al., 2016) for a recent research
study based on TextImager.

4 Future Work

In already ongoing work, we extend the functionality of TextImager. This includes covering all features
of tools like conTEXT. In contrast to many current frameworks, we will make TextImager’s source code
open-source as soon as the framework reaches a stable and documented version. We are going to specify
a comprehensive model for component specification. The model will contain specifications of general
components and their dependency hierarchy. This model will help defining where new NLP components
are settled within the NLP landscape.

5 Scope of the Software Demonstration

A beta version of TextImager’s web application can be found at http://textimager.
hucompute.org. A preprocessed demonstration can be found at http://textimager.
hucompute.org/index.html?viewport=demo. A tutorial on how to set up TextImager’s
backend services on codebase and a list of available components and options can be found at http:
//service.hucompute.org.
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(a) Constituent parse tree (b) Text2Voronoi

(c) Innertextual similarity (d) Intertextual similarity

(e) Dendrogramcluster similarity (f) Relation graph

(g) Bipartite similarity (h) Semantic relation graph

Figure 4: Visualization Examples
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