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Abstract

Considering the rapid improvement of large generative language models, it is important to measure their ability to
encode clinical domain knowledge in order to help determine their potential utility in a clinical setting. To this end we
present MedQA-SWE – a novel multiple choice, clinical question & answering (Q&A) dataset in Swedish consisting of
3,180 questions. The dataset was created from a series of exams aimed at evaluating doctors’ clinical understanding
and decision making and is the first open-source clinical Q&A dataset in Swedish. The exams – originally in PDF
format – were parsed and each question manually checked and curated in order to limit errors in the dataset. We
provide dataset statistics along with benchmark accuracy scores of seven large generative language models on a
representative sample of questions in a zero-shot setting, with some models showing impressive performance given
the difficulty of the exam the dataset is based on.
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1. Introduction

Clinicians today face a substantial administrative
workload (Gaffney et al., 2022; Toscano et al.,
2020) and the continuously improving capabili-
ties of large transformer-based language models
(Vaswani et al., 2017) has led to questions regard-
ing their potential usefulness in the healthcare sec-
tor. Recently, models like GPT-4, Med-PaLM, and
Med-PaLM-2 have received passing scores on tests
based on the United States Medical Licensing Ex-
amination (USMLE) (OpenAI, 2023; Singhal et al.,
2022, 2023). Medical devices based on large lan-
guage models (LLMs) could potentially benefit the
healthcare sector by alleviating some of the admin-
istrative burdens faced by clinicians today by aiding
in tasks such as information retrieval, summarizing
text, radiologic decision making and clinical note
generation (Dave et al., 2023; Moons and Bulck,
2023; Patel and Lam, 2023; Rao et al., 2023).

However, there are considerable risks associated
with deploying LLMs in the clinical domain (Tian
et al., 2023). Besides ethical and legal issues (Har-
rer, 2023) LLMs have a tendency to hallucinate (Ji
et al., 2023) and prior to deployment they need to
be thoroughly evaluated – in a multitude of ways
– in order to better understand the potential and
limitation of each particular model.

One such evaluation method involves testing
the degree to which the model has parameterized
knowledge of the clinical domain. Language mod-
els have the potential to encode knowledge (Petroni
et al., 2019a), and the degree to which a model has
parameterized knowledge in some domain have
previously been evaluated using multiple choice
question and answer datasets (MCQA) (Hendrycks

et al., 2021).
Solving MCQA-tasks requires the model to cor-

rectly answer a question by selecting the correct
alternative(s) from a number of candidate alterna-
tives (Rogers et al., 2023).

Open-sourced MCQA datasets have frequently
been used in order to evaluate language models
on particular tasks, including those related to the
clinical field (Singhal et al., 2022, 2023; Nori et al.,
2023). However, high scores on clinical MCQA ex-
ams in English by certain LLMs – trained primarily
on English text – does not necessarily imply a simi-
lar proficiency on non-English exams (Petrov et al.,
2023; Zhang et al., 2023).

One advantage of testing a model on clinical
MCQA tasks is that it is a relatively straightforward
evaluation – it requires no input from clinicians nor
any access to patient data. These two issues could
otherwise hinder investigations into the capabili-
ties of medical devices based on LLMs by limiting
the number of participants to those with access to
patient data and clinicians.

Several clinical MCQA datasets now exist, pri-
marily in English (Pal et al., 2022; Jin et al., 2019;
Hendrycks et al., 2021)1, English and Chinese (Jin
et al., 2020) and Spanish (Vilares and Gómez-
Rodríguez, 2019).

Swedish on the other hand, is an under-
resourced language (Holmström et al., 2023) and
as such lacks the comparatively large number
of datasets available for more high-resource lan-
guages. To the best of our knowledge there are
currently no clinical MCQA datasets available in

1A subset of the MMLU dataset called clinical knowl-
edge
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Swedish.
Consequently, we present MedQA-SWE2, a

dataset consisting of 3,180 multi-choice questions
in Swedish that aims to test doctors’ clinical knowl-
edge and decision making. The MedQA-SWE
dataset was created from exam questions posed
in the theoretical exam given to assess the knowl-
edge of foreign doctors wanting to obtain a Swedish
medical license. The dataset consists of clinical
context-based questions with 5 answer alternatives
per question and one correct answer. The dataset
aims to test clinical knowledge and decision making
in a variety of ways. For example, a short synthetic
patient report may be given and the task could
range from determining the most likely disease, or
what care a patient should receive and what nec-
essary actions need to be taken, to more general
questions, such as “The epineurium is the outer-
most layer that surrounds a peripheral nerve. What
is the peripheral nerve epineurium made of?". We
refer to section 2 for an in-depth description of the
dataset.

Our primary contributions in this work are as fol-
lows,

• We present the MedQA-SWE dataset, the first
clinical Q&A datset in Swedish.

• We furthermore evaluate seven LLMs on a
sample of 300 questions and provide bench-
mark accuracy scores for each model.

• We show that while the test is difficult for most
open-sourced models - Falcon-180B, GPT-3.5
and especially GPT-4 performs very well.

2. Dataset

2.1. Description
Medical doctors who received their license outside
the EU/EES are not automatically granted license
to practice medicine in Sweden. On behalf of the
National Board of Health and Welfare, Umeå Uni-
versity is since 2016 responsible for the Swedish
medical licensing examination. Prospective candi-
dates need to demonstrate both sufficient theoret-
ical knowledge and practical skills in order gain
their Swedish medical license. The theoretical
part is a standardized exam, while the practical
part involves assessment of routine clinical tasks.
The exam, known as the Kunskapsprov för läkare
("knowledge exam for doctors"), is given several
times a year, usually four, and exam papers from
previous years are made available on Umeå Uni-
versity’s website (University, 2023a).

2https://huggingface.co/datasets/
nicher92/medqa-swe

MedQA-SWE is based on the theoretical part of
this exam, which is divided into three parts:

• “Pre-clinical", which usually includes general
clinical Q&A, e.g. “Anemia due to iron defi-
ciency is common. What is the typical blood
imaging for iron deficiency?". The number of
questions in this part of the exam is usually
around 140.

• “Clinical cases", which usually include a de-
scription of a synthetic patient followed by a
question. The description varies in length from
a few sentences to a more substantial piece
of text which might include parts of a patient’s
medical record, results from a blood test, symp-
toms etc. This part usually comprises around
30 questions. One distinct feature of this sub-
set of the dataset are reoccurring clinical cases
that build on a specific patient’s previous clini-
cal case. Furthermore, the answer to the pre-
vious question is sometimes part of the input
to the next question. For example – question
n− 1 might ask about where to send a patient
given some background information, question
n could then contain all of the the previous
information and in addition where the patient
was sent, ie the answer to question n− 1 and
pose a new question about what to do next.
We refer to appendix A for examples of exam
questions.

• “Scientific article", consist of around 15 ques-
tions about a scientific article. Some of the
scientific articles used might not be open
source, we therefore omit these questions from
MedQA-SWE.

For each context and question i ∈ {1, 2, . . . , n},
there is one correct answer among a set of candi-
date answers ai ∈ {1, 2, . . . , 5}.

Passing the exam requires an ability to under-
stand, reason and draw conclusions from the in-
formation provided in order to select the correct
answer from the set of available alternatives. Some
questions in the pre-clinical and clinical part also
include images as part of the information given. To
receive a passing grade, at least 50% of the ques-
tions in the clinical cases part of the exam need to
be correctly answered and a minimum total score
of 60% needs to be achieved (University, 2023b).

2.2. Dataset Collection
The data was originally in a PDF format with each
PDF corresponding to part of an exam taken that
year, there were 20 exams in total. The PDFs were
generally structured in one of two ways which re-
quired two different parsing approaches. The exam
papers prior to, and including, the one for the exam

https://huggingface.co/datasets/nicher92/medqa-swe
https://huggingface.co/datasets/nicher92/medqa-swe
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given on 2020-09-10 were possible to parse using
text extraction libraries whereas more recent exams
required parsing by Optical Character Recognition
(OCR).

For the text extraction algorithm we relied heavily
on regular expressions to split each PDF into sec-
tions corresponding to each question, related text
and options. We then further structured each sec-
tion into the background text and question in one
part, the five alternatives in another, and the correct
answer(s) in its separate key-value pair. The OCR-
based algorithm was similar, but required prior pro-
cessing of the PDF using OCR.

The automatic identification of the correct choice
among the optional answers to each question in-
volved identifying the choice denoted by tick marks
in the PDF. Some questions, usually two to three
per exam, had more than one correct answer – we
removed those questions and kept only questions
with one correct answer. We furthermore checked
the exams for duplicate questions, of which 5 was
found and subsequently removed.

Extensive curation was needed once the data
had been collected as we wanted to discard as little
of the data as possible. See 2.3 for a thorough
discussion of quality issues and how we resolved
them.

The finished dataset was saved in a CSV-format,
with separate columns for questions, answer op-
tions, correct answers, dates of exam papers and
parts of exam.

2.3. Quality Checks and Possible Data
Issues

In order to reduce the risk of errors in the dataset
and ensure proper formatting we manually in-
spected all of the parsed questions and compared
them to the corresponding PDF the question was
extracted from.

There were four main issues found in the parsed
dataset:

1. Incorrect formatting of the answer, question or
the alternatives

2. Images as part of the information required to
answer the question

3. Correct answer not found

4. OCR errors, often related to the Swedish let-
ters Å,Ä and Ö

The first three issues were relatively simple to de-
tect and resolve manually. Incorrect formatting was
remedied by manually restructuring the question
into the desired format. Questions containing im-
ages or graphs as part of the information required to
answer were removed and whenever the algorithm

failed to automatically detect the correct answer we
manually added it.

Problems with the OCR occasionally occurred
when detecting the Swedish characters “Å",“Ä" and
“Ö", which caused the parsed text to contain addi-
tional spaces next to some of those characters. We
alleviated this issue with the use of regular expres-
sions and some manual curation. Nevertheless,
with a total of over 3000 questions – some being
over 1000 words long – it’s challenging to guaran-
tee their quality when reviewing them manually.

Furthermore, some of the PDFs contained math-
ematical notation that might not transfer well to our
dataset format. Considering that the mathematical
notation issue was rare and its overall effect on the
data unknown, we left it as is.

2.4. Statistics
In this section, we provide some statistics for the
dataset. The correct answers were nearly uniformly
distributed, with each option among A, B, C, D, E
being close to equally probable, as can be seen in
Table 1 below.

Correct answer Number of occurences
A 667
B 659
C 618
D 598
E 638

Table 1: Correct answer alternatives distribution

In Table 2, we present the total number of ques-
tions, as well as the number of questions from each
part of the exam together with maximum and aver-
age lengths of questions and answers respectively.

Pre-
clinical

Cases All

Questions 2,656 524 3,180
Avg Q words 42.1 204.5 68.8
Max Q words 267 1667 1667
Avg A words 4.1 4.7 4.2
Max A words 34 22 34

Table 2: Dataset statistics, averages rounded to
the nearest tenth, words are counted by splitting
on whitespace. Q = Question + Background, A =
Individual answer alternatives

3. Benchmarking

We provide benchmarks for MedQA-SWE by eval-
uating the zero-shot results, i.e. when no prior
examples or other information is given, of seven
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LLMs. All tested models had been trained on some
amount of Swedish data. The models used were
the open sourced GPT-SW3 (Ekgren et al., 2023),
Llama2-70B-chat and Llama2-13B-chat (Touvron
et al., 2023), Falcon-180B-chat and Falcon-40B-
instruct (Phillip Schmid, Omar Sanseviero, Pedro
Cuenca, Leandro von Werra, Julien Launay, 2023)
and finally OpenAI’s GPT-3.5-turbo and GPT-4
(via API), both successors to GPT-3 (Brown et al.,
2020).

The open source models were loaded in float16
because of computational limitations. Additionally,
due to its size the Falcon-180B-chat model was
quantized and loaded with Int-4 weights (Wu et al.,
2023).

The evaluation dataset was created by randomly
sampling 10 pre-clinical questions and 5 clinical
cases from each exam for a total of 300 questions.
We took each context and question, added “Choose
an alternative" and two newlines before the 5 alter-
natives and used this as input to each model.

For each question, we prompted the models to
generate the correct answer given the answer op-
tions. The decoding algorithm used was greedy
search, i.e choosing the most probable next token
for the entire generation. We report the accuracy
of each model in Table 3.

The same prompt – in Swedish – was used for all
seven models, with slight modifications to adapt to
the syntax of each model. For example, the Llama2
models were prompted with special tokens “[INST]"
and “[/INST]" before and after each input, as per
recommendations (Huggingface, 2023). See ap-
pendix B for the prompt and its English translation.

Outputs from the models varied slightly and were
post-processed for ease of comparison to the cor-
rect answer. Parentheses, spaces and newlines
were removed from each output and the first letter
was counted as the answer given by the model.

The larger models performed better overall and
the two models accessed via API (GPT-3.5 and
GPT-4) performed the best. However, the current
regulations regarding patient data in Sweden pre-
vents the API models from being used in a clinical
settings that involve patient data. Therefore, there
is a clear distinction between models that could po-
tentially be used by clinicians and those that could
not and from a clinical utility perspective the results
of the API-models are not very relevant.

GPT-SW3 performed surprisingly poorly on the
dataset, considering it has been trained on a sub-
stantial amount of Swedish text. Several of the
models trained primarily on English performed rel-
atively well on the exam. For example: LLama2
was trained on only 0.15% Swedish data while the
main text-source the Falcon models were trained
on was the refined web which contains roughly 1.35
% Swedish data (Penedo et al., 2023). Therefore

Name All Pre-
clinical

Cases

Random 20.0% 20.0% 20.0%
GPTSW3-
20b-inst

22.3% 24.0% 19.0%

Llama2-
13b-chat

29.6% 26.5% 36.0%

Falcon-
40b-
instruct

41.6% 41.0% 43.0%

Llama2-
70b-chat

45.3% 42.5% 51.0%

Falcon
180B-
Chat

57.3% 59.5% 53.0%

Pass 60.0% NA 50.0%
GPT-3.5-
turbo

60.0% 62.0% 56.0%

GPT-4 84.3% 86.0 % 81.0%

Table 3: Benchmarking of seven LLMs on a sample
of MedQA-SWE

the amount of Swedish data the models have been
trained on seem to have little correlation with their
performance on this task.

Furthermore, several of the models scored un-
evenly on the different parts of the exam, for ex-
ample: Llama2-13B-chat performed similarly to
GPT-SW3-20B-instruct on the pre-clinical part of
the exam despite performing almost twice as well
on the clinical part.

4. Conclusions and Future Work

Our work contributes the first clinical Q&A dataset
in Swedish and our experimental results indicate
that some models perform well on the task, in par-
ticular GPT-4. The impressive results achieved by
the larger models on this difficult exam – even with
minimal prompt engineering – suggest further ex-
ploration in the direction of LLMs to solve clinical
MCQA tasks.

Future work might include further evaluation on
the dataset along with prompt-engineering, prompt-
tuning and fine-tuning approaches. The current
method of evaluation requires the models to fol-
low instructions well enough to format the output
in a particular way. Although the models generally
accomplished this task quite well it is worth explor-
ing other methods, which might have caused the
models to perform differently.

Furthermore, our dataset only represents one
particular task of interest in clinical NLP, it is not fully
representative of tasks that would be of interest for
clinicians in their every day job. Therefore, future
work might also include the creation of datasets that
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can be helpful in creating solutions that meet prac-
ticing doctors’ specific needs, for example synthetic
patient data.

5. Ethical Considerations

Since the dataset is related to the clinical domain
we feel compelled to alleviate potential privacy con-
cerns. It is therefore worth noting that Sweden has
stringent patient data laws and regulations that per-
mit actual patient data from being shared. There-
fore none of the patients in MedQA-SWE are based
off of any real patient, or else the original exam pa-
pers that MedQA-SWE was created from could not
have been open sourced in the first place.

We hope that by making this dataset available to
the community, we will encourage further research
into applications of LLMs in the clinical domain and
promote the development of ethically sound solu-
tions that have the possibility to aid clinicians in
their work.
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A. Examples from MedQA-SWE

A.1. Pre-Clinical Example
Swedish: Question: Anna, 32 år, söker vård
på grund av amenorré sedan cirka 8 månader
tillbaka. Provsvar (referensvärden inom parentes):
S-Prolactin 249 mIU/L (102- 496) S-TSH 1,19
mIU/L (0,27 -4,20) S-FSH 45 IU/L (follikelfas 3,5
-12; ovulation 4,7- 22; lutealfas 1,7- 7,7) S-LH 21
IU/L (follikelfas 2,4- 13; ovulation 14- 96; lutealfas
1,0- 11) På vilken nivå i hypothalamic -pituitary
-gonadal -axeln finns den mest sannolika orsaken
till Annas amenorré?

Answer options:
A: Uterus
B: Ovarier
C: Hypotalamus
D: Hypofys
E: Binjurebark

Correct answer: B

English translation: Question: Anna, 32 years
old, seeks medical care due to amenorrhea for
about 8 months. Test results (reference values in
parentheses): S-Prolactin 249 mIU/L (102- 496)
S-TSH 1.19 mIU/L (0.27 -4.20) S-FSH 45 IU/L
(follicular phase 3.5 -12; ovulation 4.7- 22; luteal
phase 1.7- 7.7) S-LH 21 IU/L (follicular phase
2.4- 13; ovulation 14- 96; luteal phase 1.0- 11) At
which level in the hypothalamic-pituitary-gonadal
axis is the most likely cause of Anna’s amenorrhea?

Answer options:
A: Uterus
B: Ovaries
C: Hypothalamus
D: Pituitary gland
E: Adrenal cortex

Correct answer: B

A.2. Clinical Cases Example
Swedish: Question: Anna, 70 år, söker akut på
grund av andfåddhet som debuterat relativt abrupt
och därefter försämrats påtagligt de sista veckorna.
De sista nätterna har hon vaknat på efternatten
på grund av andnöd som släpper vid uppresning.
Anna förnekar förekomst av bröstsmärtor och hon
har inte noterat någon oregelbunden hjärtrytm.
Anna har haft hypertoni sedan många år och är
ordinerad ett tiazidpreparat för detta. Status: At:
Påtagligt andfådd. De ytliga halsvenerna är synligt
fyllda i sittande. Cor: Normala hjärttoner, inga
säkra blåsljud. Oregelbunden hjärtrytm. Blodtryck:
180/90 mmHg. Pulm: Fuktiga rassel hörs över
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bägge lungornas basala delar. Buk: Leverkan-
ten anas under revbensbågen. Du misstänker
hjärtsvikt och ordinerar EKG och lungröntgen. EKG
visar förmaksflimmer och vänsterkammarhypertrofi.
Röntgen av lungorna visar att hjärtat är normalstort,
men Kerley´s B -linjer ses i lungorna och det finns
måttligt med pleuravätska bilateralt. Anna får
nitroglycerin och furosemid intravenöst, och må r
genast bättre. Hon skickas till en vårdavdelning.
På grund av hennes förmaksflimmer ordineras
Anna ett NOAK. Prover visar att hon är euthyroid
Hjärtsvikten orsakas sannolikt av mångårig och
otillräckligt behandlad hypertoni. Vilken av följande
kombinationer av preparat ger bäst överlevnad vid
hjärtsvikt?

Answer options:
A: Digoxin, furosemid och kalium
B: Atenolol och tiazid
C: Ramipril, metoprolol och spironolakton
D: Sotalol, kinidin och amilorid
E: Cordarone, tiazid och kalium

Correct answer: C

English translation: Question: Anna, 70 years
old, seeks emergency care due to shortness of
breath that started relatively abruptly and then
significantly worsened over the last few weeks.
The last few nights, she has woken up in the early
hours due to difficulty breathing, which eases
upon sitting up. Anna denies having chest pains
and has not noticed any irregular heart rhythm.
Anna has had hypertension for many years and
has been prescribed a thiazide medication for
this. Status: At: Noticeably short of breath. The
superficial neck veins are visibly filled while sitting.
Cor: Normal heart sounds, no definite murmurs.
Irregular heart rhythm. Blood pressure: 180/90
mmHg. Pulm: Moist crackles heard over both
lung bases. Abdomen: The liver edge is palpable
under the rib cage. You suspect heart failure and
prescribe ECG and chest X-ray. ECG shows atrial
fibrillation and left ventricular hypertrophy. X-ray of
the lungs shows that the heart is of normal size, but
Kerley’s B lines are seen in the lungs and there is a
moderate amount of pleural fluid bilaterally. Anna
is given nitroglycerin and furosemide intravenously,
and immediately feels better. She is sent to a ward.
Due to her atrial fibrillation, Anna is prescribed
a NOAC. Tests show that she is euthyroid. The
heart failure is likely caused by long-standing and
inadequately treated hypertension. Which of the
following combinations of medications provides the
best survival in heart failure?

Answer options:
A: Digoxin, furosemide, and potassium

B: Atenolol and thiazide
C: Ramipril, metoprolol, and spironolactone
D: Sotalol, quinidine, and amiloride
E: Cordarone, thiazide, and potassium

Correct answer: C

B. Prompt

The prompt used was as follows:

Instruktion: Du är en kompetent kliniker som
svarar på frågor. Välj vilket av alternativet som bäst
besvarar frågan {question}

Svar:

In English, this roughly translates to:

Instruction: You are a competent clinician
who answers questions. From the provided
options, choose the one that best answers the
following question {question}

Answer:
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