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Abstract
The field of Distributional Semantics has recently undergone important changes, with the contextual representations

produced by Transformers taking the place of static word embeddings models.

Noticeably, previous studies

comparing the two types of vectors have only focused on the English language and a limited number of models.

In our study, we present a comparative evaluation of static and contextualized distributional models for Mandarin
Chinese, focusing on a range of intrinsic tasks. Our results reveal that static models remain stronger for some
of the classical tasks that consider word meaning independent of context, while contextualized models excel in
identifying semantic relations between word pairs and in the categorization of words into abstract semantic classes.
The code and datasets are available at https://github.com/pranav-ust/chinese-dsm.
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1. Introduction

Distributional Semantics, the mainstream ap-
proach to representing lexical meaning in Com-
putational Linguistics, assumes that words ap-
pearing in similar contexts have similar mean-
ings (Lenci, 2008; Turney and Pantel, 2010; Lenci
and Sahlgren, 2023). Distributional Semantic
Models (DSMs) have gained great success in
the NLP community, as they provide researchers
with theoretical and computational tools to de-
rive data-driven semantic representations from
large text corpora. Moreover, DSMs have be-
come extremely popular in cognitive sciences, as
the distributional estimation of semantic similar-
ity has demonstrated a good fit to human data
across various psycholinguistic tasks, including
synonymy identification, generation of word as-
sociations, and semantic priming (Bullinaria and
Levy, 2012; Mandera et al., 2017).

The field of Distributional Semantics has experi-
enced a significant revolution with the introduction
of language models based on the Transformer ar-
chitecture (Vaswani et al., 2017). While a common
criticism of traditional DSMs has been that they
produce only a single, global semantic represen-
tation for each word type, disregarding its context-
dependent semantic shifts, the vectors generated
by Transformer language models are fully contex-
tualized, associating each token in a sentence with
a representation that is a function of the activa-
tion states of the network (Liu et al., 2020). The
difference between static and contextual DSMs
can be seen as analogous to the distinction be-
tween prototype-based and exemplar-based mod-
els of concept representation in cognitive psychol-
ogy (Murphy, 2004; Nosofsky, 2013): On the one

hand, we have a single prototype abstracted from
multiple encounters with the same entity, leading
to the exclusion of more idiosyncratic features. On
the other hand, we have multiple exemplars, cor-
responding to different instances of a concept in
specific contexts.

However, despite the context-sensitive nature
of concepts, several cognitive phenomena seem
to involve type-level representations, rather than
token-level ones, such as hierarchical structure,
basic-level advantage, and reasoning, among oth-
ers (Murphy, 2016). Similarly, when we evaluate
DSMs on many tasks that rely on the human in-
tuition of similarity (e.g., word associations, iden-
tification of semantic relations etc.), we need a
word representation at the type-level rather than
the token-level. This is why recent literature
has engaged in reducing the contextual embed-
dings from the Transformers to type-level repre-
sentations, which can then be evaluated in tradi-
tional Distributional Semantics tasks (Bommasani
et al., 2020; Chronis and Erk, 2020; Lenci et al.,
2023). It is worth noting that such efforts often fo-
cused on a limited number of models (e.g., BERT)
and specific tasks (e.g., similarity/relatedness es-
timation), and, above all, the evaluation of these
has primarily been carried out using only English
data. Although some of the previous research re-
ported positive results for Transformers as classi-
cal DSMs, with correlations to human judgments
that are similar or higher than the ones achieved
with static embeddings, an important question
arises regarding the generalizability of these find-
ings to languages other than English.

In this regard, Chinese language provides a
very relevant case study, because the definition
of words in Chinese is not trivial (Duanmu, 2017),
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and studies both in the psycholinguistic (Tsai and
McConkie, 2003; Bai et al., 2008) and the NLP
literature (Li et al., 2019; Wan, 2021) have sug-
gested that characters, rather than words, are the
fundamental units of Chinese language process-
ing. Given that, to the best of our knowledge, most
of the Transformer language models for Chinese
are based on character-level tokenization (Si et al.,
2023), it is especially interesting to assess the per-
formance of their word-level representations for
classical distributional tasks.

In our paper, we present a systematic evaluation
of DSMs for Mandarin Chinese. It compares tra-
ditional static vectors with the contextualized rep-
resentations generated by Transformers. Specif-
ically, we evaluated the performance of some of
the most popular Transformer models for Chinese,
including BERT and GPT-2, on a range of evalua-
tion tasks, such as similarity estimation, word asso-
ciations, analogies, clustering, and semantic rela-
tions. We found that static models are consistently
strong baselines, and clearly outperform contex-
tualized vectors in tasks like semantic analogies,
while the latter are the winners in semantic relation
identification, and in the categorization of words in
abstract semantic classes.

2. Related Work

2.1. Static and Contextual DSMs

The first generation of distributional models dates
back to the 90s. During this period, the so-called
count models were built in an unsupervised way:
in order to build the semantic representation of a
word, its co-occurrences with linguistic contexts
were first recorded and counted. The context
could consist of words co-occurring within a word
window of a fixed size (Lund and Burgess, 1996),
of words in a syntactic relation with the target
(Padé and Lapata, 2007; Baroni and Lenci, 2010;
Chersoni et al., 2016; Gamallo, 2019), or entire
documents (Landauer and Dumais, 1997; Giriffiths
et al., 2007). In most cases, further transforma-
tions were applied to the co-occurrence matrices,
such as using mutual information measures to
weigh the counts (Church and Hanks, 1990; Evert,
2004), or techniques for dimensionality reduction
(Landauer and Dumais, 1997; Bullinaria and Levy,
2012). The cosine similarity between the vectors
of two words was the most commonly used met-
ric. Depending on the model parameters, seman-
tic similarity refers to whether two words describe
similar concepts, like tea and coffee, while their re-
latedness captures the connection between two
words that may describe concepts that are dissim-
ilar but still conceptually related, e.g. coffee and
cup (Hill et al., 2015).

DSMs underwent a revolution in the Deep Learn-
ing era, especially thanks to the introduction of
frameworks like Word2Vec (Mikolov et al., 2013).
The so-called predict models are neural networks
that directly generate low-dimensional, dense vec-
tors by being trained as language models that
learn to predict the contexts of a target lexical item.
Those dense vectors, also known as word embed-
dings, quickly replaced the traditional count mod-
els; this shift was facilitated by the availability of
tools that simplified the model training process for
researchers, and by their superior performance in
semantic similarity task (Baroni et al., 2014) (but
cf. Levy et al. (2015); Sahigren and Lenci (2016)
for alternative evaluation outcomes).

Both count models and predict models share an
important feature: They both build a single, stable
representation for each word type in the training
corpus. In the most recent generation of embed-
dings, a different approach is taken; each word
token in an input sentence context gets a unique
representation. In models like ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019), word repre-
sentation relies on a multi-layer neural network (a
bi-LSTM or a Transformer), word vectors are gen-
erated as its internal activation states, and they
differ depending on the sentence contexts. There-
fore, such representations are referred to as con-
textualized embeddings, in contrast to the static
embeddings produced by the earlier generation
models. Another important difference is that, with
static vectors, intrinsic evaluation was the most
common way to test the models (e.g., by measur-
ing the correlation of similarity with human ratings,
or by solving synonymy tests or analogy tasks),
while contextual vectors are mostly used as inputs
for downstream tasks (extrinsic evaluation).

Some recent work has introduced methods to
obtain type-level vectors from contextual models,
in order to compare their performance with tradi-
tional intrinsic methods. For example, Bommasani
et al. (2020) proposed to obtain type-level vec-
tors by pooling the contextual token vectors gen-
erated by different Transformer models and com-
pared them with Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014) across differ-
ent similarity and relatedness benchmarks. They
showed that the performance of the contextual
vectors varied a lot across layers, but the best lay-
ers consistently outperformed the two static mod-
els. Chronis and Erk (2020) applied K-means clus-
tering to contextual BERT embeddings, and tack-
led similarity/relatedness tasks by measuring the
similarities between the closest clusters of the tar-
get words (this is equivalent to comparing only
their most similar senses), and reported that the
vectors from the middle layers are better at mod-
eling similarity, while the ones from the later lay-
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ers are better for relatedness. Finally, Lenci et al.
(2023) compared static embedding models with
contextual ones on multiple intrinsic and extrinsic
tasks, using a similar method in Bommasani et al.
(2020) to obtain type-level vectors from BERT.
They found that properly optimized static vectors
outperformed contextual vectors in most intrinsic
tasks. However, all these studies were conducted
exclusively on English data.

2.2. DSMs for Chinese

Differently from alphabetic languages, the writing
system of Chinese is logographic, and a Chinese
character can be a standalone word or as part of a
polysyllabic word. In Chinese words, both charac-
ters and subcharacters (i.e., radicals) contain se-
mantic information, which previous research has
tried to leverage to enhance the performance of
Chinese DSMs. Therefore, several scholars pro-
posed methods to jointly learn word and character
embeddings (Chen et al., 2015), or to learn word,
character, and sub-character embeddings all to-
gether (Yin et al., 2016; Yu et al., 2017; Sun et al.,
2019), although the evaluation benchmark is gen-
erally focusing on word-level tasks, e.g., similarity
and analogy (Chen and Ma, 2018; Li et al., 2018;
Huang et al., 2019).

Alongside the Transformer revolution in NLP,
pre-trained language models have been devel-
oped also for Chinese, making it possible to ex-
tract contextualized representations, e.g., GPT-2
(Zhao et al., 2019), BERT, RoBERTa, XLNet (Cui
et al., 2020, 2021), DeBERTa (Zhang et al., 2022),
LLaMA, and Alpaca (Cui et al., 2023). The basic
unit of the vocabulary, for Chinese models, is typi-
cally the character, although there are exceptions
making use of sub-character tokenization (Si et al.,
2023). When evaluating Chinese Transformers as
DSMs, the issue might become particularly rele-
vant in cases where the target words are not in-
cluded in the model’s vocabulary, and the embed-
dings will have to be composed by averaging their
character tokens. To the best of our knowledge,
our work is the first one to compare static and con-
textual Chinese DSMs on intrinsic tasks.

3. Experimental Settings

3.1. Static DSMs

We used the Chinese word embeddings by Li et al.
(2018); Qiu et al. (2018) based on the Skip Gram
architecture. The models have been trained on
the Mixed-Corpus, a Chinese corpus combining
the Baidu Encyclopedia, Wikipedia, People’s Daily
News, and other corpora, encompassing over 4 bil-
lions tokens. These Chinese models are of particu-
lar interest as they have been trained with different

Model Context Features

Skip Gram Words

Skip Gram N Words, Ngrams

Skip Gram C Words, Characters
. Words, Ngrams,

Skip Gram N+C Characters

Table 1: Summary of static embedding models.

context features, i.e., words, n-grams, characters,
or a combination of the latter two. Therefore, we
can use them to test the effects of different contex-
tual features on the overall performance. Table 1
summarizes the models and their features.

3.2. Contextual DSMs

Notoriously, contextual DSMs output a different
word vector for each sentence context in which a
word is found. Therefore, we have sampled n sen-
tences (at least n = 10, and maz = 100)" contain-
ing the target dataset words, and then we used the
Transformers library? to extract contextual vectors
from each Transformer model. The target words
with fewer than 10 occurrences in the corpus were
discarded. The vectors were then averaged using
mean pooling to create a single type-level repre-
sentation for each word, following the procedure in
Lenci et al. (2023). If the target word is not found
in the Transformer’s vocabulary, we also average
the embeddings of the subwords composing it.

We selected three Transformer models for Chi-
nese: GPT-2 Zh (Zhao et al., 2019), based on
GPT-2 Base (Radford et al., 2019); BERT Base
Zh (Cuietal., 2021), based on BERT Base (Devlin
et al.,, 2019); DeBERTa Zh (Zhang et al., 2022),
based on DeBERTa Base (He et al., 2020). We
chose those models because they are available in
Chinese in their Base version with 12 layers, which
makes it easier to compare their layer-wise perfor-
mance. Following Lencietal. (2023), we extracted
the word embeddings by aggregating different sets
of layers, in order to understand what are the best
layers for each task:

* last, we used the embeddings of the last layer;

* F4, we used the average of the embeddings
of the first four layers (1-4);

* M4, we used the average of the embeddings
of the middle four layers (5-8);

"Vuli¢ et al. (2020) showed that improvements by
sampling a bigger number of occurrences per word are
marginal. Similarly to Lenci et al. (2023), we limited the
sentence length to be between 4 and 21 tokens (or char-
acters, in Chinese language models).

’https://huggingface.co/docs/
transformers/index.
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* L4, we used the average of the embeddings
of the last four layers (9-12).

The layer-wise analysis is noteworthy. It has
been shown that Transformers models tend to
encode morphological and syntactic information
in early layers, while capturing more abstract
and context-specific information (e.g., semantic) in
later layers (Tenney et al., 2019), and that the de-
gree of contextualization increases with the layers.

3.3. Similarity Metrics

Vector cosine is the standard similarity metric
in Distributional Semantics (Turney and Pantel,
2010). However, recent studies did not recom-
mend the usage of this metric to compare Trans-
former models, because of its sensitivity to the
anisotropy of their contextualized vector spaces
(Ethayarajh, 2019; Timkey and van Schijndel,
2021). On the other hand, metrics based on the
rank of vector dimensions were proved to be com-
petitive against cosine, and more correlated with
human judgements (Santus et al., 2016a,b, 2018;
Zhelezniak et al., 2019; Timkey and van Schijndel,
2021). Therefore, we also report results obtained
with the Spearman correlation between vectors.

3.4. Benchmarks

As in traditional DSM evaluation, we focus on in-
trinsic tasks: the superiority of contextualized mod-
els in extrinsic settings is a result consistently ac-
cepted in the literature (Lenci et al., 2023).

We selected five tasks that address different as-
pects of word-level semantics, also based on the
availability of benchmarks for Mandarin Chinese:
Similarity Estimation, Word Associations, Seman-
tic Analogies, Identification of Semantic Relations
and Semantic Clustering.

3.4.1. Similarity Estimation

We evaluated our models on the COS960 dataset
by Huang et al. (2019). The dataset includes a
total of 960 Mandarin Chinese word pairs (480
nouns, 240 verbs and 240 adjectives), each of
them rated for similarity by 30 native speakers on
a scale ranging from 0 (not similar at all) to 4 (very
similar). We take the average similarity score for
each word pair and we measure the Pearson and
the Spearman correlation with the similarity scores
computed by the distributional models.

3.4.2. Word Associations

We use the FAST-zh dataset, derived from the
Small World of Words project data®, for Chinese

Shttps://smallworldofwords.org/en/
project/home

Word Pair | Translation | Score
A7 - BE co-exist - integrate 0.6
F - 5i% | peak-observe - peak-detect | 3.86
ARk - AR ship-head - ship-tail 0.93

Table 2: Examples of word pairs and average hu-
man scores in the COS960 dataset.

Stimulus | First | Higher | Random
. NHF
.{—S % )\E (talent,
(live) (die) (life) talented person)

Table 3: Example of a tuple from the FAST-Zh
dataset.

word associations (Kwong et al., 2022). FAST-zh
consists of 300 tuples of four words (see Table 3
for an example). In each tuple, there is a stimulus
word, a first associate (i.e., the word that was pro-
duced as the response to the stimulus by most of
the speakers), and a higher associate (i.e., a word
ranked the n-th, but not the most frequent, typically
a response produced by just two subjects), and a
random word without any association with the stim-
ulus. We proposed two different evaluation tasks,
inspired by Evert and Lapesa (2021) on word as-
sociation data. The first is Multiple Choice: given
a tuple, a model should assign a similarity score
to the pairs formed by the stimulus word and each
one of the other words, getting a hit every time the
stimulus-first pair has the highest score. This task
is evaluated with Accuracy (i.e., the fraction of cor-
rect responses out of the total of dataset tuples).

The second task is Open Access Vocabulary:
for each stimulus in the dataset, a word embedding
model has to retrieve the right FIRST associate
out of a list of candidates including all the other
FIRST associates in the dataset (e.g., for each lan-
guage, there will be around 300 candidates). For
each stimulus, we measure the similarity with all
the other FIRST associates in the dataset and we
compile a ranking based on decreasing similarity
values. Mean Rank is the task metric: we com-
pute the average rank of the right first associate
for each stimulus (see Equation 1). For rank;, we
use the index of instance i if the right first associate
is in the top 3 of the rank, and 4 otherwise.*

1 n
MeanRank = — x Z rank; (1)
n i=1
For this metric, the lower the score, the better
it is, as we want the models to push the right first
associates as close as possible to rank 1.

“This setting was adopted in the SemEval task 2018
on hypernymy discovery (Camacho-Collados et al.,
2018) to avoid penalizing too much systems with a small
number of outputs far away from the first ranking spots.
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Analogy
W bt = BRF??7?
(China:Beijing=ltaly:???)

| Target Word
% H; (Rome)

Table 4: Example of a semantic analogy for the
country-capital relation from the CA8 dataset.

3.4.3. Semantic Analogies

When the Word2Vec model was originally intro-
duced (Mikolov et al., 2013), one of the most cited
findings was the success of word embeddings in
analogical reasoning. Given a vector space,
analogies such as man : king ~ woman :?7 could
be automatically solved by looking for the word
whose vector had the highest similarity (cosine or
Spearman) with king — man + woman (with queen
being the target word). The CA8 dataset for ana-
lyzing morphological and semantic regularities for
Chinese was presented and evaluated by Li et al.
(2018) and Qiu et al. (2018).

In our work, we focus on the semantic subset
of their data, composed of 7,363 semantic ques-
tions representing 28 different types of relations
(e.g., country-capital, dynasty-emperor, and book-
author). We evaluated all our models using Ac-
curacy as the percentage of the correct answer.
To make the results comparable between static
and contextual models, we have limited the search
space for the closest vector to the vocabulary of
the dataset itself.5

3.4.4. Identification of Semantic Relations

A commonly-cited shortcoming of DSMs is that
measuring proximity in vector spaces only pro-
vides an underspecified notion of semantic similar-
ity/relatedness, whereas there are different ways
in which words can be semantically related (Lenci
and Sahlgren, 2023). The problem of discriminat-
ing the semantic relations between nominals (e.g.,
synonyms, hypernyms, meronyms, etc.) received
a lot of attention in the literature (Baroni and Lenci,
2011; Xiang et al., 2020; Schulte Im Walde, 2020),
leading to the publication of datasets in several lan-
guages, including Mandarin Chinese. Inspired by
the evaluation dataset for English (Santus et al.,
2015), Liu et al. (2019) introduced EVALution-
MAN, a dataset for evaluating the identification of
semantic relations in Chinese.

The dataset contains 3,923 word pairs, cover-
ing the relations of synonymy, hypernymy and
antonymy. To introduce some noise and make the
dataset more challenging, an equal number of ran-
dom pairs was generated, for a total of 7, 846 items.
Since the original data are in Traditional Chinese

5For this reason, our results with static embeddings
might diverge from previous work using this benchmark.

characters, we first converted them to Simplified
Chinese during the preprocessing phase.

Word Pair Translation Rel.
AL - RE not only - not just syno.
Y - k4% | sea lion - marine animals | hyper.

B -tk male - female anto.

ot - s new light - advice random

Table 5: An example of semantic relata for each
relation in EVALution-MAN dataset.

DSMs for Chinese can be evaluated on this
dataset in an unsupervised fashion for a specific
semantic relation: similarity metrics can be com-
puted for each pair, and models can be assessed
in terms of Average Precision (AP) (Kotlerman
et al., 2010). Specifically, given the list of the
dataset pairs sorted in a decreasing order for the
model/similarity metric, AP measures the extent to
which the most similar pairs belong to the target
semantic relation. If AP = 1, all the instances of
a given semantic relation in the dataset are at the
top of the ranking, while if AP = 0 all the instances
are at the bottom.

We first evaluate our distributional models for
their capacity of discriminating between related
and unrelated words, considering synonyms, hy-
pernyms and antonyms as members of a related
target class. We expect most systems to be able to
put the related words to the top of the distributional
similarity ranking, and the random pairs at the bot-
tom. Then, we also evaluate how good they are in
identifying genuine semantic similarity (Hill et al.,
2015), and in this case we consider synonymy as
our target class. Notice that this latter task should
be much more difficult, because antonyms and hy-
pernyms are also likely to have highly similar vec-
tor representations.

3.4.5. Semantic Clustering

If word embeddings represent word semantics ac-
curately, we expect them to group together in co-
herent regions of the semantic space. With this
goal, we used two datasets from the recent psy-
cholinguistic literature on Mandarin Chinese.

The Zhong22 dataset (Zhong et al., 2022) in-
cludes 664 nouns annotated with their sensorimo-
tor associations and a wide range of psycholin-
guistic variables. Moreover, they have been an-
notated with the "abstract” and "concrete” classes.
The Chinese Binder norms (Binder-zh) (Qiu et al.,
2023) include a pool of 535 words for three differ-
ent parts-of-speech (nouns, verbs and adjectives)
and 11 semantic classes (see the full list in Table
6). The dataset is a translation of the brain-based
English norms introduced by Binder et al. (2016)
and contains ratings for the words across 65 differ-
ent experiential domains.
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We use the word embeddings of the dataset Spearman Cosine
words as inputs to a hierarchical agglomerative Model P r P r
clustering algorithm, and assess the extent to BERT-Base First4 | 0.73 0.70 | 0.71 0.68
which a model reproduces the gold clustering of BERT-Base Last 0.74 0.70 | 0.74 0.69
abstract vs. concrete classes in Zhong22, and ggg¥gz:: k/l"’;zgl‘;“ 8;2’ ggg 8;2 82;
of the 11 semantic classes in Binder-zh (in both - . : . . .
cases, the number of clusters in the gold siandard DeBERTa First 4 0.74 0721 0.73 0.69
) ’ . . DeBERTa Last 0.74 0.71 | 0.72 0.66
is fed as a parameter to the clustering algorithm). DeBERTa Last 4 074 0.72 | 0.73 0.67

DeBERTa Middle 4 0.73 0.70 | 0.74 0.70
Type-POS No. of items GPT-2 First 4 0.73 0.70 | 0.70 0.66
Concrete Objects - Nouns 275 GPT-2 Last 0.70 0.67 | 0.44 0.37
Living Things - Nouns 126 GPT-2 Last 4 0.71 0.68 | 0.61 0.56
Other Natural Objects - Nouns 19 GPT-2 Middle 4 0.72 0.69 | 0.71 0.66
Artifacts - Nouns 130 SkipGram N+C 0.75 0.70 | 0.75 0.70
Concrete Events - Nouns 60 SkipGram N 069 0.64 | 0.69 0.64
Abstract Entities - Nouns 99 SkipGram C 0.71 0.67 | 0.71 0.67
Concrete Actions - Verbs 52 SkipGram 0.65 0.60 | 0.65 0.61
Abstract Actions - Verbs 5
States - Verbs S Table 8: Similarity Estimation on COS960 dataset.
Abstract Properties - Adjectives 13 We perform Spearman (p) and Pearson (r) correla-
Physical Properties - Adjectives 26

Table 6: Concept classes, parts-of-speech and
number of words in the Binder-zh norms.

The evaluation metrics are homogeneity and
completeness. Homogeneity is defined in terms
of the entropy of the cluster C given the class K
(Equation 2), and it achieves 1 as its highest score
if all the clusters contain only data points belonging
to single class. Completeness is defined in terms
of the entropy of the class K given the cluster C
(Equation 2), and it achieves 1 as highest score if
all the data points belonging to a single class are
elements of the same cluster.

_ H(CIK)
"= ey

H(K|C)

1w @

It should be noticed that the static models do not
have full coverage for all the datasets (see Table
7). Therefore, we exclude the items that are not
included in the Skip Gram vocabulary and we eval-
uate the models on the remaining ones, in order to
guarantee a fair comparison on the same items.

Dataset Missing words Covered items
C0S960 34 898
FAST-zh 5 285
CA8 0 7363
EVALution-MAN 222 7095
Zhong22 0 664
Binder-zh 46 489

Table 7: Missing words for the static models, and
remaining items in each dataset. Metrics are com-
puted on the covered items.

tions using Spearman/Cosine as similarity metrics.
The best performance is shown in bold.

4. Results

The results for the similarity estimation task and
the word association task are shown in Tables 8
and 9. At a glance, we can see that on COS960
static and embeddings models perform similarly,
with the Skip Gram with word, ngrams, and char-
acters as contexts being on par with the best con-
textualized models. It is evident that while the
Skip Gram model with only words as context is
the weakest one, incorporating characters and
ngrams as extra contexts is strongly beneficial,
with the full model being the best performing one
in both similarity metrics. Model scores are not
particularly affected by the frequency of the word
pairs, i.e., the hubness effect in distributional mod-
els (Dinu etal., 2014; Schnabel et al., 2015), as the
Spearman correlation between the similarity met-
rics and the average log frequencies of the words
in each pair consistently shows weak associations
(< 0.2 for all models).® This confirms that the mod-
els are not simply assigning higher scores to more
frequent words.

For the word association task on FAST-zh, static
models clearly exhibit the best performance, re-
gardless of features used in training Skip Gram.
Among the contextualized models, we have not
found any striking difference across layers (pre-
vious study had reported a general better perfor-
mance in early layers, cf. Chronis and Erk (2020);
Lenci et al. (2023)) and similarity metrics. We an-
alyzed the errors on this dataset, and the percent-

®Frequencies from a combination of corpora were ex-
tracted via the wordfreq Python library (Speer, 2022).
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Accuracy | Mean Rank
Model cos p cos p
BERT-Base First 4 0.68 0.68 | 2.60 2.61
BERT-Base Last 0.69 069 | 228 242
BERT-Base Last 4 0.71 0.71 | 240 2.25
BERT-Base Middle 4 | 0.70 0.71 | 2.41 2.32
DeBERTa First 4 0.69 0.68 | 256 2.49
DeBERTa Last 0.71 070 | 240 2.28
DeBERTa Last 4 0.69 072 | 241 225
DeBERTa Middle 4 0.68 0.69 | 242 2.28
GPT-2 First 4 0.68 0.66 | 2.61 2.60
GPT-2 Last 0.58 0.68 | 287 242
GPT-2 Last 4 0.66 0.68 | 253 2.39
GPT-2 Middle 4 0.66 0.66 | 2.54 2.53
SkipGram 0.73 0.73 | 216 2.17
SkipGram C 0.72 0.71 | 210 212
SkipGram N 0.74 0.73 | 210 2.13
SkipGram N+C 0.73 0.72 | 219 2.20

Table 9: Word Associations results on the FAST-zh
dataset. We show accuracy (the higher the better)
and mean rank (the lower the better) using cosine
(cos) and Spearman (p) as similarity metrics.

Model FIRST HIGHER RAND
BERT First 4 0.64 0.30 0.05
BERT Last 0.65 0.32 0.03
BERT Last 4 0.67 0.31 0.02
BERT Middle 4 0.67 0.30 0.03
DeBERTa First 4 0.64 0.32 0.04
DeBERTa Last 0.66 0.32 0.02
DeBERTa Last 4 0.68 0.30 0.02
DeBERTa Middle4  0.65 0.32 0.03
GPT-2 First 4 0.62 0.34 0.04
GPT-2 Last 0.64 0.33 0.03
GPT-2 Last 4 0.64 0.34 0.02
GPT-2 Middle 4 0.62 0.34 0.04
SkipGram 0.72 0.27 0.01
SkipGram C 0.71 0.28 0.01
SkipGram N 0.73 0.26 0.01
SkipGram N+C 0.73 0.26 0.01

Table 10: Percentage of items with highest similar-
ity with the stimulus in the FAST-zh dataset.

age of items with the highest similarity to the stimu-
lus can be found in Table 10. As expected, FIRST
is correctly recognized as the strongest associate
in most cases, but HIGHER associates are still ef-
fective confounders, misleading the models on av-
erage in approximately 30% of the cases.

Some major differences appear in the analogy
task on the CA8 dataset, as shown in Table 11.
First of all, Skip Gram models achieve much higher
scores compared to the contextualized models,
showing near-perfect performance across all set-
tings. Notice that our scores even surpass most
of the Chinese models evaluated on this dataset,
but this outcome is expected due to a methodolog-
ical adjustment. To ensure comparability between

Model cos p

BERT-Base First 4 0.39 0.39
BERT-Base Last 0.84 0.84
BERT-Base Last 4 0.82 0.82
BERT-Base Middle 4 0.67 0.68
DeBERTa First 4 0.44 044
DeBERTa Last 0.63 0.63
DeBERTa Last 4 0.63 0.63
DeBERTa Middle 4 0.57 0.57
GPT-2 First 4 041 041
GPT-2 Last 0.38 0.38
GPT-2 Last 4 0.44 043
GPT-2 Middle 4 044 043
SkipGram N+C 0.93 0.93
SkipGram N 0.97 0.97
SkipGram C 091 091
SkipGram 0.93 0.92

Table 11: Semantic analogies results for the CA8
dataset. We show accuracy using cosine (cos) and
Spearman (p) as similarity metrics.

static and contextualized vectors, we limited the
search space for both models to only the words
that are present in the dataset, rather than using
the entire vocabulary of the vector space. On the
other hand, among the Transformers, BERT per-
forms better, while GPT-2 vectors significantly lag
behind. Excluding GPT-2, it can also be seen that
the other two Transformer models show better re-
sults when using the later layers. This observation
aligns with intuition, as the meaning of the relations
between entities in the analogy task is likely to be
better grasped via lexico-syntactic patterns in spe-
cific sentence contexts (e.g., x is the capital of y).

In the semantic relations task (Table 12), contex-
tualized models, particularly BERT, consistently
outperform all the competitors by a large margin
for all metrics and layer settings. Interestingly, in
this task, Spearman as a metric is much more re-
liable for the contextualized models, always yield-
ing higher scores for both DeBERTa and GPT-2.
Static models, while not as powerful as contex-
tualized models, still exhibit strong performance.
In general, all models efficiently discriminate re-
lated words from random ones (Rel scores) as
well as synonyms from other word pairs (Syn) (Fig-
ure 1). This aligns with previous results of the
CogALex shared task (Xiang et al., 2020), where
embeddings-based supervised systems achieved
much better performance in Chinese relation iden-
tification compared to English. Possibly, the se-
mantic radicals of the characters provide addi-
tional information about the word categories and
their associations (Wang et al., 2018).

Finally, in the Semantic Clustering task (Ta-
ble 13), contrasting results were found. In the
Zhong22 dataset, static models seem to per-
form better in the abstract-concrete distinction, but
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Figure 1: Distribution of Spearman scores of the best contextualized and static models (BERT and Skip
Gram N+C) across the relations in the EVALution-MAN dataset.

cos P
Model Rel. Syn. | Rel. Syn.
BERT-Base First 4 0.95 0.50 | 0.92 0.52
BERT-Base Last 0.93 0.56 | 0.94 0.61
BERT-Base Last 4 0.96 0.58 | 0.94 0.61
BERT-Base Middle 4 | 0.96 0.59 | 0.94 0.61
DeBERTa First 4 0.69 0.25 | 0.83 0.42
DeBERTa Last 0.76 0.33 | 0.91 0.56
DeBERTa Last 4 0.72 0.29 | 0.89 0.54
DeBERTa Middle 4 0.71 0.29 | 0.87 0.52
GPT-2 First 4 0.89 049 | 091 0.53
GPT-2 Last 0.78 0.44 | 0.92 0.59
GPT-2 Last 4 0.87 0.49 | 0.92 0.59
GPT-2 Middle 4 0.91 052 | 0.91 0.57
SkipGram 0.80 0.26 | 0.80 0.25
SkipGram C 0.82 0.33 | 0.81 0.32
SkipGram N 0.79 025 | 0.79 0.25
SkipGram N+C 0.80 0.30 | 0.79 0.29

Table 12: Semantic Relations results on
EVALution-MAN. We show average precision
using cosine (cos) and Spearman (p) as metrics
on related (Rel.) and synonymy (Syn.) classes.

Zhong Binder-zh
Model H C H C
BERT-Base First 4 0.11 012 | 0.10 0.31
BERT-Base Last 0.28 0.31 | 0.14 0.37
BERT-Base Last 4 0.16 0.24 | 0.12 0.35
BERT-Base Middle 4 | 0.25 0.28 | 0.12 0.34
DeBERTa First 4 0.09 0.16 | 0.13 0.37
DeBERTa Last 0.21 023 | 0.13 0.36
DeBERTa Last 4 029 032 | 0.14 0.36
DeBERTa Middle 4 0.29 029 | 017 0.46
GPT-2 First 4 0.07 0.07 | 0.11 0.33
GPT-2 Last 0.03 0.03 | 0.04 o0.07
GPT-2 Last 4 0.04 004 | 0.11 0.28
GPT-2 Middle 4 0.07 0.11 | 0.15 0.40
SkipGram N+C 0.20 0.25 | 0.08 0.22
SkipGram N 0.21 0.25 | 0.07 0.20
SkipGram C 0.34 0.35 | 0.03 0.21
SkipGram 0.37 0.37 | 0.03 0.21

Table 13: Semantic Clustering results on Zhong22
and Binder-zh. We show homogeneity (H) and
completeness (C) using agglomerative clustering.

when Skip Gram uses only words as the contexts,
while the inclusion of ngrams and characters de-
teriorates the performance. Contextualized mod-
els, except for BERT and DeBERTa in the middle-
to-later layers, achieve lower scores. However,
for the fine-grained semantic distinctions of the
Binder dataset, BERT and DeBERTa always do
better in the middle and late layers, and static
models lag behind. The result may be due to
the fact that the abstract-concrete distinction is
closely related to the out-of-context property of
word meaning, strongly determining the distribu-
tional behaviour of words (e.g., in the selectional
preferences), whereas attribution to a Binder class
may require idiosyncratic contextual cues that are
only available to contextualized models.

Upon suggestions of the reviewers, we have
run some further experiments including also BERT-
Large, to test the effect of the model size, and
an additional study on dimensionality reduction
using Singular Value Decomposition (SVD, Deer-
wester et al. (1990); Landauer and Dumais (1997))
on the contextualized embeddings. We found
that the quality of the contextualized embeddings
decreases with SVD, and that BERT-Large con-
stantly improves over the Base model. The full
results can be seen in the Appendix.

5. Conclusion

We presented the first extensive comparison of
static and contextualized embedding models in
Mandarin Chinese, including different Transformer
models (BERT, DeBERTa, and GPT-2) and static
models with different levels of contextual gran-
ularity. Our results align with those of Lenci
et al. (2023), possibly with an even larger edge
in favor of static models in tasks that require
a representation of out-of-context word meaning
(such as similarity, word associations, analogy, ab-
stract/concrete clustering). This is perhaps due
to the fact that Transformers’ vocabularies for Chi-
nese are made of characters, so the models do
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not have a ’'native’ representation of word mean-
ings, but have to combine character-based ones
(and multi-character words are more than 84% of
the combined vocabulary of our datasets). No-
tice that, although cognitive research (Tsai and Mc-
Conkie, 2003; Bai et al., 2008) claimed that the
character could be the main unit for Chinese lan-
guage processing, current benchmarks for distri-
butional models are based on words. We want to
stress that this issue is not limited to distributional
semantics evaluation: for example, an increasing
number of computational psycholinguistics works
use word surprisals derived from pre-trained lan-
guage models for modeling human reading behav-
ior, often focusing on English; it is unclear if results
obtained for English can be reproduced on typo-
logically different languages (see e.g. Kuribayashi
et al. (2021)), and whether different outcomes can
be explained by the fact that not all languages
have the same notion of what counts as a “word”
(Nair and Resnik, 2023). In the case of Chinese,
future benchmarks might possibly have to be con-
ceived with this issue in mind, and the considera-
tion could be extended to other Chinese modeling
studies using annotations at the word level (e.g.
prediction of eye movements in reading Chinese
text, Li et al. (2023, 2024)).

On the other hand, contextualized vectors led to
improvements in relation classification and catego-
rization in abstract semantic classes, which prob-
ably benefit from context-specific semantic cues.
For the task of semantic relations, scores were
much higher than recent work on English (cf. the
scores of the multilingual shared task in Xiang
et al. (2020)). A possible explanation is that the
Chinese dataset may be simpler for character-
based models: for some relations (e.g. antonymy),
there are word pairs formed with the same root-
morpheme, and therefore such pairs share at least
one identical character (e.g. PA ’below’ vs. PA
_I’above’; I 1ly'uphill’ vs. | 1lj’”down hill’); more-
over, some pairs also exhibit a Modern Chinese-
Archaic Chinese alternation, and they also share
a character (e.g. the SYN pair 2k g it vs.
Jiv, ‘originate’). Again, such findings suggest that
linguistic specificity has to be taken into account
when planning benchmarks for distributional mod-
els. We have to stress, among the limitations of
our study, that our evaluation is not multilingual as
we focus just on Mandarin - so the conclusions we
draw are limited to that language and to English
via comparison with previous results. Multilingual
distributional models will have to take into account
the compatibility of the tokenizations between dif-
ferent languages (Maronikolakis et al., 2021), and
deal with the fact that such languages may rely on
different basic linguistic units.

In times when language models seem to have

definitively shifted the attention toward evaluation
with downstream tasks, we hope our work can
pave the way for the rediscovery of distributional
semantics in new and unseen languages.

Limitations

Our study has some clear limitations in that we
tested a relatively small number of models. Addi-
tionally, we focused just on a single language, so
it is possible that our findings do not generalize to
DSM performance across languages.
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Appendix

We explored the impact of dimensionality on the
performance of contextualized word embeddings,
since the vectors produced by all the Transformer
models have 768 dimensions vs. the 300 dimen-
sions of static word embeddings. With this goal,
we reduce to 300 dimensions the contextualized
vectors with SVD (Deerwester et al., 1990; Lan-
dauer and Dumais, 1997) and repeat all the ex-
periments. Moreover, we include results for the
BERT-Large model to assess the effect of model
size. All scores can be seen in Table 14-18.

It is immediately noticeable that, after SVD com-
pression is applied, the scores of contextualized
embeddings slightly decreases for almost all the
tasks and settings, suggesting that the higher di-
mensionality of those vectors might have played a
role in their performance in previous studies.

On the other hand, BERT-Large seems to small
but constant improvements over the Base version
in the same settings in almost all the tasks. Al-
though the observed pattern does not change sub-
stantially, the scores achieved by this model sug-
gests that representation quality of contextualized
embeddings might improve with the increase of
the model size.
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Spearman Cosine
Model Config Compression P r p r
BERT-Base First 4 with SVD 0.70 0.67 | 0.68 0.65
w/o SVD 0.73 0.70 | 0.71 0.68
BERT-Base Last with SVD 0.71 0.67 | 0.71 0.66
w/o SVD 0.74 0.70 | 0.74 0.69
BERT-Base Last 4 with SVD 0.70 0.66 | 0.70 0.64
w/o SVD 0.73 0.69 | 0.73 0.67
BERT-Base Middle 4 with SVD 0.69 0.66 | 0.69 0.64
w/o SVD 0.72 0.69 | 0.72 0.67
BERT-Large First 4 with SVD 0.72 0.68 | 0.68 0.66
w/o SVD 0.74 0.72 | 0.73 0.68
BERT-Large Last with SVD 0.73 0.68 | 0.72 0.67
w/o SVD 0.75 0.70 | 0.72 0.71
BERT-Large Last4 with SVD 0.71 0.68 | 0.71 0.65
w/o SVD 0.75 0.70 | 0.75 0.68
BERT-Large Middle 4 with SVD 0.70 0.68 | 0.71 0.65
w/o SVD 0.73 0.7 | 0.73 0.69
DeBERTa First 4 with SVD 0.72 0.69 | 0.70 0.66
w/o SVD 0.74 0.72 | 0.73 0.69
DeBERTa Last with SVD 0.72 0.68 | 0.69 0.63
w/o SVD 0.74 0.71 | 0.72 0.66
DeBERTa Last 4 with SVD 0.72 0.69 | 0.70 0.64
w/o SVD 0.74 0.72 | 0.73 0.67
DeBERTa Middle 4 with SVD 0.73 0.70 | 0.71 0.67
w/o SVD 0.73 0.70 | 0.74 0.70
GPT-2 First 4 with SVD 0.70 0.67 | 0.68 0.63
w/o SVD 0.73 0.70 | 0.70 0.66
GPT-2 Last with SVD 0.67 0.64 | 0.41 0.34
w/o SVD 0.70 0.67 | 0.44 0.37
GPT-2 Last4 with SVD 0.68 0.65 | 0.58 0.53
w/o SVD 0.71 0.68 | 0.61 0.56
GPT-2 Middle 4 with SVD 0.69 0.66 | 0.68 0.63
w/o SVD 0.72 0.69 | 0.71 0.66
SkipGram N+C 0.75 0.70 | 0.75 0.70
SkipGram N 0.69 0.64 | 0.69 0.64
SkipGram C 0.71 0.67 | 0.71 0.67
SkipGram 0.65 0.60 | 0.65 0.61

Table 14: Similarity Estimation on COS960 dataset. We perform Spearman (p) and Pearson (r) correla-
tions using Spearman/Cosine as similarity metrics. The best performance is shown in bold.
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Accuracy | Mean Rank

Model Layers Compression | cos p cos P
BERT-Base First 4 with SVD 064 064|274 275
w/o SVD 0.68 0.68 | 2.60 2.61
BERT-Base Last with SVD 0.65 0.65| 242 256
w/o SVD 0.69 0.69 | 2.28 242
BERT-Base Last 4 with SVD 0.67 067 | 254 239
w/o SVD 071 071|240 225
BERT-Base Middle 4  with SVD 0.66 0.67 | 255 2.46
w/o SVD 0.70 0.71 | 241 232
BERT-Large First 4 with SVD 0.66 0.66 | 2.69 2.70
w/o SVD 0.70 0.70 | 255 2.56
BERT-Large Last with SVD 0.67 0.67 | 2.37 2.51
w/o SVD 071 0.71 ] 223 237
BERT-Large Last 4 with SVD 069 0.69 | 249 234
w/o SVD 0.73 0.73 | 235 220
BERT-Large Middle 4 with SVD 0.68 0.69 | 250 2.41
w/o SVD 0.72 0.73 | 236 227
DeBERTa First 4 with SVD 065 064|270 263
w/o SVD 0.69 0.68 | 256 249
DeBERTa Last with SVD 0.67 0.66 | 254 242
w/o SVD 0.71 0.70 | 240 2.28
DeBERTa Last 4 with SVD 0.65 0.68 | 255 2.39
w/o SVD 069 072|241 225
DeBERTa Middle 4 with SVD 0.64 0.65| 256 242
w/o SVD 0.68 0.69 | 242 2.28
GPT-2 First 4 with SVD 064 0.62 | 275 274
w/o SVD 0.68 0.66 | 2.61 2.60
GPT-2 Last with SVD 0.54 064 | 3.01 256
w/o SVD 0.58 0.68 | 2.87 242
GPT-2 Last 4 with SVD 0.62 0.64 | 2.67 253
w/o SVD 0.66 0.68 | 253 2.39
GPT-2 Middle 4 with SVD 062 062 | 268 267
w/o SVD 0.66 0.66 | 2.54 2.53
SkipGram 0.73 0.73 | 216 217
SkipGram C 0.72 0.71 | 210 212
SkipGram N 0.74 073|210 213
SkipGram N+C 073 072|219 220

Table 15: Word Associations results on the FAST-zh dataset. We show accuracy (the higher the better)
and mean rank (the lower the better) using cosine (cos) and Spearman (p) as similarity metrics.
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Model Layers Compression | cos p
BERT-Base First 4 with SVD 0.36 0.36
w/o SVD 0.39 0.39
BERT-Base Last with SVD 0.80 0.80
w/o SVD 0.84 0.84
BERT-Base Last 4 with SVD 0.78 0.78
w/o SVD 0.82 0.82
BERT-Base Middle 4  with SVD 0.63 0.64
w/o SVD 0.67 0.68
BERT-Large First 4 with SVD 0.38 0.38
w/o SVD 041 0.41
BERT-Large Last with SVD 0.82 0.82
w/o SVD 0.86 0.86
BERT-Large Last 4 with SVD 0.80 0.80
w/o SVD 0.84 0.84
BERT-Large Middle 4 with SVD 0.65 0.66
w/o SVD 0.69 0.70
DeBERTa First 4 with SVD 041 0.41
w/o SVD 044 0.44
DeBERTa Last with SVD 0.59 0.59
w/o SVD 0.63 0.63
DeBERTa Last 4 with SVD 0.59 0.59
w/o SVD 0.63 0.63
DeBERTa Middle 4  with SVD 0.53 0.53
w/o SVD 0.57 0.57
GPT-2 First 4 with SVD 0.38 0.38
w/o SVD 041 0.41
GPT-2 Last with SVD 0.35 0.35
w/o SVD 0.38 0.38
GPT-2 Last 4 with SVD 0.41 0.40
w/o SVD 0.44 0.43
GPT-2 Middle 4 with SVD 0.41 0.40
w/o SVD 0.44 0.43
SkipGram N+C 0.93 0.93
SkipGram N 0.97 0.97
SkipGram C 0.91 0.91
SkipGram 0.93 0.92

Table 16: Semantic analogies results for the CA8 dataset. We show accuracy using cosine (cos) and
Spearman (p) as similarity metrics.
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cos P
Model Layers Compression | Rel. Syn. | Rel. Syn.
BERT-Base First 4 with SVD 0.92 047 | 0.89 049
w/o SVD 0.95 0.50 | 0.92 0.52
BERT-Base Last with SVD 0.90 0.53 | 0.91 0.58
w/o SVD 0.93 0.56 | 0.94 0.61
BERT-Base Last 4 with SVD 0.93 0.55 | 091 0.58
w/o SVD 0.96 0.58 | 0.94 0.61
BERT-Base Middle 4  with SVD 0.93 0.56 | 0.91 0.58
w/o SVD 0.96 0.59 | 0.94 0.61
BERT-Large First 4 with SVD 0.94 049 | 091 0.51
w/o SVD 0.97 052 | 0.94 0.54
BERT-Large Last with SVD 0.92 055|093 0.60
w/o SVD 0.95 0.58 | 0.96 0.63
BERT-Large Last 4 with SVD 0.95 0.57 | 0.93 0.60
w/o SVD 0.98 0.60 | 0.96 0.63
BERT-Large Middle 4  with SVD 0.95 0.58 | 0.93 0.60
w/o SVD 0.98 0.61 | 0.96 0.63
DeBERTa First 4 with SVD 0.66 0.22 | 0.80 0.39
w/o SVD 0.69 0.25 | 0.83 0.42
DeBERTa Last with SVD 0.73 0.30 | 0.88 0.53
w/o SVD 0.76 0.33 | 0.91 0.56
DeBERTa Last 4 with SVD 0.69 0.26 | 0.86 0.51
w/o SVD 0.72 0.29 | 0.89 0.54
DeBERTa Middle 4  with SVD 0.68 0.26 | 0.84 0.49
w/o SVD 0.71 0.29 | 0.87 0.52
GPT-2 First 4 with SVD 0.86 0.46 | 0.88 0.50
w/o SVD 0.89 049 | 091 0.53
GPT-2 Last with SVD 0.75 0.41 | 0.89 0.56
w/o SVD 0.78 0.44 | 092 0.59
GPT-2 Last 4 with SVD 0.84 046 | 0.89 0.56
w/o SVD 0.87 049 | 0.92 0.59
GPT-2 Middle 4  with SVD 0.88 0.49 | 0.88 0.54
w/o SVD 0.91 0.52 | 091 0.57
SkipGram 0.80 0.26 | 0.80 0.25
SkipGram C 0.82 0.33 | 0.81 0.32
SkipGram N 0.79 0.25 | 0.79 0.25
SkipGram N+C 0.80 0.30 | 0.79 0.29

Table 17: Semantic Relations results on EVALution-MAN. We show average precision using cosine (cos)
and Spearman (p) as metrics on related (Rel.) and synonymy (Syn.) classes.
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Zhong Binder-zh

Model Layers = Compression H C H C
BERT-Base First 4 with SVD 0.08 0.09 | 0.07 0.27
w/o SVD 0.11 0.12 | 0.10 0.31
BERT-Base Last with SVD 0.25 0.28 | 0.11 0.33
w/o SVD 0.28 0.31 | 0.14 0.37
BERT-Base Last 4 with SVD 0.13 0.21 | 0.09 0.31
w/o SVD 0.16 024 | 0.12 0.35
BERT-Base Middle 4 with SVD 0.22 0.25| 0.09 0.30
w/o SVD 0.25 0.28 | 0.12 0.34
BERT-Large First 4 with SVD 0.10 0.11 | 0.09 0.29
w/o SVD 0.13 0.14 | 0.12 0.33
BERT-Large Last with SVD 0.27 0.30 | 0.13 0.35
w/o SVD 0.30 0.33 | 0.16 0.39
BERT-Large Last 4 with SVD 0.15 0.23 | 0.11 0.33
w/o SVD 0.18 0.26 | 0.14 0.37
BERT-Large Middle 4 with SVD 024 0.27 | 0.11 0.32
w/o SVD 0.27 0.30 | 0.14 0.36
DeBERTa First 4 with SVD 0.06 0.13 | 0.10 0.33
w/o SVD 0.09 0.16 | 0.13 0.37
DeBERTa Last with SVD 0.18 0.20 | 0.10 0.32
w/o SVD 0.21 0.23 | 013 0.36
DeBERTa Last 4 with SVD 0.26 0.29 | 0.11 0.32
w/o SVD 029 0.32 | 0.14 0.36
DeBERTa Middle 4 with SVD 0.26 0.26 | 0.14 042
w/o SVD 0.29 0.29 | 017 0.46
GPT-2 First 4 with SVD 0.04 0.04 | 0.08 0.29
w/o SVD 0.07 0.07 | 0.11 0.33
GPT-2 Last with SVD 0.00 0.00 | 0.01 0.03
w/o SVD 0.03 0.03 | 0.04 0.07
GPT-2 Last 4 with SVD 0.01 0.01 | 0.08 0.24
w/o SVD 0.04 0.04 | 0.11 0.28
GPT-2 Middle 4 with SVD 0.04 0.08 | 0.12 0.36
w/o SVD 0.07 0.11 | 0.15 040
SkipGram N+C 0.20 0.25| 0.08 0.22
SkipGram N 0.21 0.25 | 0.07 0.20
SkipGram C 0.34 0.35| 0.03 0.21
SkipGram 0.37 0.37 | 0.03 0.21

Table 18: Semantic Clustering results on Zhong22 and Binder-zh. We show homogeneity (H) and com-
pleteness (C') using agglomerative clustering.
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