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Abstract

Large Language Models (LLMs) are currently
under exploration for various tasks, including
Automatic Speech Recognition (ASR), Ma-
chine Translation (MT), and even End-to-End
Speech Translation (ST). In this paper, we
present KIT’s offline submission in the con-
strained + LLM track by incorporating recently
proposed techniques that can be added to any
cascaded speech translation. Specifically, we
integrate Mistral-7B! into our system to en-
hance it in two ways. Firstly, we refine the
ASR outputs by utilizing the N-best lists gener-
ated by our system and fine-tuning the LLM to
predict the transcript accurately. Secondly, we
refine the MT outputs at the document level by
fine-tuning the LLM, leveraging both ASR and
MT predictions to improve translation quality.
We find that integrating the LLM into the ASR
and MT systems results in an absolute improve-
ment of 0.3% in Word Error Rate and 0.65%
in COMET for tst2019 test set. In challenging
test sets with overlapping speakers and back-
ground noise, we find that integrating LLM is
not beneficial due to poor ASR performance.
Here, we use ASR with chunked long-form
decoding to improve context usage that may
be unavailable when transcribing with Voice
Activity Detection segmentation alone.

1 Introduction

This paper provides an overview of Karlsruhe In-
stitute of Technology’s speech translation (ST) sys-
tem developed for the offline track of IWSLT 2024.
We participated in the constrained plus large lan-
guage models (LLMs) condition, focusing on the
translation direction from English to German. Un-
der this condition, LLMs with parameters of around
7 billion are allowed, and they have proven effec-
tive in many NLP tasks. One of the interesting
aspects of this condition is how one can effectively
integrate them into ST systems.

"mistralai/Mistral-7B-Instruct-v0.1

In recent years, there has been a significant
interest in developing several open-sourced and
medium-scale LLMs (Touvron et al., 2023; Jiang
et al., 2023). The adaptability of LLMs to di-
verse tasks, using techniques such as In-Context-
Learning (Brown et al., 2020) or Parameter-
efficient fine-tuning with 4-bit quantization (Hu
et al., 2021; Dettmers et al., 2024), enables their
exploitation even with limited resources.

With these recent advancements, exploiting
LLMs for ST shows great promise and offers sev-
eral potential benefits. For instance, one common
challenge in Automatic Speech Recognition (ASR)
is dealing with input noise, which can often ren-
der it difficult to comprehend the speaker’s words.
However, LLMs, trained on vast amounts of data,
may excel at predicting words compared to de-
coders trained solely during ASR. Moreover, LLMs
possess a richer vocabulary and understanding of
complex terminology that task-specific ASR sys-
tems may lack. Motivated by these advantages,
various studies have explored the integration of
LLMs into ASR (Chen et al., 2024; Pu et al., 2023),
Machine Translation (MT) (Koneru et al., 2023),
and ST (Hu et al., 2024).

Chen et al. (2024) employ the LLM to gener-
ate a new hypothesis based on the N-best list of
the ASR model. This strategy relies on the ob-
servation that N-best lists tend to exhibit enough
diversity, especially during uncertain conditions,
allowing accurate transcript prediction by examin-
ing the list. On the other hand, for MT, Koneru
et al. (2023) proposes leveraging the LLM to au-
tomatically postedit translations by analyzing the
source and hypothesis documents to rectify contex-
tual errors. Both approaches are system-agnostic
and have demonstrated successful enhancement of
system quality. Furthermore, it is also the case that
cascaded systems are shown to be superior than
end to end systems in previous IWSLT findings
and submissions making the leveraging of LLMs
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Figure 1: ASR Refinement: The ASR system generates a few candidate hypotheses with beam search, and the
LLM generates a new hypothesis based on all the candidates as proposed in Chen et al. (2024). We use the top 5

candidates in all our experiments.

easily compatible. (Agarwal et al., 2023; Liu et al.,
2023).

Our system builds on these two approaches to
effectively use the LLMs to improve the cascaded
ST pipeline by refining the intermediate outputs at
both ASR and MT while maintaining its modular
structure. We utilize pre-trained models to cre-
ate the individual components and fine-tune them
with the allowed data. Specifically, we employ
WavLM (Chen et al., 2022) and MBARTS50 (Liu
et al., 2020) to initialize the ASR, and NLLB-200
(3.3B) (Costa-jussa et al., 2022) for the MT module.
As for the LLM, we opt for Mistral 7B Instruction-
Tuned (Jiang et al., 2023), considering it to be the
most recent model within the allowable options.

We present our main findings below:

* We demonstrate that LLLMs can be tailored
to enhance both ASR (Section 4.1) and MT
systems (Section 4.2), resulting in an abso-
lute improvement of 0.3% in Word Error Rate
and 0.65% in COMET, respectively, on the
tst2019 test set.

* While we observe significant enhancements in
in-domain scenarios, we find that these tech-
niques are not applicable in challenging sce-
narios (such as Overlapping Speakers, Back-
ground noise, etc.) due to poor ASR perfor-
mance.

* We demonstrate that employing chunked long-
form decoding?® significantly improves ASR
performance in challenging scenarios, such as
the case of the ITV dev set. Specifically, we
observe a decrease in the word error rate from
37.83% to 30.98%

2We derive the terminology from this blog post.

2 Data

This section describes the evaluation and training
data we use in our experiments. For evaluation, we
report results on the tst2019 and ACLdev (Salesky
et al., 2023) test sets to compare with findings from
previous works (Anastasopoulos et al., 2021; Agar-
wal et al., 2023). We also use the EPTV (European
Parlament activities), Itv (TV Series), and Pelo-
ton (Fitness TV) dev sets from the subtitling track
consisting of overlapping speakers with different
accents to evaluate the ASR performance in chal-
lenging scenarios.

As the data conditions did not change from
IWSLT23 to this year, we rely on the data pro-
cessed from last year’s submission (KIT’23) (Liu
et al., 2023). For the training data of ASR, we use
the same system that used Common Voice (Ardila
et al., 2020), LibriSpeech (Panayotov et al., 2015),
MuST-C v2 (Di Gangi et al., 2019), TED-LIUM
v3 (Hernandez et al., 2018), and VoxPopuli (Wang
etal., 2021).

While for MT fine-tuning, we use the cleaned
training data from last year created from the
available parallel data. This includes Europarl
v7 and v10 (Koehn, 2005), NewsCommentary
v16, OpenSubtitles v2018 (Lison and Tiede-
mann, 2016), Tatoeba (Tiedemann, 2012), ELRC-
CORDIS_News and TED2020 (Reimers and
Gurevych, 2020) and consists in total of 23 mil-
lion sentence pairs. For the rest of the paper, we
refer to the full parallel data as seed and TED2020
as in-domain.

3 Overview

In this section, we provide an overview of our pro-
posed cascaded system, detailing each individual
component. First, the input audio is sent to the
ASR system, which undergoes segmentation, and
N-best lists are generated for each segmented utter-
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ance. Next, the top candidates in the N-best list are
fed as input to the LLM, which is trained to refine
the ASR output and generate a final ASR hypothe-
sis. Following this, the final ASR hypotheses are
passed on to the sentence-level MT system, which
produces translations. Finally, the sentence-level
automatic transcripts and translations are fed into
another adapted LLLM, which automatically post-
edits and generates a coherent document translation
of the talk.

3.1 Automatic Speech Recognition

We employed the ASR model from our previous
year’s submission (Liu et al., 2023), considering its
effectiveness in transcribing the TED domain. For
initialization, we utilized WavLM and mBART50
for the encoder and decoder, respectively, before
fine-tuning on the ASR data described in Section
2. However, we encountered below-par ASR per-
formance on the challenging sets EPTV, Itv, and
Peloton.

We identified several issues that hindered the
effectiveness of our ASR model with these sets.
Firstly, the model itself was trained on single-
talker datasets but inferred with multi-talker noisy
datasets, leading to a mismatch in data distribu-
tion. Secondly, our typical use of the SHAS model
for audio segmentation introduced challenges, as it
sometimes missed segmentations and overlooked
segments containing human speech.

Data shift is difficult to handle when the training
dataset has not changed since last year. We focused
more on handling the latter by incorporating long-
form decoding. The key idea is to better use context
(at the text or signal level) for decoding. The long
audio file is chunked into smaller segments with
a small overlap between adjacent segments. The
model is run over each chunk, and the inferred
text is joined at the strides by finding the longest
common sequence between overlaps.

3.2 ASR refinement

Once we have generated the N-best list, we select
the top 5 candidates and utilize an LLM to pro-
duce the final hypothesis as shown in Figure 1. In
this step, we can adapt the LLM to the task us-
ing either few-shot prompting or LoRA fine-tuning
techniques. We choose to fine-tune the LLM with
adapters based on the findings from (Chen et al.,
2024). However, it is crucial to train the LLM un-
der conditions that simulate the test environment,
where it should fix errors of our ASR output rather

than on the whisper generated in Chen et al. (2024).

To generate the dataset for fine-tuning, we per-
form inference on our in-domain training data using
the gold segmentation. We create pairs comprising
the N-best list and the corresponding reference. It
is worth noting that we utilized the same data to
train the ASR system, which is not ideal. How-
ever, resource constraints prevented us from fol-
lowing the augmentation procedure that mitigates
this, which we explain further in Section 3.4. De-
spite this limitation, manual analysis revealed that
the ASR did not memorize the training data and
produced similar N-best lists to those observed in
the test conditions.

Following this, we fine-tuned the Mistral 7B
Instruction-tuned LLM (Jiang et al., 2023) using
QLoRA (Dettmers et al., 2024), to predict the
gold reference based on the top candidates (see
the prompt format below). Importantly, we chose
not to shuffle the order of the top candidates when
providing it in the prompt, as doing so would elim-
inate the ranking information provided to the LLM,
which could be crucial for its performance.

Punctuate and Post-edit the hypothesis
based on the predictions:

Hyp 1 <SS> Hyp 2 <SS> Hyp 3 ..
Post-edited Hypothesis:

Gold Reference

3.3 Machine Translation

For building the MT system, we leverage the strong
pre-trained model NLLB 200 3.3B (Costa-jussa
et al., 2022) that is allowed in the constrained plus
LLM track. We perform a two-step fine-tuning
approach. Initially, we fine-tune the model on the
seed data to adapt it to the spoken language domain.
Subsequently, in the second step, we conduct in-
domain fine-tuning on TED (in-domain) data, given
its significance as one of the primary test sets in the
offline track. Additionally, we implement check-
point averaging to improve generalization with the
last 3 checkpoints.

3.3.1 Restoring Punctuations

It is important to note that the ASR outputs lack
punctuation. Therefore, we conducted experiments
with two punctuators. First, we utilized the punc-
tuations generated from the LLM ASR refinement
process described in Section 3.2. Second, we em-
ployed a Deltal.M-based punctuation model, which
was utilized in our previous year’s submission (Liu
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Figure 2: Document Level MT Refinement: The LLM trained to post-edit uses sentence-level transcripts and
translations to generate a final document-level coherent and consistent translation.

et al., 2023). We observed that while the punctu-
ations generated by the LLM were semantically
correct, they often resulted in long sequences and
led to a degradation in MT performance. As a
result, we decided to opt for the second choice
and segment the text into sentences using manually
crafted rules.

3.4 Document-level Automatic Post-Editing

After translating the individual sentences with the
fine-tuned NLLB, the outputs are not coherent as
they are translated in isolation. Moreover, any ASR
errors that might be fixed by observing the full doc-
ument will be translated incorrectly. To mitigate
this, we perform an additional step of document-
level automatic post-editing using the source tran-
scripts and sentence translations shown in Figure
2.

Similar to the situation outlined in Section 3.2,
we encountered a lack of data for fine-tuning the
LLM for document-level post-editing. Hence, we
adopted the approach proposed by Koneru et al.
(2023) to create the dataset. We divided the in-
domain TED data into two halves, each contain-
ing English audio, English transcript, and German
translation. Subsequently, we fine-tuned MT mod-
els on each half using the pre-trained models de-
scribed in Sections 3.1 and 3.3. Following this, we
conducted inference using the gold segmentation
with our ASR and MT models trained on one half to
the other half. This procedure generated a synthetic
dataset with noisy ASR input, MT predictions, and
corresponding gold references, leveraging the pro-
vided segmentation in the data.

We then use the synthetic dataset to create in-
stances of document-level post-editing. We go
through each talk and divide the transcripts into

chunks, each chunk containing a maximum of 256
tokens corresponding to the LLM tokenizer. Then
for each chunk, we use the transcript, hypothesis
and reference to transform them into the format
below and train the LLM to predict the gold refer-
ence given the noisy transcript and sentence-level
hypothesis.

Noisy English Transcript:

ASR Hyp 1 <SS> ASR Hyp 2 <SS> ....
German Translations:

MT Hyp 1 <SS> MT Hyp 2 <SS> ....
Post-Edited German Translations:
Ref 1 <SS> Ref 2 <SS> ....

We use the delimiter "<SS>" to align with the
input and perform sentence-level evaluation. Then,
we again fine-tune the Mistral 7B Instruction-tuned
LLM (Jiang et al., 2023) using QLoRA (Dettmers
et al., 2024), training it to predict the gold refer-
ence given the noisy transcript and translations.
We employ the sliding window with payload strat-
egy during decoding as described in Koneru et al.
(2023).

4 Results

4.1 Automatic Speech Recognition

To evaluate the benefit of the additional ASR re-
finement step described in Section 3.2, we compare
the word error rate of our ASR system before and
after post-editing, as shown in Table 1. The ASR
performance improves in both cases, with a higher
absolute improvement observed in the ACLdev set.
The LLM is particularly beneficial in the ACLdev
set, given that it contains terminology from the sci-
entific domain where the LLM excels. We also
observe a relative improvement of 10% in the TED
talks, indicating that ASR refinement is beneficial.
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tst2019  ACLdev2023

KIT’23 (Liu et al., 2023) ASR 3.1

KIT’23 ASR + LLM Refine

11.3

2.8 10.6

Table 1: ASR word error rate scores on tst2019 and ACLdev2023 test sets. + LLM refine indicates that the N-best

list was post-edited to generate the final hypothesis.

Model EPTV  ITV  Peloton
KIT’23 ASR 2643 37.83 18.93
KIT’23 ASR + Gold Seg 16.84 3721 25.88
KIT’23 ASR + long-form 17.54 3098 20.79
Seamless v2 (Barrault et al., 2023) 40.94 56.94 4347

Table 2: ASR word error rate scores on the EPTV, Peloton and ITV dev set. Best scores for each set are highlighted

in bold.

However, the performance of the same ASR sys-
tem on the challenge set was below par. We con-
ducted additional ablation studies and present the
results in Table 2 for the challenge dev sets. We
compared last year’s ASR system with three condi-
tions: providing gold segmentation, utilizing long-
form decoding, and using the recently developed
Seamless V2 (Barrault et al., 2023).

We observed that providing gold segmentation
achieved a score of 16.84, demonstrating its cru-
cial role in handling this challenging set for EPTV.
Moreover, long-form decoding significantly nar-
rowed the gap, decreasing the word error rate for
both EPTV and ITV. Meanwhile, our ASR shows
the best performance for Peloton without any mod-
ifications. Additionally, we evaluated Seamless to
assess its robustness and found that its performance
was severely lacking in comparison.

Based on these results, we use the ASR with
standard segmentation for TED and Peloton test
sets. For EPTV and ITV, we use the ASR system
with long-form decoding. We found that the LLM
cannot refine the N-best list given the poor WER
of KIT*23 ASR for the latter test sets and generates
long sequences with repetitions for most utterances.
Therefore, we do not perform any ASR or MT
LLM refinements for ITV and EPTV sets and
generate translations with a standard cascaded
ST pipeline.

4.2 Cascaded Speech Translation

In this section, we evaluate the final quality of our
cascaded ST using the mwerSegmenter to realign
the hypothesis with the reference segmentation. We

Model tst2019
BLEU Chrf2 COMET
KIT’23 TED* 28.4 58.8 78.87
NLLB 3.3B 26.6 57.7 77.41
Seamless v2 25.5 57.0 76.65
NLLB 3.3B + Seed 26.9 57.9 77.87
NLLB 3.3B + Seed + TED  27.6 58.5 78.49

Table 3: MT scores using KIT’23 ASR as input calcu-
lated by resegmenting with mwerSegmenter. * indicates
an unconstrained system that was trained on the same
data sources but in more languages than what is allowed
for IWSLT24. TED indicates the model adapted for
TED and not ACLdev which was the official submission
from KIT for IWSLT23

report results with BLEU (Papineni et al., 2002)
and Chrf2 (Popovi¢, 2015) computed by Sacrebleu
(Post, 2018). We also report the COMET (Rei et al.,
2022) score using the default model?.

4.3 Two-step Fine-tuning

We presented a two-step fine-tuning approach to
adapt our MT system in Section 3.3 to the target do-
main. We report the translation quality on tst2019
test set with this approach (last row) and other mod-
els for comparison in Table 3.

Firstly, we observe that Seamless performs infe-
riorly to NLLB across all translation metrics. Con-
sequently, we proceeded with NLLB for further
experiments.

Subsequently, fine-tuning the seed parallel data
improved quality across all metrics, notably in-

3Unbabel/wmt22-comet-da
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u | 1512019 | ACLdev2023
odel
| BLEU Chrf2 COMET | BLEU Chrf2 COMET
NLLB 3.3 266 577 7741 | 350 639  74.83
NLLB 3.3 Seed 269 579 7787 | 347 638 7567
ASR Refine + NLLB 3.3 Seed 273 583 7832 | 361 650  77.59
ASR Refine + NLLB 3.3 Seed + TED 283 588 7898 | 348 637 7725
ASR Refine + NLLB 3.3 Seed + TED + Doc APE | 287  59.1  79.63 | 364 645  78.64

Table 4: MT scores using KIT 23 ASR as input calculated by resegmenting with mwerSegmenter. ASR Refine
indicates an additional ASR refinement step with the LLM. Seed and TED indicate fine-tuning the NLLB 3.3 with
seed alone or a two-step process with additional fine-tuning on TED. Doc APE indicates an LLLM post-editing
refinement to generate a coherent and consistent document. Best scores in each metric and test set are highlighted in

bold.

creasing the score from 77.41 to 77.87 in COMET.
Following this, with the assistance of second-step
fine-tuning, we observed further improvements, re-
sulting in scores reaching 78.49. However, it is im-
portant to note that this system still lags behind last
year’s submission, which was specifically adapted
to the TED domain. Nevertheless, it’s worth high-
lighting that this system was trained across multiple
languages, placing it in the unconstrained condition
for IWSLT24. Moreover, we could not replicate
a similar adaptation process for NLLB due to re-
source and time constraints.

4.4 LLM Refinement

We proposed improving the ASR outputs and con-
verting sentence-level to document-level transla-
tions using fine-tuned LLMs. We evaluate the ben-
efits of the individual steps and report the results of
our final cascaded ST system in Table 4 on tst2019
and ACLdev2023 test sets.

First, the benefits of two-step fine-tuning, ASR
refinement, and document post-editing comple-
ment each other. Using KITs 23 ASR with NLLB
3.3 B as a baseline, we obtained 77.41 COMET in
tst2019 test set. However, including all enhance-
ments led to a total improvement of 2.23 COMET
points. Furthermore, the improvements are consis-
tent with both lexical and neural metrics.

Next, we observed that integrating LLMs pro-
vides significant benefits in the ACLdev set com-
pared to the TED dev sets. This is plausible due
to scientific terminology and accented speakers
in the ACLdev set. Both of these challenges are
well-suited for LLMs, as the quality of the initial
systems is sufficient to utilize context and rectify
mistakes reliably.

5 Conclusion

This system paper presented KIT’s submission for
the offline track in the constrained + LLMs con-
dition, focusing on the English-to-German trans-
lation direction. Using modular techniques, we
successfully integrated LLMs into any cascaded
ST pipeline. Additionally, we highlighted the bene-
fits of long-form decoding in scenarios involving
noisy and overlapping speech.

For future work, we aim to explore robust tech-
niques for integrating LL.Ms that can effectively
handle challenging scenarios where ASR quality is
sub-par. Furthermore, the translation’s latency is
quite high as it needs to call the LLM twice. How-
ever, integrating quality estimation techniques to
decide when we need the LLM can limit the effects
of the high latency problem.
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A Appendix

We use the transformers library (Wolf et al., 2019)
for fine-tuning our ASR and LLM and the fairseq
toolkit (Ott et al., 2019) for fine-tuning NLLB 3.3B.
For the ASR training, we set the batch size to 384,
resulting in approximately 128 minutes per batch.
We employ a warmup strategy over 2,000 steps
and a total of 100, 000 training steps. The learning
rate is initialized to le — 4.

For the NLLB fine-tuning experiments, we use a
learning rate set to 5e — b, label smoothing to 0.1,
drop out to 0.1, attention drop-out to 0.1. We use
the Adam optimizer with betas to (0,9,0.98) and
the remaining optimizer parameters to default. We
used a batch size of maximum 3096 making one
step, update-freq to 16 and validating on the dev
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set after every epoch. We stopped the training after
the dev loss did not increase after 10 epochs. For
fine-tuning the LLM with QLoRA we use the peft
(Mangrulkar et al., 2022) along with the transform-
ers library. We add LoRA adapters to the target
modules [g_proj, k_proj, v_proj, o_proj, gate_proj,
up_proj, down_proj]. We set the adapter rank to
16, alpha to 32 and lora dropout to 0.1. We use a
batch size of 8, learning rate of be — 5 with other
parameters set to default. After every 200 steps,
we validate and terminate the training if it does not
improve 10 consecutive times.

During inference, we use beam search for all
ASR, MT and LLM components. The ASR and
MT decode with beam size of 5, whereas the LLM
does it with beam size of 3.
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