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Abstract

Object navigation (ObjectNav) requires an
agent to navigate through unseen environments
to find queried objects. Many previous methods
attempted to solve this task by relying on su-
pervised or reinforcement learning, where they
are trained on limited household datasets with
close-set objects. However, two key challenges
are unsolved: understanding free-form natural
language instructions that demand open-set ob-
jects, and generalizing to new environments in
a zero-shot manner. Aiming to solve the two
challenges, in this paper, we propose OpenFM-
Nav, an Open-set Foundation Model based
framework for zero-shot object Navigation. We
first unleash the reasoning abilities of large lan-
guage models (LLMs) to extract proposed ob-
jects from natural language instructions that
meet the user’s demand. We then leverage
the generalizability of large vision language
models (VLMs) to actively discover and de-
tect candidate objects from the scene, build-
ing a Versatile Semantic Score Map (VSSM).
Then, by conducting common sense reasoning
on VSSM, our method can perform effective
language-guided exploration and exploitation
of the scene and finally reach the goal. By
leveraging the reasoning and generalizing abil-
ities of foundation models, our method can
understand free-form human instructions and
perform effective open-set zero-shot naviga-
tion in diverse environments. Extensive exper-
iments on the HM3D ObjectNav benchmark
show that our method surpasses all the strong
baselines on all metrics, proving our method’s
effectiveness. Furthermore, we perform real
robot demonstrations to validate our method’s
open-set-ness and generalizability to real-world
environments. !

1 Introduction

As a fundamental task in robotics and embodied
Al, object navigation requires an agent to navi-
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Figure 1: Leveraging foundation models, our proposed
OpenFMNav can follow free-form natural language in-
structions with open-set objects and achieve effective
zero-shot object navigation.

gate through unseen environments to find queried
objects. Compared to other robotic tasks, it is par-
ticularly important because it is a prerequisite for
robots to interact with objects. To address this issue,
several household datasets and benchmarks, such
as MP3D (Chang et al., 2017), Gibson (Xia et al.,
2018) and HM3D (Ramakrishnan et al., 2021) are
proposed. Many previous studies (Chaplot et al.,
2020a; Ramrakhya et al., 2022; Zhang et al., 2023)
have attempted to solve this problem through su-
pervised or reinforcement learning, where they are
trained on particular household datasets above with
close-set objects and comparable environments.

However, there are two significant challenges
remaining unsolved. First, as shown in Fig 1, in
many scenarios, instead of only mentioning an ob-
ject category (e.g., “Find the bed.”), humans often
provide free-form instructions, either specifying
objects with specific characteristics (e.g., “Find the
bed with the blue mattress next to the window.”),
or expressing their demand without explicitly men-
tioning the object (e.g., “I'm exhausted. I need
to lie down and rest.”). These natural language
instructions may demand open-set objects not in-
cluded in the training vocabulary. In such cases, ex-
isting supervised or reinforcement learning-based
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methods fail to understand these natural language
instructions since they require specific object cat-
egories and were trained to perform close-set ob-
ject detection. Second, due to the data scarcity of
embodied navigation (Gu et al., 2022), these meth-
ods are typically trained on limited datasets that
only cover household environments, which causes
severe overfitting issues and prevents them from
generalizing to unseen and diverse environments,
let alone performing zero-shot navigation.

To address the first challenge, some initial
progress has been made in understanding free-form
natural language instructions with open-set objects.
For instance, demand-driven navigation (DDN)
was proposed by Wang et al. (2023) to map hu-
man instructions to a demand-conditioned attribute
space. However, it is still limited to household
settings and cannot be generalized to various envi-
ronments. Another approach was suggested by Ma-
jumdar et al. (2023), which involves finding objects
with specific attributes and eliminating distractors.
However, it needs 2D occupancy maps and pre-
exploration of the scene in the beginning, which
are unavailable in unseen environments.

On the second challenge, recent years have wit-
nessed progress in Zero-Shot Object Navigation
(ZSON) (Majumdar et al., 2022; Gadre et al., 2023;
Yokoyama et al., 2023; Zhou et al., 2023; Dorbala
et al., 2023; Yu et al., 2023; Shah et al., 2023; Cai
et al., 2023; Liang et al., 2023). However, some
of these works (Majumdar et al., 2022; Yu et al.,
2023; Cai et al., 2023) require data to train spe-
cific modules such as locomotion planning, and
hence are not real “Zero-Shot”. More importantly,
these methods cannot conduct explicit and compre-
hensive reasoning on free-form natural language
instructions, leading to their low performance and
preventing them from being applied to many down-
stream robotic tasks.

To better address the aforementioned two key
challenges, in this paper, we propose OpenFMNav,
a novel framework based on foundation models to
achieve effective open-set zero-shot navigation. To
this end, we utilize foundation models to leverage
their reasoning abilities and generalizability to in-
terpret human instructions and actively explore the
environment. To be more specific, we first lever-
age large language models to extract initially pro-
posed objects from natural language instructions
and merge them with user-defined prior objects
and objects discovered by vision language mod-
els. We then construct an object prompt to detect

and segment objects from the observation image,
leveraging large vision language models. By using
depth images to project the segmentation masks to
the space, we can build a 2D top-down Versatile
Semantic Score Map (VSSM) of the whole scene,
on which we sample frontiers with semantic in-
formation for a large language model to conduct
common sense reasoning and wisely choose fron-
tiers to guide navigation. This way, we can per-
form language-guided exploration and exploitation
of the scene and achieve effective open-set zero-
shot object navigation without prior training on
any household datasets. Moreover, unlike previous
map-based methods such as Zhou et al. (2023); Yu
et al. (2023); Shah et al. (2023); Yokoyama et al.
(2023), the VSSM produced by our method will
keep updating during the navigation, which bet-
ter adapts to changing environments and can be
further used in downstream robotic tasks, such as
multi-goal navigation and mobile manipulation.

We conduct extensive experiments on the HM3D
ObjectNav benchmark (Yadav et al., 2022a). Re-
sults show that our method outperforms the State-
of-the-Art open-set zero-shot object navigation
method (Zhou et al., 2023) by over 15% on success
rate and surpasses all the strong baselines on all
metrics, validating the effectiveness and superior-
ity of our framework. Additionally, our method
has been proven to understand free-form natural
language instructions with open-set objects and
generalize well to real-world environments through
real robot demonstrations.

2 Related Work

2.1 Embodied Navigation

Embodied navigation is a fundamental yet chal-
lenging task in robotics and embodied Al since it
is the precursor to many downstream robotic tasks,
such as object manipulation and teleoperation. In
such scenarios, given a specific goal and egocen-
tric observations, agents are required to move to a
desired location within a maximum timestep.

Due to the importance of embodied navigation,
recent years have witnessed several branches of
navigation tasks with different goal specifications.
For instance, point goal navigation (PointNav) (Wi-
jmans et al., 2019; Savva et al., 2019) uses point
coordinates in the space as the goal; image goal
navigation (ImageNav) (Chaplot et al., 2020b; Savi-
nov et al., 2018) requires the agent to move where
the given image is taken; and vision-language nav-
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Figure 2: The framework of our proposed OpenFMNav. Based on the natural language instruction and observations,
we utilize foundation models to interpret human instructions and construct a Versatile Semantic Score Map (VSSM),
on which we perform common sense reasoning and scoring to conduct language-guided frontier-based exploration.

igation (VLN) (Anderson et al., 2018; Ku et al.,
2020) requires the agent to follow step-by-step in-
structions to reach the location; and in object navi-
gation (ObjectNav) (Batra et al., 2020), the agent
is required to find objects of specified categories.

Compared to vision-language navigation (VLN),
which offers detailed and step-by-step instructions
and requires an agent to strictly follow the trajecto-
ries conditioned by step-by-step instructions, object
navigation (ObjectNav) is particularly challenging
since the agent needs to do semantic recognition
to find the goal and needs more efficient explo-
ration than VLN since there are no step-by-step
instructions (Chen et al., 2023). It is also more
common in real life that humans will give am-
biguous demands (Wang et al., 2023) rather than
detailed instructions in VLN. Additionally, many
VLN datasets (Anderson et al., 2018; Ku et al.,
2020) are typically discretized into checker-like
waypoint graphs, which makes it difficult to deploy
algorithms in the real world. Compared to VLN,
ObjectNav is object-centric and continuous so
that it can be easily deployed and extended to many
downstream robotic tasks like object manipulation.

To take a step further, in this paper, we propose a
solution to the problem of open-set-ness in Object-
Nav by introducing a framework that transforms
the paradigm of ObjectNav from given close-set
category names to free-form natural language in-
structions with open-set objects. This transforma-
tion will help bridge the interaction between hu-

mans and embodied agents, making it more useful
in real-world applications. Compared to existing
works (Majumdar et al., 2023; Wang et al., 2023),
our method doesn’t need prior occupancy maps
and pre-exploration in the beginning and thus can
navigate in unseen environments. Furthermore, our
method addresses the overfitting issue in embodied
navigation and easily generalizes to the real world
in a zero-shot manner, enabling intelligent robot
agents to navigate in more diverse environments.

2.2 Zero-Shot Object Navigation

As Gu et al. (2022) elaborates, embodied naviga-
tion faces a severe challenge of data scarcity, lim-
iting the amount and distribution of available data
for training. Methods directly supervised on these
limited data cannot generalize to diverse real-world
environments.

Therefore, recent years have witnessed great
progress in Zero-Shot Object Navigation (ZSON).
Methods proposed by Majumdar et al. (2022);
Gadre et al. (2023); Yokoyama et al. (2023) lever-
age CLIP (Radford et al., 2021) or BLIP-2 (Li et al.,
2023) embedded features to compute similarities
between object goal and input image and construct
an implicit map for certain goal objects to guide
navigation. Other methods, such as those proposed
by Zhou et al. (2023); Dorbala et al. (2023); Yu et al.
(2023); Shah et al. (2023), leverage object detectors
to construct metric maps and use large language
models to conduct reasoning. Cai et al. (2023)
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leverages foundation models to perform basic im-
age processing and trains a locomotion module to
navigate to certain chosen pixel points.

2.3 Foundation Models

Foundation models (Bommasani et al., 2022) are
large-scale models that are pre-trained on vast
amounts of data and can perform general tasks. The
sheer volume of pretraining data endows them with
exceptional generalizability, which allows them to
perform zero-shot inference. Moreover, the exten-
sive training data helps foundation models acquire
common sense about our physical world, making
them ideal for real-world applications.

Foundation models, particularly the large lan-
guage models (LLMs), also have an intriguing fea-
ture — In-Context Learning (ICL) (Dong et al.,
2023). This feature enables these models to follow
pre-defined instructions to ground their output into
certain patterns. By combining ICL with common
sense learned from the large-scale data, foundation
models can effectively perform semantic common
sense reasoning and guesswork to provide intu-
itions of possible exploration directions like human
beings, as illustrated in Zhou et al. (2023); Yu et al.
(2023); Shah et al. (2023). For example, if the
goal is a “toilet”, from common sense it is highly
possible to find it around an area that contains a
“bathtub”.

According to different modalities, foundation
models can be mainly divided into Visual Foun-
dation Models (VEM), such as SAM (Kirillov
et al., 2023), Large Language Models (LLM),
such as GPT-3.5/GPT-4 (Ouyang et al., 2022; Ope-
nAl, 2023) and LLaMA/LLaMA-2 (Touvron et al.,
2023a,b), and Vision Language Models (VLM),
such as GPT-4V (Yang et al., 2023b), CLIP (Rad-
ford et al., 2021), Grounded-SAM (Liu et al., 2023),
etc. There are also foundation models covering
other modalities, such as audio (Yang et al., 2023a)
and video (Xu et al., 2021). In this paper, we use
VLMs and LLMs since our setting only involves
vision and language modalities.

3 Method

3.1 Problem Statement and Method Overview

Problem Statement. As shown in Fig. 1, in an
unfamiliar environment, given a natural language
instruction I, an embodied agent needs to explore
the environment in search of a certain queried ob-
ject. At timestep ¢, the agent is provided with ego-
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centric RGBD observation o; and should output
an action a; such as move_forward, turn_left,
stop, etc. A successful navigation is defined as
finding the queried object within the maximum
navigation timestep.

Method Overview. As shown in Fig. 2, given a
starting point and human instruction I, the agent
first utilizes the ProposeLLLM to propose possible
objects to meet the instruction. At timestep ¢, the
agent can leverage the DiscoverVLM to discover
new objects from the scene and check whether they
can meet the instruction. Along with prior defined
objects and proposal objects, the full object list is
then converted into an object prompt p; for founda-
tion models to reason. Given current RGBD obser-
vation oy, the PerceptVLM will detect and segment
object masks based on py, constructing a Versatile
Semantic Score Map (VSSM) M,, on which possi-
ble exploration frontiers are sampled. Finally, the
ReasonLLLM will conduct common sense reasoning
based on the semantic information of frontiers and
give the next frontier goal G; to explore, which
will be executed by an underlying control policy
to output low-level actions. The whole process is
looped until the object is found or the agent fails.

3.2 Discovery and Perception

Discovery. Given a free-form human instruction
I that may contain open-set objects, we first lever-
age a ProposeLLM to get all possible proposal
objects Oy, that can satisfy the instruction. Each
proposal object contains attributes such as color,
location, etc., to satisfy fine-grained instructions.
At timestep t, given egocentric RGBD and pose
observations o, we propose a DiscoverVLM using
GPT-4V (Yang et al., 2023b) that actively discovers
novel objects Oy;s from the RGB image. Mean-
while, the Discover VLM also conducts reasoning
on the instruction, trying to discover objects that
potentially meet the instruction and update Opy,.
Extracting novel objects from the environment is
essential for open-set navigation since they may
contain scene-specific information that helps to find
the goal. To save time and cost, the DiscoverVLM
is randomly activated by a frequency parameter
O freq-

Perception. After getting proposal objects O,
and discovered objects Og;s, we merge them with
prior objects O,,; to construct an object prompt p;
to feed into our PerceptVLM based on Grounded-
SAM (Liu et al., 2023) to detect and segment all the
appearing objects in p; from the RGB image of o;.



Note that due to the BERT encoder (Devlin et al.,
2019) and powerful SAM backbone (Kirillov et al.,
2023) in the PerceptVLM, it can achieve open-set
object detection in high granularities. This process
will output object masks with confidence scores for
further mapping and reasoning.

3.3 Mapping and Reasoning

Mapping. At timestep ¢, based on the confidence
scores of object masks produced by PerceptVLM
and the depth image and pose in o;, we project
the masks to the top-down 2D space and con-
struct a Versatile Semantic Score Map (VSSM)
M, € REXWx(C+2) ' which contains C channels
of object semantics, and two channels of the oc-
cupied area and explored area, with a resolution
of H x W. Each element in the map is a score in
[0, 1] instead of binary labels. Since we continu-
ously discover novel objects from the environment,
the C is versatile so that we can keep updating the
map, enabling life-long learning and downstream
robotic tasks. Also, instead of filling binary la-
bels into semantic channels, we fill each semantic
channel with confidence scores, with which we can
easily update the map if there is a change in the
environment.

Reasoning. Based on M;, we can sample fron-
tiers { F; } with semantic information in unexplored
areas for further exploration. To choose the next
frontier to explore, we leverage ReasonLLM by
unleashing the power of LLM’s common sense rea-
soning. Specifically, given the semantic informa-
tion around each frontier, we construct a query tem-
plate in the form of “This area contains A, B
and C.”. Combined with the thought 7" produced
by Chain-of-Thought (Wei et al., 2022) prompting
from ProposeLLM and the object prompt p;, the
ReasonLLLM will conduct common sense reason-
ing as in Section 2.3 and rate these frontiers to pick
one frontier goal GG; which is most likely to find
the object goal. This frontier goal G will guide the
agent for further exploration and produce low-level
actions to control the agent.

Instead of directly asking the LLM which fron-
tier to explore for once or multiple times (Shah
et al., 2023), we leverage another reasoning pro-
cess, which prompts the LLM to rate these frontiers
{F;} to scores {S;}, in which S; € [0,1], indi-
cating the likelihood to find the goal. Then, the
frontier with the highest score will be picked out
for further exploration. By leveraging this rating
process, ReasonLLLM can map its common sense

Algorithm 1: Pseudo-Code of the Overall
Algorithm for OpenFMNav

Data: Natural Language Instruction I, Prior Objects
Opri, Discovery Frequency o f,.q, Frontier
Goal Update Interval §
t<+ 0
done < False;
Go, Mo, Ogis < None;
Opro, T < ProposeLLM(I);
while not done do
o < getObservation();
if toDiscover(o freq) then
‘ Oudis, Opro < DiscoverVLM(oy, I);
end
pe + getPrompt(Opro, Odis, Opri);
Masks < PerceptVLM(o, pr);
M <+ semanticMapping(M:—1, Masks, o0¢);
if Opro in M, then
‘ G « getLocation(My, Opro);
else

ift % § == 0 then
{F;} + sampleFrontiers(M);
{S;} + ReasonLLM({F;}, pt, T);
G4 < getLocation(My, argmax({S; }));

else
‘ Gy + Gi—1;
end

end

Opri < updateObj(Opro, Odis, Opri);
ar + FMMPlanner(M;, Gt);

done < stepAction(ay, t);

t+—t+1;

end

to concrete numbers that reflect the actual ranking,
leading to better reasoning. We verified its effec-
tiveness in Section 4.5. It’s also worth mentioning
that to balance exploration and exploitation, Rea-
sonL.LLM is activated at regular timestep intervals
6 to update G¢. At other timesteps, the frontier
goal Gy remains unchanged to fully explore the
previously chosen frontier G;_;.

After obtaining the frontier goal and the oc-
cupancy channel in M;, we utilize a control
policy based on the Fast Marching Method
(FMM) (Sethian, 1999) to output a low-level action
a; to control the agent. This closes the loop and
goes to the next timestep ¢ + 1.

We present the whole process of our OpenFM-
Nav algorithm in Algorithm 1.

4 Experiments

In this section, we evaluate our method comprehen-
sively in simulation to show our method’s effec-
tiveness compared to baseline methods. We also
conducted ablation studies to validate the effective-
ness of our framework design.
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Method Open-Set  Zero-Shot SR (%)1 SPL T

FBE (Gervet et al., 2023) v 23.7 0.123
SemExp (Chaplot et al., 2020a) X X 37.9 0.188
ZSON (Majumdar et al., 2022) v X 25.5 0.126
GoW (Gadre et al., 2023) v v 32.0 0.181
ESC (Zhou et al., 2023) v v 38.5 0.220
L3MVN (Yu et al., 2023) X v 50.4 0.231
L3MVN + GPT-4 (Yu et al., 2023) X v 51.8 0.234
PixNav (Cai et al., 2023) v X 37.9 0.205
OpenFMNav (Ours) v v 54.9 0.244

Table 1: Comparison between different methods on the HM3D ObjectNav benchmark. Our method outperforms all
the baseline methods on all metrics and achieves open-set zero-shot object navigation.

4.1 Experimental Setup

In the simulation, we evaluate on the HM3D Ob-
jectNav benchmark based on the Habitat Matter-
port 3D Semantics Dataset (Yadav et al., 2022b),
which contains 80 train scenes and 20 validation
scenes. We utilize the validation scenes for evalua-
tion. There are, in total, 2000 episodes and six goal
classes (chair, couch, potted plant, bed, toilet, and
tv) in the dataset. The action space of the robot
agent is {stop, move_forward, turn_left,
turn_right, look_up, look_down}. The for-
ward distance is set to 0.25m, and the rotation angle
is set to 30 degrees.

Following previous works (Zhou et al., 2023;
Cai et al., 2023), we utilize Success Rate (SR)
metric to measure whether an agent can find our
desired objects. We also report results of Success
weighted by Path Length (SPL) to measure the
navigation efficiency.

4.2 Implementation Details

In our method, the foundation models we use
are: GPT-4 (text-only) (OpenAl, 2023) for Pro-
poseLLM and ReasonLLM, and GPT-4V (Yang
et al., 2023b) for DiscoverVLM. For PerceptVLM,
we utilize Grounded-SAM, which first leverages
Grounding DINO (Liu et al., 2023) to produce
bounding boxes given the RGB image in o; and
object prompt p;, and then leverages Segment Any-
thing Model (SAM) (Kirillov et al., 2023) for each
bounding box to produce high-granularity object
masks for semantic mapping.

Moreover, we utilize the Chain-of-Thought
(CoT) (Wei et al., 2022) prompting technique to
fully exploit the reasoning abilities of ProposeLLM,
ReasonLLM and DiscoverVLM. The prompts we
used can be found in Appendix C.

In the simulation, we set the update interval ¢
to 20 timesteps, discovery frequency o f.¢4 to 0.01,
and the initial prior objects to a subset of HM3D ob-
ject categories, which can be found in Appendix B.

4.3 Baseline Methods

We compare our method with several recent works,
with a focus on open-set and zero-shot object nav-
igation baselines to verify our framework’s effec-
tiveness. We classify these baseline methods into
“Open-Set” and “Zero-Shot” or not. Here, we define
“Open-Set” as that the method can find whatever
object category we want, and define “Zero-Shot”
as that the agent hasn’t been trained or finetuned
on any of the data previously, including images,
episodes, and locomotion planning. The baseline
methods are as follows:

* FBE (Gervet et al., 2023). This baseline
method employs a classical robotics pipeline
for mapping and a frontier-based exploration
algorithm.

* SemExp (Chaplot et al., 2020a). A method
that explores and searches for the target using
close-set semantic maps and reinforcement
learning.

e ZSON (Majumdar et al., 2022). An RGB-
based zero-shot object navigation baseline us-
ing CLIP (Radford et al., 2021) to embed
scene features. It is trained on ImageNav and
directly transferred to ObjectNav.

* GoW (Gadre et al., 2023). A modification
of CoW (Gadre et al., 2023) implemented
by Zhou et al. (2023) that uses GLIP (Li*
et al.,, 2022) for object detection and the
vanilla fronter-based exploration method.
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Method SR (%)1 SPL1
w/o GPT-4 53.6 0.230
w/o CoT 51.8 0.208
w/o Discovery 50.0 0.222
w/o Scoring 50.0 0.208
Ours 554 0.239

Table 2: Ablation studies on different components of
our method. Experiments are conducted under the same
uniformly sampled episodes.

e ESC (Zhou et al., 2023). A map-based
zero-shot object navigation baseline that uses
GLIP (Li* et al., 2022) to detect objects and
rooms, and combines LLM with soft common-
sense constraints for planning.

e L3MVN (Yu et al., 2023). An LLM-based
baseline that finetunes a close-set object detec-
tor (Jiang et al., 2018) and an LLM to conduct
frontier-based exploration. We also conduct
experiments that replace its LLM with GPT-4
for fairer comparisons.

¢ PixNav (Cai et al., 2023). A recent work that
solely uses foundation models to pick out nav-
igation pixels and trains a locomotion module
to navigate to chosen pixels.

4.4 Results and Analysis

We report the main results in Table 1. Our method
surpasses all the baselines on both Success Rate
(SR) and Success weighted by Path Length (SPL),
especially compared with open-set zero-shot meth-
ods. Our method surpasses the previous State-of-
the-Art method on open-set zero-shot object nav-
igation (Zhou et al., 2023) by over 15% on the
success rate metric, suggesting that our framework
is indeed effective.

First, we compare our method with previous se-
mantic map based methods, such as SemExp (Chap-
lot et al., 2020a), ESC (Zhou et al., 2023) and
L3MVN (Yu et al., 2023). The results show that
our method performs better since we utilize Dis-
coverVLM to construct VSSM with versatile out-
of-vocabulary class labels, such as “marble statue”
and “range hood”, which helps to alleviate the is-
sue of limited categories and enriches the semantic
information of the environment. Also, compared to
these methods, our method achieves open-set navi-
gation, which better adapts to complex situations
and real-world applications.
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Figure 3: Types and percentages of failure cases in
ablation methods.

Compared with other open-set baselines, such as
PixNav (Cai et al., 2023), ZSON (Majumdar et al.,
2022) and GoW (Gadre et al., 2023), our method
constructs an explicit map where all discovered ob-
jects are presented. Therefore, we can boost LLMs’
reasoning abilities to balance between exploration
and exploitation and make the agent move to where
the goal is most likely to be. Also, the map con-
structed by our method is maintained and updated,
which is perfect for life-long learning, enabling
downstream robotic tasks with further natural lan-
guage instructions, while methods like Gadre et al.
(2023); Yokoyama et al. (2023) only construct im-
plicit maps for a certain goal, which is useless after
the navigation.

4.5 Ablation Studies

Probing deeper into our method design, we also
performed ablation studies on various components
of our pipeline. Note that to save time and cost,
we test all the ablation methods on a subset of
the full dataset under the same uniformly sampled
episodes so that there can be slight differences in
the result of our method. Table 2 shows that modi-
fying multiple components of our framework leads
to significantly worse performance. We also cat-
egorized the failure cases into different types and
report their percentages in Fig. 3, in which Colli-
sion refers to the situation where the agent cannot
avoid colliding with the environment, Exploration
means the agent times out while trying to find the
goal, and Detection means the agent mistakenly
identifies a wrong object as the goal.

Effectiveness of using larger models. First, we
analyze the usage of GPT-4 for LLMs. Compared
to only using GPT-3.5, using larger GPT-4 achieves
better performance (+1.8%), reducing failure cases
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indicates a need related to hand washing.
‘Common objects associated with hand
washing in an indoor environment

output "robot arm". \ l
Opro: [robot arm] include a sink, soap, and a towel for
drying hands. I will list these objects.

Opro: [sink, soap, towel]

printer, ProposeLLM

keyboard, tap]

Ogis: [cart, cables, button]

PerceptVLM -

(b) Robust to open-set objects

DiscoverVLM

ProposeLLM
DiscoverVLM

Opyo: [sink, soap, towel, tap) |}
Ogis: [3D printer, keyboard] {#
Opyi: [cabinet, desk...]

PerceptVLM -

(c) Robust to free-form demands

Figure 4: Qualitative studies in the real world. Text marked in red indicates objects that potentially satisfy the
instruction. Results show that our method is robust to natural language instructions, including distractors, open-set

objects and free-form demands.

of Collision and Detection. However, the percent-
age of Exploration is slightly higher, showing that
larger models have more diverse answers that en-
courage more exploration, which potentially causes
more time out.

Effectiveness of our joint reasoning pipeline.
Then, we analyze different foundation model com-
ponents. We found that using CoT prompting
(+3.6%) and scoring prompting (+5.4%) are es-
sential to the strong performance of OpenFMNav
since they generate more reasoning chains that
elicit the common sense of large language mod-
els. Also, compared to restricting the object set,
leveraging Discover VLM not only enables more
free-form natural language instructions from users’
input but also enriches the scene’s semantics, which
helps the reasoning for frontier-based exploration
and improves performance (+5.4%). These efforts
reduce failure cases of all categories.

5 Navigation in the Real World

We further conduct real robot demonstrations to
show our method’s ability to understand free-form
natural language instructions and perform open-set
zero-shot navigation in the real world.

5.1 Real Robot Setup

For robots, we use a TurtleBot4 robot with scal-
able structures to navigate on the ground. We
limit its action space to {stop, move_forward,
turn_left, turn_right}. As in the simulation,
we set the forward distance to 0.25m and the rota-
tion angle to 30 degrees. For robotic perception,
we use a Kinect RGBD camera to capture RGBD
images.

For real-world environments, we select multi-

ple rooms (including offices, labs, and meeting
rooms) with sufficient space and various objects
for the robot to navigate. These rooms contain not
only common objects like “chair”, “couch”, “desk”,
“computer”, “cabinet”, etc., but also less common
ones like “robot arm”, “3D printer”, “coffee ma-

chines”, etc.

5.2 Qualitative Studies

We conduct qualitative studies on our OpenFM-
Nav in the real world, as shown in Fig. 4. The
results show that our method can perform effective
zero-shot navigation in the real world given free-
form natural language instructions. Especially, our
method is robust to distractors, open-set objects
and free-form demands.

For distractors, rather than object categories, our
proposed ProposeLLLM can extract the attributes
in the instruction (“red chair”), which can be fur-
ther detected and segmented by PerceptVLM. In
Fig. 4(a), we can see that, among the three chairs
in the observation, only the red chair is masked.

For open-set objects, due to the large-scale train-
ing data of foundation models, our method can also
navigate to objects that are uncommon and out-of-
vocabulary, such as the “robot arm” in Fig. 4(b).

Another intriguing feature of our method is that
our method can adaptively add up goals in the navi-
gation. This happens when the instruction is a free-
form demand for ambiguous objects. For example,
in Fig. 4(c), when the user needs to wash hands,
the ProposeLLM first proposed “sink”, “soap” and
“towel”, but they are not necessarily present in the
scene. When the agent explores the environment,
the DiscoverVLM can actively discover what’s new
in the environment and reason about whether they
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can potentially fulfill the user’s demand. In this
case, a “tap” is discovered and identified as a goal
so that the agent can directly navigate to it without
further exploration. This is extremely helpful when
the humans are also unaware of the scene details.

6 Conclusions

In this paper, we presented a novel framework,
OpenFMNav, for open-set zero-shot object naviga-
tion. By leveraging foundation models, our method
could understand free-form natural language in-
structions, conduct reasoning, and perform effec-
tive zero-shot object navigation. Extensive exper-
iments showed the superiority of our framework.
Finally, we conducted real robot demonstrations to
validate our method’s open-set-ness and generaliz-
ability to real-world environments.

Ethics Statement

In this paper, we present a method for open-set
zero-shot object navigation. This method can be
used for zero-shot robotic navigation in diverse
scenarios, such as home robots, warehouse robots,
and so on. Our work further addresses the issue of
ambiguous or free-form natural language instruc-
tions, benefitting the interaction between humans
and robots. However, foundation models can have
safety issues and risks such as privacy leaks and
jailbreaking (Deng et al., 2023; Chao et al., 2023),
which need to be further addressed.

Limitations

While extensive experiments validate the effective-
ness of our method design, there exist a number of
limitations in our work. First, our method requires
relatively accurate depth sensors to build the 2D
map, while the observed depths and camera poses
may have much noise in reality, causing perfor-
mance degradation. Moreover, we acknowledge
that our method requires stable Internet connec-
tions to get responses from APIs of foundation
models, limiting the potential of large-scale deploy-
ment in harsh environments. Another limitation is
that the use of LLMs may not always be real-time,
which can cause latency issues. We hope future
works on depth sensing, LLM quantization, and
edge computing can mitigate such limitations.
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A API Usage

Model Name API Name
ProposeLLM gpt-4-1106-preview
DiscoverVLM  gpt-4-vision-preview
ReasonLLM gpt-4-1106-preview

Table 3: API usage

B Hyperparameters

Parameter Value
Discovery Frequency o ;.4 0.01
Frontier Goal Update Interval ¢ 20
Confidence Score Threshold 0.55
LLM/VLM Temperature 0
Initial Prior Objects Opy; See Fig. 5

Table 4: Hyperparameters

chair, bed, plant, toilet, tv, couch, desk,
refrigerator, sink, bathtub, shower, towel,
painting, trashcan, stairs

Figure 5: Initial prior objects Op,;
C Prompts and Examples

Below we show prompts and examples of LLM
input/output.

C.1 Prompts for ProposeLLM
The prompts for ReasonL.LM are shown in Fig. 6.

KYSTEM_PROMPT:"""YOU are an intelligent embodied agent callm

ProposeLLM that follows an instruction to navigate in a real indoor

environment. Your goal is to propose a list of objects that can
satisfy the user's need.

You are firstly given an instruction that indicates the user's need.

If the instruction contains a specific goal object, like "go to the
bed" or "find the red bottle", you should directly output the goal
object with its possible attributes, like "bed" or "red bottle".

Otherwise, if the instruction is more general, like "I'm so
thirsty", you should inference via common sense which objects are
feasible and output a list of objects that can satisfy the user's
need, like "bottle", "cup", "refrigerator", etc.

Notice that your output should be a 1list of objects with their
possible attributes, even if there 1is only one object in the
list."

USER1="""go to the bed"""

ASSISTANT1="""Thought: The instruction contains a specific object
goal, so I will directly output "bed".

Answer: ["bed"]"""

USER2="""I have been standing for hours. I need some place to sit
down and rest."""

ASSISTANT2="""Thought: The instruction is quite general, so I will
use my common sense. The user needs some place to sit down, so

candidate objects in an indoor scene can be chair, couch, etc. I
will output a list of these objects.

&nswer: ["chair", "couch"]""" /

Figure 6: Prompts for ProposeLLM
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C.2 Prompts for Discover VLM
The prompts for ReasonLLM are shown in Fig. 7.

Figure 7: Prompts for DiscoverVLM

C.3 Prompts for PerceptVLM

For PerceptVLM, given the current object list,
we use dots to separate each object as the object
prompt p;.

For example, if the object list is [chair, bed,
plant, toilet, tv, couch], the object prompt
is “chair.bed.plant.toilet.tv.couch”.

C.4 Prompts for ReasonLL.M
The prompts for ReasonLLLM are shown in Fig. 8.
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Figure 8: Prompts for ReasonLLM
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