
Findings of the Association for Computational Linguistics: ACL 2024, pages 13333–13348
August 11-16, 2024 ©2024 Association for Computational Linguistics

SecFormer: Fast and Accurate Privacy-Preserving Inference for
Transformer Models via SMPC

Jinglong Luo1,2 Yehong Zhang2,* Zhuo Zhang1,2 Jiaqi Zhang2 Xin Mu2

Hui Wang2 Yue Yu2 Zenglin Xu1,2,∗
1Harbin Institute of Technology, Shenzhen 2Peng Cheng Laboratory, Shenzhen, China
{luojl, zhangyh02, zhangjq02, mux, wangh06, yuy}@pcl.ac.cn,

{iezhuo17, zenglin}@gmail.com

Abstract

With the growing use of Transformer models
hosted on cloud platforms to offer inference
services, privacy concerns are escalating, es-
pecially concerning sensitive data like invest-
ment plans and bank account details. Secure
Multi-Party Computing (SMPC) emerges as a
promising solution to protect the privacy of in-
ference data and model parameters. However,
the application of SMPC in Privacy-Preserving
Inference (PPI) for Transformer models often
leads to considerable slowdowns or declines
in performance. This is largely due to the
multitude of nonlinear operations in the Trans-
former architecture, which are not well-suited
to SMPC and difficult to circumvent or op-
timize effectively. To address this concern,
we introduce a comprehensive PPI framework
called SecFormer to achieve fast and accu-
rate PPI for Transformer models. We success-
fully eliminate the high-cost exponential and
maximum operations in PPI without sacrific-
ing model performance and develop a suite of
efficient SMPC protocols by employing suit-
able numerical computation methods to boost
other complex nonlinear functions in PPI, in-
cluding GeLU, LayerNorm, and a redesigned
Softmax. Our extensive experiments reveal
that SecFormer outperforms MPCFormer in
performance, showing improvements of 3.4%
and 24.7% for BERTBASE and BERTLARGE, re-
spectively. In terms of efficiency, SecFormer
is 3.57 and 3.58 times faster than PUMA for
BERTBASE and BERTLARGE, demonstrating its
effectiveness and speed. The code is available
by clicking here.

1 Introduction

Transformer models (Vaswani et al., 2017; Devlin
et al., 2019; Radford et al., 2019; Brown et al.,
2020; Raffel et al., 2020; Liu et al., 2019; Lewis
et al., 2020; Zeng et al., 2021; Ouyang et al.,

*Corresponding author

Softmax

GeLU

LayerNorm Others

54%

23%

10% 13%

(a) Runtime Breakdown

BERTBASE BERTLARGE
Models

0

20

40

60

80

100

120

Pe
rfo

rm
an

ce
 (%

)

79.7 82.1
75.9 79.6

48
36.7

(b) Performance Influence of GeLU & Softmax
GeLU+Softmax
GeLU+2Quad
Quad+2Quad

Figure 1: (a) Runtime breakdown of the BERTBASE
model (12 layers, 512 tokens) based on an SMPC li-
brary. The total runtime for an example is 71 seconds.
(b) Influence of different activation functions on model
performance.

2022; OpenAI, 2023) demonstrate exceptional per-
formance across diverse downstream tasks (Chan
et al., 2024; Jiayang et al., 2023; Lu et al., 2019;
Zhang et al., 2020; Lu et al., 2020; Liu et al.,
2020; Zhang et al., 2023c; Wang et al., 2023) and
are extensively employed in a Model-as-a-Service
(MaaS) paradigm to deliver high-quality inference
services to clients. However, this MaaS framework
poses a significant privacy risk (Li et al., 2023b,c,d,
2024; Zhang et al., 2024b; Zhang and Zhu, 2020)
for inference data and model parameters. For in-
stance, both Copilot1 and ChatGPT2, which are
Transformer-based services, necessitate users to
upload plaintext requests. This operational pro-
cedure not only poses a threat to users’ privacy
but also probably contravenes relevant legal regu-
lations such as the EU’s General Data Protection
Regulation (GDPR)3.

Secure Multi-Party Computation (SMPC)
(Shamir, 1979; Yao, 1986; Goldreich et al., 1987),
has demonstrated great potential in safeguarding
the privacy of both inference data and model
weights (Gilad-Bachrach et al., 2016; Liu et al.,
2017; Mishra et al., 2020; Rathee et al., 2021;
Huang et al., 2022; Luo et al., 2023; Zhang et al.,

1https://github.com/features/copilot
2https://chat.openai.com
3https://gdpr-info.eu/

13333

https://github.com/jinglong696/SecFormer

2023a, 2024a). However, conducting Privacy-
Preserving Inference (PPI)4 for Transformer
models using SMPC proves to be notably slow. To
illustrate, BERTBASE (Devlin et al., 2019) takes 71
seconds to inference per sample via SMPC, while
plain-text inference takes less than 1 second.

This inefficiency stems from the limitations of
current SMPC protocols in executing nonlinear op-
erations in Transformer models (Section 2.2). As
depicted in Fig. 1(a), we find that Softmax and
GeLU, which account for a small share of the plain-
text inference overhead, take up 77.03% of the time
in PPI. This observation aligns with findings in
Wang et al. (2022); Li et al. (2023a). In an effort to
mitigate this, Li et al. (2023a) redesigned the Trans-
former model by substituting Softmax and GeLU
with some SMPC friendly quadratics, bypassing
the privacy-preserving computations of the non-
linear operations (i.e., erf, exponential, and maxi-
mum) in Softmax and GeLU. This aggressive sub-
stitution significantly enhances PPI efficiency, but
unfortunately, substantially diminishes the model’s
performance and is not scalable to larger models
(Fig. 1(b)). Some other studies (Dong et al., 2023)
tried to boost the PPI by designing more efficient
SMPC protocols, which can preserve the model
performance but still face expensive PPI overhead.

In this study, we present a comprehensive PPI
framework named SecFormer, tailed to achieve
fast and accurate PPI for Transformer models by
exploiting the superiorities of both Transformer
model and SMPC protocol designs. Our investiga-
tion reveals that preserving accurate computation
of GeLU significantly improves PPI performance
(Fig. 1(b)). Building on this insight, SecFormer
implements model design to bypass the expensive
nonlinear PPI operations such as exponential and
maximum in Softmax (Section 3.1). This adap-
tation, coupled with the strategic use of knowl-
edge distillation, allows SecFormer to construct a
Transformer model that is both high-performing
and compatible with SMPC. To further enhance the
PPI performance, we turn to protocol design and
develop a suite of efficient SMPC protocols that
utilize suitable numerical calculation methods to
handle other complex nonlinear functions in PPI,
such as GeLU, LayerNorm, and the redesigned
Softmax (Section 3.2). To be specific, SecFormer
introduces a novel SMPC protocol for GeLU based

4Without confusion, we refer to SMPC-based PPI as PPI
for short in this paper .

on segmented polynomials and Fourier series, facil-
itating efficient and accurate computation of GeLU.
In addition, SecFormer deploys efficient privacy-
preserving square-root inverse and division calcu-
lation for LayerNorm and Softmax using the Gold-
schmidt method (Goldschmidt, 1964; Markstein,
2004), coupled with input deflation techniques to
bypass the nonlinear initial-value computation.

We conducted extensive evaluations of Sec-
Former on various datasets using Transformer mod-
els BERTBASE and BERTLARGE. The experimen-
tal results reveal that SecFormer achieves an aver-
age performance improvement of 3.4% and 24.7%
for BERTBASE and BERTLARGE, respectively, com-
pared to the state-of-the-art approach based on pure
model design (Section 4.2), while maintaining com-
parable efficiency. In comparison to the approach
that only improves the SMPC protocols, SecFormer
exhibits a speedup of 3.57 and 3.58 times in PPI
(Section 4.3), while sustaining comparable PPI per-
formance.

2 Background and Related Works

2.1 Workflow of SMPC-based Model
Inference

Secure Multi-Party Computation (SMPC) is a cryp-
tographic technique that offers a promising solu-
tion for model Privacy-Preserving Inference (PPI)
among multiple participants (Gilad-Bachrach et al.,
2016; Liu et al., 2017; Mishra et al., 2020; Rathee
et al., 2021; Huang et al., 2022). Typically, partici-
pants adhere to cryptographic primitives like secret
sharing (Shamir, 1979; Goldreich et al., 1987) to
safeguard the model weights and inference data.
This paper mainly introduces the 2-out-of-2 secret
sharing scheme due to its efficiency and represen-
tativeness. Specifically, the 2-out-of-2 secret shar-
ing divides a secret x in the ring of integers ZL

into two random shares [[x]] = ([x]0, [x]1) with
x = (([x]0 + [x]1) mod L), ensuring that neither
share reveals information about x while allowing
correct reconstruction of x when the two shares
are combined. In constructing the SMPC proto-
cols, the shares are owned by two distinct partici-
pants. They communicate the masked intermediate
results to each other to accomplish the privacy-
preserving computation of different functions and
get the shares of the computational results.

The PPI workflow leveraging 2-out-of-2 secret
sharing is depicted in Fig. 2. It involves three
essential stakeholders: a model inference service

13334

Model Inference Service Provider
model weight

Client

 ① share0 of
 model weight

inference data

share0 of ②
inference data

inference result

 share
0 of

inference result

 s

ha
re 1

of

inf
ere

nc
e r

es
ult

 sh

are
0

of

 ra
nd

om
 nm

be
rs

 share1
 of

 random
 nm

bers

SMPC Engine

① share1 of
model weight

share1 of ②
inference data

③

Computing Server S0

Computing Server S1

Assistant
Server T

③

④

④

⑤

Figure 2: Workflow of PPI based on secret sharing.

provider that needs to protect model weights, a
client that needs to protect inference data, and
an SMPC engine that performs model PPI. The
SMPC engine contains three non-colluding servers
(i.e., participants): two computing servers Sj for
j ∈ {0, 1} for shares computation of PPI and an
assistant server T for generating random numbers
needed to execute the SMPC protocols. Initially,
the service provider and client securely transmit the
shares of model weights and inference data to S0

and S1, respectively (1⃝ and 2⃝). Subsequently, the
computing servers utilize these shares as input and
complete PPI by executing the SMPC protocols
through interactive computation with the assistance
of T , yielding the shares of the inference results.
(3⃝). These shares are then relayed to the client
(4⃝), facilitating the local reconstruction of the in-
ference result (5⃝). Since each participant has only
one share of the inputs, outputs, or intermediate re-
sults, this PPI workflow can guarantee the privacy
of model weights and inference data.

2.2 Main Bottlenecks of SMPC-based
Transformer Model Inference

Although the above PPI workflow guarantees the
privacy of model weights and inference data, it
faces unacceptable communication overhead (Ta-
ble 1) in implementing some of the nonlinear op-
erations (i.e., Softmax, GeLU, and LayerNorm),
which are abundantly present in Transformer mod-
els and become a main bottleneck in PPI.

Specifically, for a vector x = (x1, x2, . . . , xn),
Softmax in Transformer converts it to an n-
dimensional probability distribution with

Softmax(x)[i] =
exi−τ

∑n
h=1 e

xh−τ
, (1)

where τ = maxnh=1 xh is used to ensure stable
numerical computations. As indicated in Table 1,
there are three obstacles to the SMPC of Softmax:
exponential, division, and maximum. Note that the

calculation of maximum needs to call ΠLT opera-
tion logn times (Knott et al., 2021) and becomes
the biggest obstacle.

Notation Input Output Comm Round Comm Volume (bit)
ΠAdd ([[x]], [[y]]) [[x+ y]] 0 0
ΠSin [[x]] [[sin(x)]] 1 42
ΠSquare [[x]] [[x2]] 1 128
ΠMul ([[x]], [[y]]) [[xy]] 1 256
ΠMatMul ([[X]], [[Y]]) [[XY]] 1 256n2

ΠLT ([[x]], c) [[(x < c)]] 7 3456
ΠExp [[x]] [[ex]] 8 1024
ΠrSqrt [[x]] [[

√
x]] 9 + 3t 6400

ΠDiv [[x]] [[1/x]] 16 + 2t 10368

Table 1: SMPC protocols from Knott et al. (2021);
Zheng et al. (2023b). t is the number of Newton itera-
tions for implementing the protocol; n is the dimension
of the matrix. These protocols are invoked in a black-
box manner in this paper. The details are provided in
Appendix E.

The function of GeLU is defined as

GeLU(x) =
x

2

(
1 + erf(

x√
2
)
)
, (2)

where erf(x) = 2√
π

∫ x
0 e−t2dt. The GeLU func-

tion’s nonlinear component is derived from the erf
and there is currently no SMPC protocol for its
privacy-preserving computation.

Given a vector x = (x1, x2, . . . , xn), the Layer-
Norm function is defined as

LayerNorm(x) = γ · x− x̄√
var(x) + ϵ

+ β, (3)

where x̄ =
∑n

h=1 xh/n, var(x) =
∑n

h=1(xh −
x̄)2, γ and β are two learnable parameters, and
ϵ is a very small decimal used to prevent the de-
nominator from being zero. For SMPC, the main
bottleneck in computing LayerNorm comes from
the division and square root operations.

2.3 Efficient PPI for Transformer Models
To alleviate the aforementioned bottlenecks, ex-
isting works on PPI for Transformer models im-
prove the efficiency through either model design
or SMPC protocol design. The studies based on
model design (Chen et al., 2022; Li et al., 2023a;
Zeng et al., 2022; Zhang et al., 2023b; Liang et al.,
2023) bypass the high overhead operations in PPI
by replacing the SMPC-unfriendly nonlinear oper-
ations in Transformer. These schemes substantially
increase efficiency but usually lead to a significant
degradation in model performance. The studies
that design more efficient SMPC protocols (Hao
et al., 2022; Zheng et al., 2023a; Gupta et al., 2023;
Dong et al., 2023; Hou et al., 2023; Ding et al.,

13335

2023; Pang et al., 2023) improve the efficiency of
PPI by customizing efficient SMPC protocols for
the nonlinear operators in the Transformer. These
schemes preserve the Transformer model’s perfor-
mance but still face expensive computational and
communication overheads.

As a representative work based on model design,
Li et al. (2023a) improves the efficiency of PPI
by replacing GeLU and Softmax with Quad =
0.125x2 + 0.25x+ 0.5 and

2Quad(x)[i] =
(xi + c)2∑n
h=1(xh + c)2

, (4)

respectively, such that the privacy-preserving com-
putation of erf, exponential, and maximum is by-
passed. Following this, knowledge distillation is
employed, with the fine-tuned Transformer model
acting as the teacher and the approximate Trans-
former model as the student. Distillation is carried
out on downstream task data, yielding a Trans-
former model compatible with SMPC. This ap-
proach is effective in improving the efficiency of
PPI, however, it leads to a significant decrease in
model performance. Our investigation reveals that
preserving accurate computation of GeLU signif-
icantly improves PPI performance. Dong et al.
(2023) achieves the first SMPC protocol for GeLU
functions by utilizing segmented functions and
polynomial fitting. However, the computation of
segmented functions and polynomials requires mul-
tiple calls of ΠLT and ΠMul, making it inefficient.

3 SecFormer Framework

As discussed above, existing efficient PPI studies
suffer from either performance degradation or high
inference overhead. To resolve this issue, the Sec-
Former framework is proposed in this section. We
begin with an overview of SecFormer in Section 3.1
and introduce the new efficient SMPC protocols for
GeLU, LayerNorm, and Softmax in Section 3.2.

3.1 Overview

SecFormer enhances the efficiency of PPI for Trans-
former models, addressing both model and SMPC
protocol design. The overall depiction of Sec-
Former is presented in Fig. 3.

In the model design phase, SecFormer imple-
ments new strategies to bypass the nonlinear opera-
tions with the high overhead in PPI, such as expo-
nential and maximum in Softmax, while preserv-
ing model performance. Specifically, SecFormer

replaces Softmax with 2Quad while retaining the
accurate computation of the GeLU. Inspired by (Li
et al., 2023a), SecFormer further improves the per-
formance of PPI inference by incorporating knowl-
edge distillation techniques.

In the SMPC protocol design phase, SecFormer
introduces a suite of efficient SMPC protocols
by utilizing appropriate numerical computation
methods. Specifically, SecFormer introduces a
novel SMPC protocol for GeLU based on seg-
mented polynomials and Fourier series, which fa-
cilitates the efficient and accurate computation of
GeLU. Subsequently, SecFormer deploys stream-
lined privacy-preserving calculation for square-root
inverse and division using the Goldschmidt method
(Goldschmidt, 1964; Markstein, 2004), coupled
with input deflation techniques to eliminate the
need for nonlinear initial-value computation.

3.2 SMPC Protocols of SecFormer
We next present new efficient SMPC protocols of
GeLU, LayerNorm, and the approximated Softmax
designed in SecFormer. These algorithms’ security
proofs and communication complexity analysis are
presented in Appendix D.

Protocol for GeLU. To address the efficiency
challenges of GeLU private computations (Sec-
tion 2.2), some studies replaced GeLU in (2) with
its SMPC-friendly alternatives such as ReLU (Zeng
et al., 2022) or quadratics (Li et al., 2023a). Al-
though this approach can enhance PPI efficiency, it
may result in irreversible performance losses. Dong
et al. (2023) introduces the first SMPC protocol for
GeLU using segmented functions and polynomial
fitting whose computation, however, entails multi-
ple calls of ΠLT and ΠMul, rendering it inefficient.

To solve the above problems, we design an effi-
cient SMPC protocol ΠGeLU based on segmented
polynomials and Fourier series. As shown in Fig. 4,
the erf function is an odd function symmetric
about the origin with limx→∞ erf(x) = 1 and
limx→−∞ erf(x) = −1. Therefore, we can con-
vert it to the following segmented function

erf(x) ≈





− 1, x < −1.7

f(x), −1.7 ≤ x ≤ 1.7

1, x > 1.7

, (5)

where f(x) can be approximated through a Fourier
series composed of sine functions with a period5 of

5The results of the sine function fitting for different periods
are shown in Appendix F.

13336

LayerNorm LayerNorm

  Q

  K

  V

GeLUQuad2 LayerNorm

GeLUMatMul SoftmaxMatMul MatMul
Q

K

V

 SMPC Friendly Attention

 Self-attention

MatMul

MatMul MatMul MatMul MatMul MatMulLayerNorm GeLUQuad2 LayerNorm

 SMPC Feed Forward

 Feed Forward

MatMul MatMulHidden
State

Shares of
Hidden State

Figure 3: An illustration of our proposed SecFormer framework. In the model design phase, SecFormer
substitutes Softmax with 2Quad to obtain an SMPC-friendly model while preserving model performance. In the
SMPC protocol design stage, SecFormer improves the efficiency of the main bottlenecks in PPI for Transformer
models, i.e., GeLU, LayerNorm, and 2Quad.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x

0

2

4

6

8

10

y

(a) GeLU
GeLU
PP-GeLU

1.5 1.0 0.5 0.0 0.5 1.0 1.5

x
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

(b) erf
erf
PP-erf

Figure 4: Fitting results of GeLU and erf functions.

20. Although a greater number of terms enhances
the accuracy of the fitting outcomes, it concurrently
leads to increased communication overhead. Here,
we employ the following 7-term Fourier series:

f(x) = β ⊙ sin(k ⊙ πx/10), (6)

where k = (1, 2, 3, 4, 5, 6, 7), β is the Fourier se-
ries coefficients and ⊙ denotes the element-wise
multiplication. For i = 1, 2, . . . , 7,

βi =
1

10

∫ 10

−10
erf(x) sin(

kiπx

10
)dx . (7)

According to Eq. (7), we can compute the co-
efficients β = (1.25772, −0.0299154, 0.382155,
−0.0519123, 0.196033,−0.0624557, 0.118029).

Based on (5), the computation of the erf func-
tion is converted into comparison and sine function.
The precise calculation of GeLU can be accom-
plished by combining ΠMul with the erf function.
The specific steps of the SMPC protocol for GeLU
are shown in Algorithm 1. Specifically, in steps 1-5
of Algorithm 1, we determine in which interval of
the segmented function the input x falls by calling
the ΠLT . Then, in step 7, the privacy-preserving
computation of f(x) is achieved by utilizing the
Πsin presented in (Zheng et al., 2023b). The al-
gorithm requires only 1 round of communication,

Algorithm 1: SMPC Protocol for ΠGeLU

Input: For j ∈ {0, 1}, Sj holds the shares [x]j .
Output: For j ∈ {0, 1}, Sj returns the shares [y]j

with y = GeLU(x).
/* Determine the input interval */

1 [[c0]] = ΠLT ([[x]],−1.7) // (x < −1.7)
2 [[c1]] = ΠLT ([[x]], 1.7) // (x < 1.7)
3 [[z0]] = [[c0]] // (x < −1.7)
4 [[z1]] = [[c1]]− [[z0]] // (−1.7 ≤ x ≤ 1.7)
5 [[z2]] = 1− [[c1]] // (x > 1.7)
/* Compute f(x√

2
) */

6 [[x̂]] = 1√
2
[[x]]

7 [[f(x̂)]] = β ⊙Πsin(k ⊙ π[[x]]/10)

/* Compute erf(x̂)) */
8 [[erf(x̂)]] = [[z0]] + ΠMul([[z1]], [[f(x̂)]]) + [[z2]]
/* Compute GeLU(x) */

9 [[y′]] = 1 + [[erf(x̂))]]
10 [[y]] = ΠMul([[

x
2
]], [[y′]])

and the specific steps of it is in Appendix E.2. In
steps 8-10, we compute the erf function and exe-
cute the GeLU calculation by invoking ΠMul.

Protocol for LayerNorm. Previous work (Knott
et al., 2021) implements the privacy-preserving
computation of LayerNorm in (3) by sequentially
invoking ΠrSqrt and ΠDiv, resulting in expen-
sive computational and communication overheads.
Goldschmidt’s method enables the direct conver-
sion of square root inverses (i.e., 1√

.) directly into
multiple iterations of multiplications. However,
achieving a broader convergence range often re-
quires complex nonlinear initial value calculations,
such as Look-up-table (LUT) (Rathee et al., 2021)
or exponentiation (Knott et al., 2021), before the it-
eration begins. To resolve this issue, we propose to
employ the deflation technique for bypassing these
intricate nonlinear initial value calculations that are
incompatible with SMPC. The detailed steps of the

13337

SMPC protocol for LayerNorm are in Algorithm 2.
Specifically, in steps 3-8, we use Goldschmid’s

method to compute 1√
q where q = (var(x)+ ϵ)/η.

Through division by a constant η (A hyperparam-
eter whose value is shown in Appendix G.), we
initially deflate the denominator into the inter-
val [0.001, 2.99] which ensures fast convergence
for linear initial values. Then, we set the ini-
tial values p0 = 1, q0 = q, and compute mi =
(3−qi−1)/2, pi = pi−1mi, qi = qi−1m

2
i at each it-

eration by calling ΠMul and ΠSquare. After t = 11
iteration, the value of 1√

q is calculated.

Algorithm 2: SMPC Protocol for Layer-
Norm ΠLayerNorm

Input: For j ∈ {0, 1}, Sj holds the shares [x]j .
Output: For j ∈ {0, 1}, Sj holds the shares [y]j

with y = LayerNorm(x).
/* Compute the mean and variance */

1 [[x̄]] = 1
n
·∑n

h=1[[xh]]
2 [[var(x)]] =

∑n
h=1 ΠSquare([[xh]]− [[x̄]])

/* Goldschmidt’s method */
3 p0 = 1, q0 = 1

η
([[var(x)]] + ϵ)

4 for i← 1 to t do
5 [[mi]]← (3− qi−1)/2
6 [[qi]]← ΠMul([[qi−1]],ΠSquare([[mi]]))
7 [[pi]]← ΠMul([[pi−1]], [[mi]])
8 end
9 /* Compute LayerNorm(x) */

10 [[y]] = γ · (1
η
([[x]]− [[x̄]]) · [[pt]]) + β

Protocol for Approximated Softmax. As men-
tioned in Section 3.1, we follow Li et al. (2023a)
and bypass the privacy-preserving computations of
exponential and maximum by substituting Softmax
with 2Quad in (4). However, to preserve the nor-
malized nature of Softmax, the division operations
cannot be avoided and thus become a new obstacle.

To solve this problem, we again use the Gold-
schmidt’s method to convert the division operation
to multiplications. Similar to the LayerNorm pro-
tocol, the complex calculation of initial values is
avoided by effective deflation. The implementa-
tion of the SMPC protocol for the approximated
Softmax (i.e., Π2Quad) is shown in Appendix B.

4 Experiments

This section showcases the effectiveness of Sec-
Former through extensive experiments. We begin
with the experiment setup in Section 4.1 and then
report the performance assessment results in Sec-
tion 4.2 and efficiency evaluations in Section 4.3,
respectively. We further provide more analysis for

SecFormer in Section 4.4, including an efficiency
evaluation for ΠGeLU , ΠLayerNorm and Π2Quad.

4.1 Experimental Setup

Implementation. We implemented SecFormer
using CrypTen6, a semi-honest privacy-preserving
machine learning framework based on secret shar-
ing. To simulate the experimental environment, we
utilized three Tesla V100 servers with a 10GB/s
bandwidth. The hyperparameters for model fine-
tuning and distillation follow the settings in (Li
et al., 2023a), see Appendix G for details.

Baselines. We compare SecFormer with state-of-
the-art works based on model design (MPCFormer
(Li et al., 2023a)) and SMPC protocol design
(PUMA (Dong et al., 2023)). Specifically, MPC-
Former improves the efficiency of PPI by substitut-
ing Softmax and GeLU with some SMPC friendly
quadratics. PUMA enhances PPI efficiency by de-
signing more efficient SMPC protocols for GeLU,
LayerNorm and Softmax. Following the setting
in MPCFormer, we include the result of the fine-
tuned redesigned model as the baseline, denoted as
MPCFormerw/o and SecFormerw/o (i.e., fine-tuned
without distillation). We also re-implement PUMA
on CrypTen for consistency.

Models and Datasets. We followed MPCFormer
using a representative transformer model BERT,
see Appendix G for details. For the reliability of
the experimental results, we use datasets with dif-
ferent evaluation metrics and sizes, including RTE,
MRPC, CoLA, STS-B, and QNLI. In terms of eval-
uation metrics, MRPC uses F1 scores, STS-B em-
ploys the average of Person and Spearman correla-
tions, CoLA uses Matthews correlations, and RTE
and QNLI rely on accuracy.

4.2 Performance Comparison

We validate the performance of SecFormer and
the main results are shown in Table 2. For the
model design framework MPCFormer, SecFormer
exhibits a significant performance improvement.
Specifically, for BERTBASE, SecFormer outper-
forms MPCFormer across all tasks, resulting in
a 3.4% average improvement. For BERTLARGE,
MPCFormer faces significant performance degrada-
tion, including CoLA task failure. In contrast, even
without data distillation, SecFormer outperforms

6https://github.com/facebookresearch/CrypTen

13338

Models Methods
GeLU Softmax QNLI CoLA STS-B MRPC RTE Avg.

Approx. Approx. (108k) (8.5k) (5.7k) (3.5k) (2.5k)

BERTBASE

Plain-text GeLU Softmax 91.7 57.8 89.1 90.3 69.7 79.7

PUMA GeLU Softmax 91.7 57.8 89.1 90.3 69.7 79.7∗

MPCFormerw/o Quad 2Quad 69.8 0.0 36.1 81.2 52.7 48.0

MPCFormer Quad 2Quad 90.6 52.6 80.3 88.7 64.9 75.4

SecFormerw/o GeLU 2Quad 89.3 57.0 86.2 83.8 63.2 75.9

SecFormer GeLU 2Quad 91.2 57.1 87.4 89.2 69.0 78.8∗

BERTLARGE

Plain-text GeLU Softmax 92.4 61.7 90.2 90.6 75.5 82.1

PUMA GeLU Softmax 92.4 61.7 90.2 90.6 75.5 82.1∗

MPCFormerw/o Quad 2Quad 49.5 0.0 0.0 81.2 52.7 36.7

MPCFormer Quad 2Quad 87.8 0.0 52.1 81.4 59.2 56.1

SecFormerw/o GeLU 2Quad 90.8 60.8 89.0 87.6 69.7 79.6

SecFormer GeLU 2Quad 92.0 61.3 89.2 88.7 72.6 80.8∗

Table 2: Performance comparison of BERTBASE and BERTLARGE. Bolded numbers indicate best results; numbers
marked “*” indicate performance loss within 1.5%. For BERTBASE, we directly use the results from (Li et al.,
2023a). For BERTLARGE, Li et al. (2023a) uses the 2ReLU instead of 2Quad for performance reasons, where
2ReLU(x)[i] = ReLU(x)[i]/

∑n
h=1 ReLU(x). Calculating ReLU requires a call to ΠLT . This results in more

overhead than calculating 2Quad.

MPCFormer. After distillation, SecFormer demon-
strates a substantial 24.7% performance improve-
ment compared to MPCFormer. This is mainly
because SecFormer implements an accurate compu-
tation of GeLU instead of replacing it aggressively
with a quadratic polynomial.

For the protocol design framework PUMA, Sec-
Former incurs only a marginal 0.9% and 1.3% per-
formance degradation. PUMA does not perform
any model design and achieves PPI without per-
formance loss. However, this results in PUMA
facing unacceptable communication overheads, as
detailed in Section 4.3.

4.3 Efficiency Comparison

We evaluate the efficiency by testing the time
and communication volume required to perform
single-sample inference across different frame-
works. The main results are shown in Table 3.
We can find that SecFormer is significantly more
efficient than PUMA. Specifically, for BERTBASE
and BERTLARGE, SecFormer performs 3.57 and
3.58 faster than PUMA on the total inference time.
These advantages stem from that SecFormer uti-
lizes model design to achieve efficient computation
of Softmax, and design efficient SMPC protocols
suitable for the Transformer models for other non-
linear operators (i.e., GeLU, LayerNorm) by us-
ing appropriate numerical computation techniques.
The efficiency of each SMPC protocol is shown in
Table 3 and will be discussed later in Section 4.4.

When considering the framework of model de-

1002 10002 50002

Input Dimension

10 1

100

101

Ti
m

es
 (s

ec
on

ds
)

0.126

1.051

23.701

0.072

0.651

14.814

(a) Time Overhead
PUMA
SecFormer

1002 10002 50002

Input Dimension

101

102

103

104

Co
m

m
 V

ol
um

e
(M

B)

15.2

1520

38000

9.4

940

23600

(b) Comm Overhead
PUMA
SecFormer

Figure 5: Comparison of ΠGeLU Time and Communi-
cation Overheads.

sign, SecFormer is only 1.05 and 1.04 times slower
than MPCFormer in the scenarios of BERTBASE
and BERTLARGE, respectively. This result is based
on the fact that SecFormer spends 41% of its
time performing privacy-preserving calculations
for GeLU, while MPCFormer spends only 0.01%
of its time to implement the privacy-preserving
calculations for Quad. However, the conclusions
in Section 4.2 suggest that replacing GeLU with
quadratic leads to dramatic degradation of model
performance or even failure on some tasks (i.e.,
performance with 0 in Table 2).

In conclusion, experiments with SecFormer re-
garding performance and efficiency reveal its dual
advantages, combining strengths from both proto-
col design and model design frameworks.

4.4 SMPC Protocols Evaluation

We compare ΠGeLU with PUMA in terms of time
and communication overhead. The comparison re-
sults in Fig. 5 show that ΠGeLU is about 1.6 times

13339

Models Methods
GeLU Softmax LayerNorm Others Total

Times(s) Comm(GB) Times(s) Comm(GB) Times(s) Comm(GB) Times(s) Comm(GB) Times(s)

BERTBASE

CrypTen 16.46 28.689 37.25 50.285 6.614 0.492 9.365 3.463 71.097

PUMA 16.343 28.689 42.219 67.837 2.285 0.477 8.781 3.463 69.661

MPCFormer 0.351 0.604 3.129 1.895 6.522 0.497 8.589 3.463 18.591

SecFormer 8.132 17.817 1.362 1.844 1.523 0.468 8.496 3.463 19.513∗

BERTLARGE

CrypTen 27.881 57.378 83.017 134.093 9.105 1.272 19.945 8.565 140.018

PUMA 27.357 57.378 89.938 180.898 4.313 1.254 18.278 8.565 139.954

MPCFormer 0.351 0.604 7.274 5.052 10.864 1.282 19.261 8.565 37.75

SecFormer 14.531 35.635 3.115 4.916 3.122 1.248 18.321 8.565 39.089∗

Table 3: Efficiency Comparison of BERTBASE and BERTLARGE. Bolded numbers indicate the best results; Numbers
marked “*” indicate within 2 seconds slower than the best result. The results are the average of ten runs.

1002 10002 50002

Input Dimension
10 1

100

Ti
m

es
 (s

ec
on

ds
)

0.513

3.161

5.512

0.119

1.026

1.959

(a) Time Overhead
CrypTen
SecFormer

1002 10002 50002

Input Dimension

102

103

Co
m

m
 V

ol
um

e
(M

B)

49.9

1209.7

4819.4

48.6

1202.8

4805.6
(b) Comm Overhead

CrypTen
SecFormer

Figure 6: Comparison of ΠLayerNorm Time and Com-
munication Overheads.

1002 2002 3002 4002 5002 6002 7002 8002 9002 10002

Input Dimension

0

20

40

60

80

Ti
m

es
 (s

ec
on

ds
)

(a) Time Overhead
CrypTen
SecFormer

1002 2002 3002 4002 5002 6002 7002 8002 9002 10002

Input Dimension

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Co
m

m
 V

ol
um

e
(M

B)

(b) Comm Overhead
CrypTen
SecFormer

Figure 7: Comparison of Privacy-preserving Calcula-
tion for Square-root Inverse Time and Communication
Overheads.

lower than PUMA in time and communication over-
head. This is mainly due to the fact that it invokes
fewer ΠLT relative to PUMA. In terms of accuracy,
both ΠGeLU and PUMA meet the needs of PPI,
while CrypTen can only maintain accuracy over a
small range. See Appendix C for details.

We compare ΠLayerNorm with CrypTen (Knott
et al., 2021) in terms of time and communica-
tion overhead. Fig. 6 shows that ΠLayerNorm

is up to 4.5 times faster than CrypTen (Knott
et al., 2021). This is due to the efficient privacy-
preserving square root inverse calculation proposed
by SecFormer. As shown in Fig. 7, it is 4.2 times
faster than CrypTen and reduces the communica-
tion volume by a factor of 2.5.

We compare Π2Quad with MPCFormer and

PUMA in terms of time and communication over-
head. Fig. 8 shows that Π2Quad is 1.26 ∼ 2.09
times faster than MPCFormer and the commu-
nication overhead is reduced by 1.04 ∼ 1.12
times. These enhancements come from the effi-
cient privacy-preserving division calculation pro-
posed by SecFormer. As shown in Fig. 9, it is 3.2
times faster than CrypTen, and the communication
overhead is reduced by 1.6 times.

1002 10002 50002

Input Dimension

10 1

100

101

Ti
m

es
 (s

ec
on

ds
)

0.402
0.659

18.931

0.103 0.115

1.421

0.051 0.055

1.127

(a) Time Overhead
PUMA
MPCFormer
SecFormer

1002 10002 50002

Input Dimension

100

101

102

Co
m

m
 V

ol
um

e
(M

B)
7.402

31.279

118.133

0.279

0.95

3.473

0.249

0.891

3.355

(b) Comm Overhead
PUMA
MPCFormer
SecFormer

Figure 8: Comparison of Π2Quad Time and Communi-
cation Overheads.

1002 2002 3002 4002 5002 6002 7002 8002 9002 10002

Input Dimension

0

20

40

60

80

Ti
m

es
 (s

ec
on

ds
)

(a) Time Overhead
CrypTen
SecFormer

1002 2002 3002 4002 5002 6002 7002 8002 9002 10002

Input Dimension

0

200

400

600

800

1000

1200

Co
m

m
 V

ol
um

e
(M

B)

(b) Comm Overhead
CrypTen
SecFormer

Figure 9: Comparison of Privacy-Preserving Division
Calculation Time and Communication Overheads.

Compared to PUMA, which achieves precise
privacy-preserving Softmax, Π2Quad gets a drastic
improvement in efficiency, i.e., 8.24 ∼ 16.8 times
faster and 30.53 ∼ 36.2 times less communica-
tion. This is due to the fact that the model design
performed by SecFormer avoids the calculation of
exponential and maximum.

13340

5 Conclusion

We present SecFormer, a synergistic PPI frame-
work that strategically combines the strengths
of both SMPC protocol design and Transformer
model design. Extensive experiments reveal that
SecFormer surpasses existing PPI methods, achiev-
ing fast and accurate PPI for Transformer models.
It not only matches the performance of approaches
that focus exclusively on SMPC protocols but also
competes with the efficiency of methods dedicated
solely to model design. SecFormer holds signifi-
cant potential for enhancing large language models,
offering an effective solution that promises to main-
tain high performance while ensuring stringent pri-
vacy and efficiency standards in increasingly com-
plex and expansive linguistic landscapes.

6 Limitations

We summarize the limitations of SecFormer as
follows: (1) SecFormer focuses on implementing
PPI for the encoder-only Transformer model, such
as BERT, without extending to other Transformer
model families like the GPT series. We concentrate
on the encoder-only Transformer model because
of its continued prominence in real-world natural
language understanding tasks, particularly within
resource-constrained environments like edge com-
puting. Prior efforts to implement the encoder-
only Transformer model for PPI have encountered
obstacles, including slow inference speeds and
substantial performance degradation. Our work
addresses these challenges and offers insights to
guide future optimization efforts concerning PPI
across diverse Transformer model families. The
proposed protocols can be applied to implement
PPI of other transformer-based models straight-
forwardly and we will consider PPI for decoder
only Transformer models like GPT in the future.
(2) Regarding SMPC protocols, SecFormer exe-
cutes only on CrypTen and does not invoke the
cutting-edge underlying SMPC protocols. We will
try to exploit other privacy-preserving frameworks
with more advanced SMPC protocols to further
improve the inference efficiency of SecFomer in
future work. (3) SecFormer only performs model
design by replacing Softmax with 2Quad and does
not incorporate other model lighting techniques.
Other model lightweight techniques such as model
quantization and pruning are compatible with the
proposed SMPC protocols and can be combined
into SecFormer to further improve the PPI effi-

ciency in the future.

7 Acknowledgements

This research is partially supported by the
National Key R&D Program of China
(No.2021ZD0112905), the National Natural
Science Foundation of China (No. 62206139,
62106114), and the Major Key Project of PCL
(PCL2023A09).

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Ran Canetti. 2001. Universally composable security:
A new paradigm for cryptographic protocols. In
Proceedings 42nd IEEE Symposium on Foundations
of Computer Science, pages 136–145. IEEE.

Chunkit Chan, Cheng Jiayang, Weiqi Wang, Yuxin
Jiang, Tianqing Fang, Xin Liu, and Yangqiu Song.
2024. Exploring the potential of ChatGPT on sen-
tence level relations: A focus on temporal, causal,
and discourse relations. In Findings of the Associ-
ation for Computational Linguistics: EACL 2024,
pages 684–721, St. Julian’s, Malta. Association for
Computational Linguistics.

Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong,
Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li,
and Furu Wei. 2022. THE-X: Privacy-preserving
transformer inference with homomorphic encryption.
In Findings of the Association for Computational
Linguistics, pages 3510–3520.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 4171–4186.

Yuanchao Ding, Hua Guo, Yewei Guan, Weixin Liu,
Jiarong Huo, Zhenyu Guan, and Xiyong Zhang.
2023. East: Efficient and accurate secure trans-
former framework for inference. arXiv preprint
arXiv:2308.09923.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu,
Derun Zhao, Jin Tan, Zhicong Huang, Cheng Hong,
Tao Wei, and Wenguang Cheng. 2023. PUMA: Se-
cure inference of LLaMA-7B in five minutes. arXiv
preprint arXiv:2307.12533.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine,
Kristin E. Lauter, Michael Naehrig, and John Werns-
ing. 2016. CryptoNets: Applying neural networks

13341

https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-eacl.47

to encrypted data with high throughput and accuracy.
In Proceedings of the 33nd International Conference
on Machine Learning, pages 201–210.

Oded Goldreich, Silvio Micali, and Avi Wigderson.
1987. How to play any mental game or A complete-
ness theorem for protocols with honest majority. In
Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, pages 218–229. ACM.

Robert E Goldschmidt. 1964. Applications of division
by convergence. In M.Sc dissertation, Massachusetts
Institute of Technology.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nis-
hanth Chandran, Divya Gupta, Ashish Panwar, and
Rahul Sharma. 2023. SIGMA: Secure GPT infer-
ence with function secret sharing. Cryptology ePrint
Archive, Paper 2023/1269.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing,
Guowen Xu, and Tianwei Zhang. 2022. Iron: Pri-
vate inference on transformers. Advances in Neural
Information Processing Systems, 35:15718–15731.

Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen jie
Lu, Cheng Hong, and Kui Ren. 2023. CipherGPT:
Secure two-party GPT inference. Cryptology ePrint
Archive, Paper 2023/1147.

Zhicong Huang, Wenjie Lu, Cheng Hong, and Jiansheng
Ding. 2022. Cheetah: Lean and fast secure two-party
deep neural network inference. In Proceedings of
31st USENIX Security Symposium, pages 809–826.

Cheng Jiayang, Lin Qiu, Tsz Chan, Tianqing Fang,
Weiqi Wang, Chunkit Chan, Dongyu Ru, Qipeng
Guo, Hongming Zhang, Yangqiu Song, Yue Zhang,
and Zheng Zhang. 2023. StoryAnalogy: Deriving
story-level analogies from large language models to
unlock analogical understanding. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 11518–11537,
Singapore. Association for Computational Linguis-
tics.

Brian Knott, Shobha Venkataraman, Awni Hannun,
Shubho Sengupta, Mark Ibrahim, and Laurens
van der Maaten. 2021. CrypTen: Secure multi-party
computation meets machine learning. Advances in
Neural Information Processing Systems, 34:4961–
4973.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880.

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo,
Eric P Xing, and Hao Zhang. 2023a. MPCFormer:
Fast, performant and private transformer inference

with MPC. In Proceedings of the Eleventh Inter-
national Conference on Learning Representations,
ICLR.

Haoran Li, Yulin Chen, Jinglong Luo, Yan Kang, Xi-
aojin Zhang, Qi Hu, Chunkit Chan, and Yangqiu
Song. 2023b. Privacy in large language models: At-
tacks, defenses and future directions. arXiv preprint
arXiv:2310.10383.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang,
Fanpu Meng, and Yangqiu Song. 2023c. Multi-step
jailbreaking privacy attacks on ChatGPT. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 4138–4153, Singapore.
Association for Computational Linguistics.

Haoran Li, Dadi Guo, Donghao Li, Wei Fan, Qi Hu,
Xin Liu, Chunkit Chan, Duanyi Yao, Yuan Yao, and
Yangqiu Song. 2024. PrivLM-Bench: A multi-level
privacy evaluation benchmark for language models.
arXiv preprint arXiv:2311.04044.

Haoran Li, Mingshi Xu, and Yangqiu Song. 2023d. Sen-
tence embedding leaks more information than you
expect: Generative embedding inversion attack to
recover the whole sentence. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 14022–14040, Toronto, Canada. Association
for Computational Linguistics.

Zi Liang, Pinghui Wang, Ruofei Zhang, Nuo Xu, and
Shuo Zhang. 2023. MERGE: Fast private text gener-
ation. arXiv preprint arXiv:2305.15769.

Ao Liu, Shuai Yuan, Chenbin Zhang, Congjian Luo,
Yaqing Liao, Kun Bai, and Zenglin Xu. 2020. Multi-
level multimodal transformer network for multimodal
recipe comprehension. In Proceedings of the 43rd
International ACM SIGIR conference on research
and development in Information Retrieval, SIGIR
2020, Virtual Event, China, July 25-30, 2020, pages
1781–1784. ACM.

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan.
2017. Oblivious neural network predictions via min-
ionn transformations. In Proceedings of the 2017
ACM SIGSAC conference on computer and commu-
nications security, pages 619–631.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Junyu Lu, Xiancong Ren, Yazhou Ren, Ao Liu, and
Zenglin Xu. 2020. Improving contextual language
models for response retrieval in multi-turn conversa-
tion. In Proceedings of the 43rd International ACM
SIGIR conference on research and development in
Information Retrieval, SIGIR 2020, Virtual Event,
China, July 25-30, 2020, pages 1805–1808. ACM.

13342

https://doi.org/10.18653/v1/2023.emnlp-main.706
https://doi.org/10.18653/v1/2023.emnlp-main.706
https://doi.org/10.18653/v1/2023.emnlp-main.706
https://doi.org/10.18653/v1/2023.findings-emnlp.272
https://doi.org/10.18653/v1/2023.findings-emnlp.272
https://doi.org/10.18653/v1/2023.findings-acl.881
https://doi.org/10.18653/v1/2023.findings-acl.881
https://doi.org/10.18653/v1/2023.findings-acl.881
https://doi.org/10.18653/v1/2023.findings-acl.881

Junyu Lu, Chenbin Zhang, Zeying Xie, Guang Ling,
Tom Chao Zhou, and Zenglin Xu. 2019. Construct-
ing interpretive spatio-temporal features for multi-
turn responses selection. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, pages 44–50. Association for Computational
Linguistics.

Jinglong Luo, Yehong Zhang, Jiaqi Zhang, Shuang Qin,
Hui Wang, Yue Yu, and Zenglin Xu. 2023. Practical
privacy-preserving Gaussian process regression via
secret sharing. In Uncertainty in Artificial Intelli-
gence, pages 1315–1325. PMLR.

Peter W. Markstein. 2004. Software division and square
root using Goldschmidt’s algorithms. In 6th Confer-
ence on Real Numbers and Computers, pages 146–
157.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. 2020.
Delphi: A cryptographic inference service for neural
networks. In Proceedings of 29th USENIX Security
Symposium, pages 2505–2522.

OpenAI. 2023. GPT-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng,
and Thomas Schneider. 2023. BOLT: Privacy-
preserving, accurate and efficient inference for
transformers. Cryptology ePrint Archive, Paper
2023/1893.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Deevashwer Rathee, Mayank Rathee, Rahul Kranti Ki-
ran Goli, Divya Gupta, Rahul Sharma, Nishanth
Chandran, and Aseem Rastogi. 2021. SIRNN: A
math library for secure RNN inference. In Proceed-
ings of 2021 IEEE Symposium on Security and Pri-
vacy, pages 1003–1020.

Adi Shamir. 1979. How to share a secret. Communica-
tions of the ACM, 22(11):612–613.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems.

Qifan Wang, Jingang Wang, Xiaojun Quan, Fuli Feng,
Zenglin Xu, Shaoliang Nie, Sinong Wang, Madian
Khabsa, Hamed Firooz, and Dongfang Liu. 2023.
MUSTIE: Multimodal structural transformer for web
information extraction. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 2405–2420.
Association for Computational Linguistics.

Yongqin Wang, G Edward Suh, Wenjie Xiong, Ben-
jamin Lefaudeux, Brian Knott, Murali Annavaram,
and Hsien-Hsin S Lee. 2022. Characterization of
MPC-based private inference for transformer-based
models. In Proceedings of 2022 IEEE International
Symposium on Performance Analysis of Systems and
Software, pages 187–197.

Andrew Chi-Chih Yao. 1986. How to generate and
exchange secrets. In Annual Symposium on Founda-
tions of Computer Science, pages 162–167.

Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao,
Zhiwei Wang, Xin Jiang, ZhenZhang Yang, Kaisheng
Wang, Xiaoda Zhang, et al. 2021. Pangu-α: Large-
scale autoregressive pretrained chinese language
models with auto-parallel computation. arXiv
preprint arXiv:2104.12369.

Wenxuan Zeng, Meng Li, Wenjie Xiong, Wenjie Lu,
Jin Tan, Runsheng Wang, and Ru Huang. 2022.
MPCViT: Searching for MPC-friendly vision trans-
former with heterogeneous attention. arXiv preprint
arXiv:2211.13955.

Chenbin Zhang, Congjian Luo, Junyu Lu, Ao Liu, Bing
Bai, Kun Bai, and Zenglin Xu. 2020. Read, attend,
and exclude: Multi-choice reading comprehension by
mimicking human reasoning process. In Proceedings
of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
SIGIR 2020, Virtual Event, China, July 25-30, 2020,
pages 1945–1948. ACM.

Yifei Zhang, Dun Zeng, Jinglong Luo, Xinyu Fu,
Guanzhong Chen, Zenglin Xu, and Irwin King.
2024a. A survey of trustworthy federated learning:
Issues, solutions, and challenges. ACM Transactions
on Intelligent Systems and Technology (TIST).

Yifei Zhang, Dun Zeng, Jinglong Luo, Zenglin Xu, and
Irwin King. 2023a. A survey of trustworthy federated
learning with perspectives on security, robustness and
privacy. In Companion Proceedings of the ACM Web
Conference 2023, pages 1167–1176.

Yifei Zhang and Hao Zhu. 2020. Additively homo-
morphical encryption based deep neural network
for asymmetrically collaborative machine learning.
arXiv preprint arXiv:2007.06849.

13343

Yuke Zhang, Dake Chen, Souvik Kundu, Chenghao
Li, and Peter A Beerel. 2023b. SAL-ViT: Towards
latency efficient private inference on ViT using se-
lective attention search with a learnable softmax ap-
proximation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages
5116–5125.

Zhuo Zhang, Xiangjing Hu, Jingyuan Zhang, Yating
Zhang, Hui Wang, Lizhen Qu, and Zenglin Xu.
2023c. Fedlegal: The first real-world federated learn-
ing benchmark for legal NLP. In Proceedings of the
61st Annual Meeting of the Association for Computa-
tional Linguistics, pages 3492–3507.

Zhuo Zhang, Jintao Huang, Xiangjing Hu, Jingyuan
Zhang, Yating Zhang, Hui Wang, Yue Yu, Qifan
Wang, Lizhen Qu, and Zenglin Xu. 2024b. Revisit-
ing data reconstruction attacks on real-world dataset
for federated natural language understanding. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation, pages 14080–14091.

Mengxin Zheng, Qian Lou, and Lei Jiang. 2023a.
Primer: Fast private transformer inference on en-
crypted data. arXiv preprint arXiv:2303.13679.

Yu Zheng, Qizhi Zhang, Sherman SM Chow, Yuxiang
Peng, Sijun Tan, Lichun Li, and Shan Yin. 2023b. Se-
cure softmax/sigmoid for machine-learning compu-
tation. In Proceedings of the 39th Annual Computer
Security Applications Conference, pages 463–476.

13344

A 2-out-of-2 Secret Sharing

The 2-out-of-2 secret sharing includes arithmetic
secret sharing and Boolean secret sharing. The
2-out-of-2 arithmetic secret sharing contains two
algorithms:

• Shr(x) → ([x]0, [x]1) is used to generate the
shares by randomly selecting a number r from
ZL, letting [x]0 = r, and computing [x]1 = (x−
r) mod L;

• Rec([x]0, [x]1) → x is used to reconstruct the
original value from the shares, which can be done
by simply calculating ([x]0 + [x]1) mod L.

Note that due to the randomness of r, neither a
single [x]0 nor [x]1 can be used to infer the original
value of x. The arithmetic secret sharing technique
has been widely used to construct SMPC protocols
for ML operations (e.g., +, − and ·, etc.) such that
both the inputs and outputs of the protocol are the
arithmetic shares of the original inputs and outputs:

Πf ([inputs]0, [inputs]1) → ([f]0, [f]1), (8)

where Πf denotes an SMPC protocol of the opera-
tion f . The shares in Z2 is called Boolean shares,
and the operations of +, − and · are replaced by
bit-wise operations ⊕ and ∧. We use [[x]], ⟨⟨x⟩⟩ de-
notes the arithmetic and boolean shares of x, i.e.,
[[x]] = ([x]0, [x]1), ⟨⟨x⟩⟩ = (⟨x⟩0, ⟨x⟩1).

B Protocol for the Approximated
Privacy-Preserving Softmax

In this section, we give the specific implementa-
tion of the SMPC Protocol for the approximated
Softmax (i.e., 2Quad) as mentioned in Section 3.1.
In steps 3-8 of Algorithm 3, we first deflate the
denominator q =

∑n
h=1(x + c)2 into the in-

terval [0.001, 1.999], which ensures fast conver-
gence for linear initial values, through division
by a constant η. Subsequently, we set the ini-
tial values q0 = q, p0 = (x + c)2, and compute
mi = 2− qi−1, pi = pi−1mi, qi = qi−1mi at each
iteration by calling ΠMul. After t = 13 iterations,
p
q is computed.

C Accuracy Comparison of
Privacy-Preserving GeLU Algorithms

In this section we compare the performance of
privacy-preserving GeLU with Puma and CrypTen.

Algorithm 3: SMPC Protocol for Softmax
Π2Quad

Input: For j ∈ {0, 1}, Sj holds the shares [x]j .
Output: For j ∈ {0, 1}, Sj holds the shares [y]j ,

where y = 2quad(x).
/* Compute the numerator */

1 [[p]] = ΠSquare([[x+ c]])
/* Compute the denominator */

2 [[q]] =
∑n

h=1[[p[h]]]
/* Goldschmidt’s method */

3 q0 = 1
η
[[q]], [p0]] =

1
η
[[p]]

4 for i← 1 to t do
5 [[mi]]← 2− [[qi−1]]
6 [[pi]]← ΠMul([[pi−1]], [[mi]])
7 [[qi]]← ΠMul([[qi−1]], [[mi]])
8 end
9 [[y]] = [[pt]]

The specific comparison results are shown in Ta-
ble 4. Both SecFormer and Puma achieve privacy-
preserving computation within the entire interval
of the GeLU function by using segmented polyno-
mials. CrypTen, on the other hand, locally fits the
erf function using a low-order Taylor expansion
and thus can only achieve privacy-preserving com-
putation of the GeLU function in a smaller interval.

D Security Proof and Communication
Complexity Analysis

D.1 Security Proof

SecFormer adheres to a semi-honest (also known
as honest-but-curious) assumption similar to the
works of Li et al. (2023a) and Dong et al. (2023),
where honest participants constitute the major-
ity. Under this assumption, the security of Sec-
Former can be formally proved within the simu-
lation paradigm, specifically against static semi-
honest adversaries denoted as A, which can poten-
tially corrupt one of the servers. The simulation
paradigm delineates two distinct worlds: the real
world and the ideal world. In the real world, the
servers execute the protocols in the presence of
semi-honest adversaries A. In contrast, the ideal
world involves the servers transmitting inputs to
a trusted dealer capable of correctly executing the
protocol. The security of SecFormer necessitates
that, for any semi-honest adversary A, the dis-
tribution of the real world remains indistinguish-
able from that of the ideal world. The definition
of privacy-preserving inference protocols (Mishra
et al., 2020; Huang et al., 2022; Hao et al., 2022) is
as follows:

Definition 1 A protocol ΠP between the servers

13345

Input Interval [−1, 1] [−5, 5] [−10, 10]

Methods CrypTen Puma SecFormer CrypTen Puma SecFormer CrypTen Puma SecFormer

Error Mean 0.001 0.005 0.001 30437.717 0.003 0.005 7480209.5 0.002 0.003

Error Var ±8.37× 10−6 ±6.85× 10−6 ±2.03× 10−6 ±3.28× 109 ±1.01× 10−5 ±3.82× 10−5 ±1.68× 1014 ±7.06× 10−6 ±2.54× 10−5

Table 4: Accuracy Comparison of Privacy-Preserving GeLU Algorithms.

who have the shares of the model weights and the
inference data is a privacy-preserving protocol if it
complies with the following criteria: (1) Correct-
ness: For a model M with weights w and input sam-
ples x, the client’s output at the end of the protocol
is the correct inference M (w, x); and (2) Security:
For a computational server Sj , j ∈ {0, 1} that
is corrupted by adversary A, there exists a prob-
abilistic polynomial time simulator SimSj such
that adversary A cannot distinguish V iewΠP

Sj
(i.e.,

the view of Sj during the implementation of ΠP)
from SimSj . Similarly, for a corrupted server T ,
there exists an efficient simulator SimT such that
V iewΠP

T is indistinguishable from SimT .

SecFormer is constructed from the sub-protocols
outlined in the works of Knott et al. (2021) and
Zheng et al. (2023b). Leveraging the concept
of universally composable security established by
Canetti (2001), we can prove that SecFormer satis-
fies Definition 1 directly.

D.2 Communication Complexity Analysis
The execution of ΠGeLU invokes two ΠLT , one
ΠSin and one ΠMul. Thus the execution of the
privacy-preserving GeLU algorithm takes a total
of 2 logL+4 rounds of online communication and
transmit 7210 bits.

The implementation of privacy-preserving Lay-
erNorm requires calls to ΠMul, ΠSquare and
privacy-preserving inverse of the square root. The
inverse of the square root requires one call to
ΠSquare and two calls to ΠMul in parallel per itera-
tion, costing 2 rounds of communication and trans-
ferring 640 bits. Thus performing the square root
inverse takes a total of 22 rounds of communication
and transfers 7040 bits and the implementation of
privacy-preserving LayerNorm takes a total of 24
rounds of communication and transfers 7424 bits.

The implementation of approximate privacy-
preserving Softmax requires calls to ΠMul and
ΠDiv. The ΠDiv requires two call to ΠMul in par-
allel per iteration, costing 1 rounds of communica-
tion and transferring 512 bits. Thus performing the
ΠDiv takes a total of 13 rounds of communication
and transfers 6,656 bits and the implementation of

approximate privacy-preserving Softmax takes a
total of 23 rounds of communication and transfers
6,784 bits.

E Underlying SMPC Protocols

In this section, we provide a brief overview of the
underlying protocols used and refer to the works
of Knott et al. (2021) and Zheng et al. (2023b) for
details. Let Sj with j ∈ {0, 1} be two parties that
are used to execute the SMPC protocol. Each party
Sj will be given one additive share ([u]j , [v]j) ∈
ZL of the operation inputs u and v for j ∈ {0, 1}.

E.1 Privacy-Preserving Linear Protocols

Privacy-preserving addition is implemented
with [u+ v]j = [u]j + [v]j for j ∈ {0, 1}.

Privacy-preserving multiplication is imple-
mented with Beaver-triples: (a, b, c) where a, b ∈
ZL are randomly sampled from ZL and c = a · b
mod L. Specifically, for each j ∈ {0, 1}, Sj

first calculates [d]j = [u]j − [a]j and [e]j =
[v]j − [b]j . Then, they send the [d]j and [e]j to
each other and reconstruct d = Rec([d]0, [d]1)
and e = Rec([e]0, [e]1). Finally, the additive
share of u · v can be computed using [u · v]j =
−jd · e+ [u]j · e+ d · [v]j + [c]j . To complete the
SS-based multiplication, both parties need to spend
1 round of two-way communication and transmit
256 bits.

E.2 Privacy-Preserving Non-Linear Protocols

Privacy-preserving comparison is implemented
by the conversion between the additive shares and
the binary shares. Specially, [[z]] = [[x− y]] is con-
verted to the binary shares ⟨⟨z⟩⟩ through additive
circuit with logL round of communication. Subse-
quently, the binary shares of z’s sign bit can be de-
termined by ⟨⟨b⟩⟩ = ⟨⟨z⟩⟩ >> (l − 1)7. Finally, the
additive shares of x < y can be derived by convert-
ing ⟨⟨b⟩⟩ to [[b]] with one round of communication.
Thus, the implementation of privacy-preserving
compare algorithm cost logL+1 round of commu-
nication and transmit 3456 bits.

7>> l denote shift l bit to the right.

13346

Privacy-preserving maximum of the n-element
vector x is implemented by calling logn privacy-
preserving comparisons using the tree reduction
algorithm (Knott et al., 2021).

Privacy-preserving exponential is implemented
using the repeated-squaring method

ex = limx→∞
(
1 +

x

2n
)2n

, (9)

which converts exponential calculations into addi-
tion and square operations. The number of itera-
tions n is set to 8 in (Knott et al., 2021) by default.

Privacy-preserving reciprocal is implemented
by Newton-Raphson method, which converts recip-
rocal calculations into addition and multiplication
operations. The iterative formula is

yn+1 = yn(2− xyn). (10)

The initial value of the iteration is

y0 = 3e
1
2
−x + 0.003. (11)

The number of iterations is set to 10 in (Knott et al.,
2021) by default.

Privacy-preserving square root is implemented
by Newton-Raphson method, which converts expo-
nential calculations into addition and multiplication
operations. The iterative formula is

yn+1 =
1

2
yn(3− xy2n). (12)

The initial value of the iteration is

y0 = e−2.2(x
2
+0.2) + 0.198046875. (13)

The number of iterations is set to 3 in (Knott et al.,
2021) by default.

Privacy-preserving sine is implemented on
trigonometric identities. Specifically, sin(x) =
sin(δ) cos(t) + cos(δ) sin(t), where δ = x − t.
With the assistance of the server T , the random
numbers t, sin(t), cos(t) are generated in the of-
fline phase, and the share of sin(x) is computed in
the online phase with only one round of communi-
cation and transmits 42 bit.8 See Algorithm 4 for
an implementation of the privacy-preserving sine.

8CrypTen uses 16-bit computational precision.

Algorithm 4: Privacy-preserving sine
Input: For j ∈ {0, 1}, Sj holds the shares [x]j ;

Same Pseudo-Random Function (PRF) and
key kj .

Output: For j ∈ {0, 1}, Sj returns the shares [y]j ,
where y = sin(x).

/* Offline Phase */
1 S0, T : [t]0, [u]0, [v]0 ← PRF (k0)
2 S1, T : [t]1 ← PRF (k1)
3 T : t = [t]0 + [t]1, [u]1 = sin(t)− [u]0, [v]1 =

cos(t)− [v]0
/* Online Phase */

4 [δ]j = ([x]j − [t]j) mod 20
5 δ = [δ]0 + [δ]1 // reconstruct δ by 1

round of communication
6 p = sin(δ), q = cos(δ)
7 [y]j = p[v]j + q[u]j

F Fourier Series Fitting Results

In this section, we give the results of fitting erf(x)
using Fourier series composed of different periodic
sin functions. Specifically, we fit erf(x) using the
7-th order Fourier series composed of sin functions
with periods of 10, 20, 30, and 40, respectively, and
the specific fitting results are shown in Fig. 10.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

x

1.0

0.5

0.0

0.5

1.0

y

Fourier series fitting of erf (x)
erf
fourier_10
fourier_20
fourier_30
fourier_40

Figure 10: Fourier series fitting results for different
periods. “fourier10” denotes that the period of the sin
function in the Fourier series is 10.

G Models and Hyper-parameter

Models. In this section, we provide a concise
overview of the architecture of the experimental
models. For more detailed information, we refer
the readers to the HuggingFace Transformers li-
brary.

• BERTBASE: BERTBASE represents the founda-
tional version of the Bert model, comprising
12 Transformer encoder layers, a hidden size

13347

of 768, and 12 heads. With 110 million pa-
rameters, it undergoes training on a substantial
corpus of unlabeled text data.

• BERTLARGE: BERTLARGE serves as an ex-
panded iteration of BERTBASE, featuring 24
Transformer encoder layers, a hidden size of
1024, and 16 heads. Boasting approximately
340 million parameters, this version exhibits
increased potency, enabling it to capture intri-
cate language patterns.

Hyper-parameter. For LayerNorm and Softmax,
we set the constants η as 2000 and 5000, respec-
tively, to ensure that the value of the denominator
can be deflated to a reasonable range of conver-
gence. We follow the choice of hyperparameters for
fine-tuning and distillation in MPCFormer (Li et al.,
2023a). Specifically, in the fine-tuning phase, we
use a learning rate of [1e−6, 5e−6, 1e−5, 1e−4], a
batch size of [64, 256], and epochs of [10, 30, 100].
We fine-tuned each model with a combination of
hyperparameters and selected the best performing
model as teacher. In the distillation phase, we de-
cide the number of epochs based on the MSE loss
of the embedding and transformation layer distilla-
tions. For small datasets (CoLA, MRPC, RTE), the
batch size is 8; for large datasets (QNLI, STS-B),
the batch size is 32. Specifically, in the embedding
and transform layer distillation phases, 10 epochs
for QNLI, 20 epochs for MRPC, 50 epochs for
STS-B, 50 epochs for CoLA, and 50 epochs for
RTE.

13348

