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Abstract

Existing literature that integrates CLIP into fed-
erated learning (FL) largely ignores the inher-
ent group unfairness within CLIP and its ethical
implications on FL applications. Furthermore,
such CLIP bias may be amplified in FL, due to
the unique issue of data heterogeneity across
clients. However, in identity-sensitive FL appli-
cations, model fairness (i.e., group fairness) is
imperative for model development. Therefore,
this work explores a critical question ignored by
the existing literature: how can we build a fair
FL framework using biased pre-trained VLMs
(e.g., CLIP)? To address this problem, we pro-
pose a fairness-aware adaptation framework tai-
lored for VLM (e.g., CLIP) in the context of FL,
named Fair Federated Deep Visiual Prompting
or FF-DVP. As implied by its name, FF-DVP
trains a fair FL model with fairness-aware deep
visual prompting (DVP). Moreover, FF-DVP in-
corporates modality-fused classification heads
to learn client-specific knowledge and fairness
constraints. These modules explicitly address
a unique kind of bias in FL, namely the bias
triggered by data heterogeneity. We show that
FF-DVP can be readily extended to prevailing
parameter-efficient fine-tuning methods (e.g.,
adapter or LoRA) for debiasing purposes. To
the best of our knowledge, FF-DVP is the first
to leverage biased VLMs for building fair FL
frameworks. Extensive results on human face
attribute recognition (FAR) applications sug-
gest that FF-DVP effectively improves model
fairness and training convergence, outperform-
ing state-of-the-art baselines.

1 Introduction

Federated learning (FL) emerges as a novel ma-
chine learning (ML) paradigm wherein ML models
are trained from distributed data sources (McMa-
han et al., 2017). In FL, a central server stores a
global model, while multiple local clients partic-
ipate in the collaborative model training without
sharing their private data. Such a decentralized

design of FL makes it a promising solution for
privacy-sensitive applications, like online facial ser-
vices or medical diagnosis (McMahan et al., 2017).
However, FL models commonly suffer from scala-
bility issues. That is, traditional FL models strug-
gle to achieve training convergence under high data
complexity (e.g., data amount, data dimensionality)
and high data heterogeneity (e.g., non-i.i.d. data)
(Zhou et al., 2022). Therefore, we aim to design
a scalable fair FL framework that withstands high
data complexity and heterogeneity.

On the other hand, large foundation models be-
come increasingly popular for ML tasks involving
complex and large-scale data. These models, with
billions parameters, are pre-trained using Internet-
scale data (Chuang et al., 2023). They can extract
domain-generalized features from inputs, and gen-
eralize to various downstream tasks across different
domains (e.g., sentiment analysis, image classifica-
tion (Bommasani et al., 2021)).

Recently, exploiting large vision-language-
models (VLMs) for federated learning (FL) has
gained increased attention (Lu et al., 2023; Yang
et al., 2023; Guo et al., 2023a; Chen et al., 2023).
The strong generalization ability of VLMs has em-
powered FL models to overcome the data complex-
ity and data heterogeneity across clients, leading to
better personalization and generalization (Lu et al.,
2023). However, existing literature that combines
VLMs (e.g., CLIP) and FL largely neglects the
inherent bias within such VLMs and its ethical im-
plications on FL applications. The unique issue of
data heterogeneity in FL would exacerbate CLIP
bias, severely compromising the fairness of the ag-
gregated FL model (Chang and Shokri, 2023). On
the other hand, in privacy- and identity-sensitive
applications, it is imperative to develop FL models
that are both accurate and fair. For instance, in an
FAR-based criminal detection system, if the model
consistently makes false-positive predictions on a
specific demographic group, great ethical concerns
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Figure 1: CLIP for Smiling Detection. For a query
image, CLIP picks the prompt that depicts the image
the base as the prediction. However, CLIP encodes
bias in the pre-training data. In this work, we present a
framework to debias FL model using biased CLIP.

would be raised (Najibi, 2022).
Unfortunately, as shown in Figure 1, pre-trained

VLMs indeed encode the bias of their pre-training
data, and may perpetuate such bias in downstream
tasks (Chuang et al., 2023). Additionally, in FL
applications, to transfer a pre-trained VLM to the
domain-specific data, it is common to fine-tune
the model on the clients’ data and then update the
global model via aggregation. In this case, if the
local data distributions are biased and heteroge-
neous, fine-tuning a biased VLM on such local
data would further amplify the bias of the global
model. The bias triggered by data heterogeneity
in FL represents a unique challenge, whereas there
exist no fair methods tailored for VLM-based FL
frameworks. Therefore, this work studies a critical
question: how can we develop a fair FL framework
using the biased pre-trained VLMs?

In this work, we focus on the fairness of the FL
model w.r.t. the unknown global data distribu-
tion. Ideally, a fair FL model shall perform non-
discriminatively against any demographic group
(i.g., group fairness) while achieving satisfactory
overall performance. To achieve this, we propose
a fairness-aware adaptation framework tailored for
VLMs in the context of FL: Fair Federated Deep
Visiual Prompting or FF-DVP. We highlight that
FF-DVP is specifically designed to mitigate the
bias in FL settings: 1) FF-DVP minimizes the com-
munication burden between the server and clients:
given the large size of CLIP, FF-DVP is light-
weighted in terms of communication costs in FL;
2) FF-DVP performs demographic-agnostic and
domain-generalized feature extraction: it removes
sensitive demographic information from CLIP fea-
tures while retaining domain-generalized ones to
counter data-heterogeneity-triggered bias in FL;

3) FF-DVP learns client-specific knowledge and
fairness constraints: FF-DVP adapts CLIP to learn
client-specific knowledge for targeted tasks (e.g.,
FAR applications) and meets client-specific fair-
ness constraints (e.g., demographic parity).

To this end, FF-DVP consists of two debiasing
modules. Firstly, FF-DVP debiases the CLIP fea-
tures through fairness-aware deep visual prompt-
ing (DVP). The fairness-aware DVP is a sequence
of learnable parameters prepended to the visual
tokens. This DVP is designed to remove the
demographic-related information from CLIP fea-
tures while preserving the domain-generalized in-
formation. The extracted fair, domain-generalized
feature overcomes the unique data-heterogeneity-
trigger bias in FL. Secondly, FF-DVP learns client-
specific knowledge and fairness constraints with
modality-fused classification heads. The classi-
fication heads also contribute to the learning of
fair and robust representations. With both mod-
ules, the aggregated global model achieves desired
group fairness despite the data heterogeneity in lo-
cal clients. Finally, we show that FF-DVP is flexi-
ble and can be extended to other parameter-efficient
fine-tuning (PEFT) methods, such as adapter-style
tuning (Houlsby et al., 2019) or low-rank adapta-
tion (LoRA) (Hu et al., 2021). We summarize the
contributions of our paper as follows1:

1. To the best of our knowledge, this work is
first to study inherent bias of the pretrained
VLMs in FL applications. Compared to cen-
tralized debiasing methods, we focus on the
unique data-heterogeneity-triggered bias in
FL, and proposed a scalable fair VLM-based
FL framework.

2. Technically, FF-DVP debiases the pre-trained
VLM (e.g., CLIP) through a novel fairness-
aware deep visual prompting. Moreover, as
a parameter-efficient adaptation method, we
show that our method could be easily extended
to other PEFT schemes.

3. We evaluate our method on federated face at-
tribute recognition (FAR) for its privacy and
ethical implications. On different FAR ap-
plications, experimental results suggest that
FF-DVP can effectively improve fairness of
FL models, outperforming the state-of-the-art
baselines by a significant margin.

1We adopt publicly available datasets and will release the
code upon acceptance.
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Figure 2: Overview of FF-DVP. On each client, FF-DVP adapts CLIP to application-specific data with fairness-
aware DVP and client-specific classification heads. Then, the server aggregates the learnable modules using any
existing aggregation protocol.

2 Related Work

Foundation Models and Federated Learning.
Large foundation models (e.g., GPT family (Ope-
nAI, 2023), LlaMA (Touvron et al., 2023), CLIP
(Radford et al., 2021)) exhibit robust generaliza-
tion capabilities across a wide spectrum of tasks.
Recently, efforts have been made to integrate foun-
dation models (e.g., CLIP) into FL frameworks for
better personalization and generalization (Lu et al.,
2023; Yang et al., 2023; Guo et al., 2023a; Chen
et al., 2023). For instance, Guo et al. (2023a,b)
focus on learning text prompts to personalize CLIP
on client data, whereas Li et al. (2023) leverage
visual prompts for the same goal. In addition
to prompt learning, Lu et al. (2023); Chen et al.
(2023) fine-tune CLIP with light-weighted adapters
to adapt CLIP to the personalized data on clients.
However, existing literature that combines CLIP
and FL merely focuses on accuracy, largely over-
looking the inherent bias of CLIP and its impact
on fair FL applications. In contrast, our work is the
first to consider the bias issue of CLIP in FL and
leverage biased CLIP to build fair FL frameworks.

Group Fairness in Federated Learning. For
identity-sensitive applications, concerns have been
raised about the fairness of the FL models (i.e.
group fairness): they could perform discrimi-
natively against under-represented demographic
groups (Ezzeldin et al., 2023). In terms of group
fairness in FL, Cui et al. (2021) strive to satisfy
the local personalized fairness on each client. In
comparison, a larger amount of studies (including
our work) focus on a more general notion of global
fairness, for its profound significance in real-world
applications Mohri et al. (2019); Du et al. (2021);
Ezzeldin et al. (2023); Hong et al. (2021). For in-

stance, agnostic federated learning (Mohri et al.,
2019) achieves the good-intent fairness that pro-
tects the worst-case performance on any client. A
fairness-aware aggregation protocol is introduced
in (Ezzeldin et al., 2023) to obtain a fair global
model. However, above methods usually suffer
from the issue of scalability: in the era of large
foundation models, the performance of traditional
fair FL methods might degrade significantly when
the data is complex and heterogeneous (Zhou et al.,
2022). In this work, we present the very first frame-
work that leverages large foundation models (e.g.,
CLIP) to address the bias issue in FL.

3 Preliminaries

Federated Learning. Assume there are K
clients in an FL application. For all datasets, each
data point consists of an input feature x ∼ X , a
demographic attribute a ∼ A and a label y ∼ Y .
A local dataset of client k is denoted as D(k) =
{(x(k)1 , a

(k)
1 , y

(k)
1 ), ...}. For simplicity, if not spec-

ified, we use the notations without client index k
to represent the data of an arbitrary client.

To find the optimal global model f∗
θ in an FL ap-

plication, McMahan et al. (2017) proposed FedAvg
(Appendix A). Specifically, at each round, each lo-
cal client trains its local model with its own data.
Then, clients send the trained local model weights
to the central server for aggregation. On the central
server, the global model will be updated using a
weighted-average of the received weights. How-
ever, if the local data distributions are imbalanced,
the locally trained models are also biased. This
eventually leads to an unfair global model after the
aggregation (Ezzeldin et al., 2023).
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Fairness Notions. To measure the model fairness
and performance, we adopt the commonly used de-
mographic parity Φdemo, equalized odds Φeq (Hardt
et al., 2016), accuracy parity ΦA (Makhlouf et al.,
2021) and balanced accuracy AB (Brodersen et al.,
2010). Due to space limit, we have summarized the
formal definition of fairness notions (i.e., Φdemo,
Φeq, ΦA and AB) in Appendix A.

CLIP. CLIP predicts which images are paired
with which text prompts. We use fI to denote
the CLIP image encoder, and fT for the CLIP text
encoder. For a query image x and a list of candidate
prompts for |Y| classes (e.g., a photo of [class
c]), CLIP selects the candidate prompt with the
highest normalized cosine similarity to x as the
predicted class (more details in Appendix A):

ŷ = argmax
c

exp
(
cos(z, tcandidatec)/τ

)
∑

c′ exp
(
cos(z, tcandidatec′ )/τ

) ,

where z = fI(x),

tcandidatec = fT (a photo of [class c]),

c ∈ {1, 2, ..., |Y|}.
(1)

For instance, in smiling detection (Figure 1), for a
query image, CLIP selects either “a smiling person”
or "an unsmiling person" as its prediction based on
similarity. However, due to the inhere bias of CLIP
(Chuang et al., 2023), directly integrating CLIP
into FL results in a biased FL model.

4 Algorithm

4.1 Fairness-aware Deep Visual Prompting
To exploit CLIP for a fair FL model, we propose
to firstly debias CLIP on each client. Specifically,
we present fairness-aware deep visual prompting
(DVP) that suppresses the demographic-related
signals in CLIP features and preserves domain-
generalized ones. For a better understanding of
our fairness-aware DVP, we expand the image en-
coder fI into L layers (Figure 3 (left)). As in (Jia
et al., 2022), at the input layer, CLIP divides a
query image x into J fixed-sized image patches
{I1, I2, ...Ij , ..., IJ |Ij ∈ R3×h×w}, where the size
of each image patch is h× w. Note that the index
of image patches j is different from the index of
samples i defined in Section 3. The image patches
are then embedded into embeddings using the em-
bedding layer (i.e., layer 0) of fI :

e0,j = fI,Embed(Ij), e0,j ∈ Rd, j ∈ {1, 2, ..., J}
(2)

… …

Embedding Layer

… …

Transformer Layers 

Output Layer 

… …

[CLS] 

Embedding Layer

…

Transformer Layers 

Output Layer 

[CLS] 

[CLS] …

…[CLS] …

… …

Figure 3: Fairness-aware Deep Visual Prompt.

After the embedding layer, the transformer layers
of fI then extract visual features from the image
embeddings using different transformer layers. In
particular, at the l-th transformer layer of fI :

[el,0, el,1, ..., el,J ]

= fI,Transformerl([el−1,0, el−1,1, ..., el−1,J ]),
(3)

where l ∈ {1, 2, ..., L} and [·, .., ·] represents the
concatenation operation along the dimension of se-
quence length. For simplicity, we use El to denote
[el,1, ..., el,J ]. Thus, Equation 3 is simplified as:

[el,0, El] = fI,Transformerl([el−1,0, El−1]). (4)

Note that in Equation 4, there is usually a [CLS]
token prepended to the visual tokens. Thus, at
the output layer, the first feature (corresponding to
[CLS]) is used as the classification token to com-
pute the cosine similarity: z = eL,0.

To address the bias issue of CLIP, we insert
fairness-aware visual prompts V = {p ∈ Rd} at
the embedding layer and the transformer layers of
fI as in Figure 3 (right). At the embedding layer,
the prompted image embeddings are formulated as:
[
e0,0, V0, E0

]
=

[
e0,0, p0,1, ..., p0,P ,︸ ︷︷ ︸

prompts

e0,1, ..., e0,J︸ ︷︷ ︸
embeddings

]
,

(5)
where P is the length of visual prompts, and V0 is
the visual prompt for the embedding layer. Simi-
larly, for the transformer layers, the forward pass
of each layer is formulated as:

[ẽ1,0, _, Ẽ1] = fI,Transformerl([e0,0, V0, E0])

[ẽl,0, _, Ẽl] = fI,Transformerl([ẽl−1,0, Vl−1, Ẽl−1]),

(6)

where ẽ and Ẽ are prompted representations, and
l ∈ {2, ..., L}. Therefore, at the output layer of the
prompted fI , the extract visual representation z is
also prompted:

z̃ = ẽL,0. (7)

10005



…

z
1

z
2

z
B

…

a male.

a female.

Text 
Encoder

t
a1

t
a2

s
11

s
12

s
21

s
22

s
B1

s
B2

… …

demo.-only 
prompts

0.5 0.5

0.5 0.5

0.5 0.5

… …

KLD
Loss

Prompted 
Image  

Encoder

(a) Fairness Branch.

…

Prompted 
Image  

Encoder

z
1

z
2

z
B

…

a smiling person.

an unsmiling person. Text 
Encoder

t
gt1

t
gt2

s
11

s
12

s
21

s
22

s
B1

s
B2

… …

t
gtB

…

s
12

s
22

s
BB

… …

…

…

…

…
an unsmiling person.

(b) Adapting CLIP to FAR data.
Figure 4: Training the fairness-aware DVP using the fairness branch (left) and CLIP contrastive loss (right).

The intuition of debiasing CLIP is to mitigate the
demographic-related information within z̃. For in-
stance, as in Figure 1, if the goal is to debias CLIP
for smiling detection w.r.t. gender, z̃ should not
encompass information that could infer the gender
of the query image.

To debias CLIP w.r.t. the demographic attribute
a, we propose to construct a set of demographic-
only prompts that depict the demographic infor-
mation of the input images (Figure 4a). As before,
CLIP encodes the demographic-only prompts into
representations: {ta1 , ta2 , ..., ta|A|}. With encoded
demographic-only text prompts and the prompted
visual representation z̃, we then propose a fairness-
loss to debias the CLIP feature for an input x:

lfair(x) = KL(P̂ r(A)
∣∣∣∣U(1, |A|)),

where

P̂ r(A) = Softmax
(cos(z̃, ta1)

τ
, ...,

cos(z̃, ta|A|)

τ

)
,

U(1, |A|)) = [
1

|A| , ...,
1

|A| ].
(8)

Equation 8 computes the KL-divergence be-
tween the normalized cosine similarities P̂ r(A)
and a uniform distribution U(1, |A|). Each
element in P̂ r(A) measures the relevance be-
tween the prompted visual representation z̃ and
a demographic-only text prompt (e.g., a photo
of a [male].). By minimizing Equation 8, all
demographic-only text prompts become equally rel-
evant to z̃. This indicates that CLIP can no longer
distinguish which demographic group is more re-
lated to z̃ than others, thereby, debiasing CLIP.

In addition to fairness, we also propose to
optimize a contrastive loss using the ground-
truth prompts to maintain an overall high perfor-
mance (Figure 4b). Formally, for training dataset

D = {(xi, ai, yi)}, we construct the ground truth
prompts for xi that contains textual description of
yi. Then, we compute the CLIP contrastive loss
over the prompted visual representation and the
prompts as in (Radford et al., 2021):

LCLIP =
1

|D|

|D|∑

i=1

− log
ez̃i·tgti

∑|D|
j=1 e

z̃i·tgtj

+
1

|D|

|D|∑

i=1

− log
ez̃i·tgti

∑|D|
j=1 e

z̃j ·tgti
,

(9)

where z̃i is the prompted visual repre-
sentation (i.e., Equation 7) and tgti =
fT (ground-truth prompt of xi) is the en-
coded ground-truth prompt. To adapt CLIP into
task-specific data and suppress the inhere bias of
CLIP, Equation 9 and Equation 8 are optimized
jointly, balanced via a non-negative factor λ1:

LCLIP + λ1 ∗
1

|D|

|D|∑

i=1

lfair(xi) (10)

Finally, we highlight that FF-DVP is adjustable,
allowing users to determine which transformer lay-
ers to prompt or not (i.e., not necessarily prompting
all layers). We experimented this design by inter-
vening only the first layer, first half layers and all
layers of the CLIP image encoder in Section 5.3.
We found that more intervened layers would gener-
ally improve the performance.

4.2 Client-Specific knowledge and Fairness
In FL, it is not always feasible to collect Internet-
scale image data and text data on each client to
finetune CLIP. Such data sparsity leads to training
instability and performance degradation. There-
fore, we further propose to build a shared light-
weighted modality-fused classifier fcls (i.e., a two-
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layer fully connected network) to stabilize the train-
ing of CLIP on clients and help CLIP learn robust
latent representations (Appendix B).

In our FL setting, each client fine-tunes CLIP as
well as trains this classifier to the FAR application
using the client’s local data. The classifier takes
the prompted visual representation and the text
representation as input. It then fuses the features
from both data modalities:

ŷ = fcls([Π(z̃),Π(tgt)]), (11)

where z̃ is the prompted visual representation of
x, and tgt = fT (ground-truth prompt of x) is
the encoded ground-truth prompts. [·, ·] represents
the concatenation operation. In Equation 11, we
introduce a learnable projection matrix Π to reduce
the dimensionality of z̃ and tgt. To train fcls, we
optimize the cross entropy loss as well as a fairness
regularizer Φ̂. over the training set on each client:

1

|D|

|D|∑

i=1

lce(ŷi, yi) + λ2 ·
1

|D|

|D|∑

i=1

Φ̂.(xi, yi, ai).

(12)
The rationale behind this design is that: despite
the debiasing efforts on CLIP features, the ultimate
classification performance of the model does not
necessarily fulfill the fairness constraints on local
clients. Therefore, training fcls on local data con-
tributes to learning client-specific knowledge and
fairness constraints. This design improves the fair-
ness of the model in terms of the ultimate prediction
performance after the global model aggregation.
The fairness regularizers Φ̂. could be implemented
flexibly using arbitrary differentiable version of
fairness notion defined in Section 3.

4.3 Overall Framework
Training. The fairness-aware DVPs and client-
specific classifiers are jointly trained in a standard
FL fashion (i.e., local training and global aggre-
gation). In our implementation, FedAvg is used
for aggregation. The pseudocode of the train-
ing pipeline is summarized in Algorithm 1 (Ap-
pendix C). Finally, we highlight that the weights
of CLIP encoders are not updated and exchanged.
FF-DVP is a parameter-efficient method.

Inference. During the inference phase, we only
use the prompted CLIP image encoder f̃I and the
original text encoder fT to perform inference for
the query images. fcls is dropped on purpose be-
cause fcls is only designed to help CLIP learn

client-specific knowledge and fairness constraints
during training. Similar to Equation 1, the co-
sine similarity between prompted visual represen-
tations z̃ and candidate prompts is computed for
making predictions.

5 Experiments

5.1 Experimental Setup

Dataset. We use CelebA (Liu et al., 2015) and
FairFace (Karkkainen and Joo, 2021) to study dif-
ferent FAR applications in the context of FL. Due
to space limit, we chose smiling and age as our
predictive face attributes. As mentioned in (Shen
et al., 2017), smiling detection is objective since
smiling or not is easy to judge. In comparison, age
detection is more challenging: it is formulated as
a binary task of classifying ’young’ and ’old’, but
both age groups exhibit a broad age range, causing
a vague and hard-to-learn boundary. Finally, the
age label is the only shared label in both datasets,
which help us to test the generality of our method.
Without loss of generality, we choose gender as the
demographic attribute.

FL setup. During experiments, the training of
some baseline methods could not converge under
the high data complexity and data heterogeneity
of FAR applications. Therefore, for fair compari-
son, we compare all methods under a setting of 5
clients, where all baseline methods could converge.
Moreover, for training convergence and computa-
tional efficiency, we downsample 20000 images
from both datasets and distribute the samples im-
ages to the 5 clients. We explicitly control popula-
tion shifts for all clients, so that the local training
data distributions are imbalanced and non-i.i.d. Fi-
nally, to eliminate the potential bias in the test data
distribution that could affect the fairness evalua-
tion, we sample a balanced test set of size 5000
to evaluate the FL model. More implementation
details (i.e., local data distribution configuration,
prompt design, hyperparameters, CLIP version) are
summarized in Appendix D.

Baseline algorithms and models. Due to the
lack of baselines that explore pre-trained founda-
tion models for fair FL, we select FedAvg (McMa-
han et al., 2017), AFL (Mohri et al., 2019), FairFed
(Ezzeldin et al., 2023), and FADE (Hong et al.,
2021) as the baselines for comparison. Moreover,
to better demonstrate the necessity of using pre-
trained foundation models, we adopt a relatively
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Face Application Metrics CLIP zero-shot FedAvg AFL FairFed FADE FF-DVP (Ours)

Smiling Detection
(CelebA)

AB ↑ 0.848 0.903±0.009 0.899±0.008 0.900±0.011 0.866±0.004 0.905±0.005

ΦA ↓ 0.422 0.191±0.123 0.266±0.103 0.239±0.113 0.263±0.100 0.158±0.043

Φdemo ↓ 0.106 0.012±0.004 0.011±0.015 0.011±0.006 0.021±0.002 0.010±0.011

Φeq ↓ 0.211 0.037±0.001 0.042±0.016 0.033±0.008 0.051±0.006 0.028±0.016

Age Detection
(CelebA)

AB ↑ 0.601 0.534±0.027 0.622±0.099 0.584±0.119 0.773±0.007 0.839±0.009

ΦA ↓ 1.829 1.898±0.073 1.515±0.410 1.602±0.563 0.428±0.055 0.284±0.203

Φdemo ↓ 0.281 0.043±0.030 0.062±0.060 0.040±0.056 0.105±0.012 0.026±0.020

Φeq ↓ 0.562 0.085±0.060 0.128±0.120 0.079±0.112 0.210±0.023 0.053±0.039

Age Detection
(FairFace)

AB ↑ 0.544 0.526±0.036 0.545±0.054 0.546±0.048 0.728±0.017 0.848±0.032

ΦA ↓ 1.738 1.926±0.104 1.863±0.159 1.212±0.722 0.910±0.152 0.338±0.265

Φdemo ↓ 0.024 0.028±0.040 0.052±0.064 0.029±0.026 0.222±0.035 0.025±0.011

Φeq ↓ 0.234 0.057±0.080 0.103±0.128 0.059±0.053 0.445±0.071 0.053±0.019

Table 1: Improving model fairness and accuracy with different schemes. The mean and standard deviation are
reported. The best results are highlighted in bold and the second best results are highlighted with underline.

smaller model, ResNet-18 (pre-trained on Ima-
geNet) to run the selected baseline methods.

5.2 Evaluation: Fairness and Accuracy

Firstly, we compare FF-DVP with the baselines
methods and present evaluation results in Table 1.
Following (Lu et al., 2023), the experiments are
repeated for 3 times. We observe: (1) the proposed
FF-DVP effectively reduces the demographic bias
of the FL model compared to all baseline fair FL
methods. For instance, compared to CLIP (zero-
shot), the model bias is reduced by approximately
87% w.r.t. Φeq on smiling detection; (2) FF-DVP
achieves better fairness without necessarily sacri-
ficing the accuracy. This is expected because our
test dataset is subsampled from the original dataset
and is balanced. After deploying FF-DVP, the FL
model’s performance on the minority group would
be improved, leading to a natural increase in over-
all accuracy with the balanced test dataset. This
indicates that the fairness-accuracy trade-off of FF-
DVP is less pronounced. (3) FF-DVP achieves bet-
ter training convergence than the baseline methods.
Compared to baselines, FF-DVP achieves perfor-
mance improvements in terms of both accuracy and
fairness, whereas barely can traditional FL meth-
ods converge. We attribute the success of FF-DVP
to the pre-trained foundation model as well as our
novel fairness-aware adaptation strategy.

5.3 Fairness-aware PEFT

Next, we show that FF-DVP can generalize to other
parameter-efficient fine-tuning (PEFT) methods, in-
cluding adapter-style fine-tuning and Low-Rank
Adaptation (i.e., LoRA). For the adapter-style fine-

FAR Metrics FF-DVP FF-ADP FF-LoRA

Smiling
(CelebA)

AB ↑ 0.905±0.005 0.877±0.001 0.907±0.001

ΦA ↓ 0.158±0.043 0.299±0.028 0.079±0.009

Φdemo ↓ 0.010±0.011 0.075±0.002 0.014±0.006

Φeq ↓ 0.028±0.016 0.150±0.014 0.038±0.019

Age
(CelebA)

AB ↑ 0.839±0.009 0.806±0.001 0.852±0.001

ΦA ↓ 0.284±0.203 0.371±0.036 0.174±0.018

Φdemo ↓ 0.026±0.020 0.073±0.007 0.014±0.010

Φeq ↓ 0.053±0.039 0.145±0.013 0.029±0.0019

Age
(FairFace)

AB ↑ 0.848±0.032 0.834±0.001 0.873±0.002

ΦA ↓ 0.338±0.265 0.135±0.010 0.173±0.016

Φdemo ↓ 0.025±0.011 0.034±0.003 0.041±0.006

Φeq ↓ 0.053±0.019 0.067±0.005 0.083±0.013

Table 2: Extending FF-DVP to FF-ADP and FF-LoRA.

tuning, we combine FF-DVP with the attention-
based adapter proposed in (Lu et al., 2023) (abbre-
viated as FF-ADP). As for LoRA, we combine FF-
DVP with LoRA (abbreviated as FF-LoRA), and
set the LoRA rank as 8, considering the communi-
cation cost of FL. As shown in Table 2, under the
same FL setup, our debiasing strategy could still
be effective in terms of debiasing FL models for
both adapter-style fine-tuning and LoRA. Further-
more, we note that the number of intervened layers
can influence the debiasing performance. For in-
stance, FF-ADP only intervenes the output layer
of the image encoder, which makes FF-ADP per-
form worse than FF-DVP and FF-LoRA. In com-
parison, FF-LoRA intervenes in all layers of the
image encoder, and FF-LoRA generally achieves
better performance than the others. As such, we
highlight that our method is adjustable: FF-DVP al-
lows the users to specify which transformer layers
to debias, taking into account application-specific
factors such as communication cost or dataset size.
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FAR Metrics FF-DVP w/o Contras. L. w/o Classi. L.

Smiling
(CelebA)

AB ↑ 0.905±0.005 0.435±0.096 0.894±0.025

ΦA ↓ 0.158±0.043 1.099±0.300 0.253±0.228

Φdemo ↓ 0.010±0.011 0.069±0.029 0.017±0.009

Φeq ↓ 0.028±0.016 0.160±0.088 0.037±0.019

Age
(CelebA)

AB ↑ 0.839±0.009 0.513±0.230 0.838±0.007

ΦA ↓ 0.284±0.203 1.179±0.589 0.448±0.152

Φdemo ↓ 0.026±0.020 0.102±0.072 0.112±0.038

Φeq ↓ 0.053±0.039 0.204±0.142 0.224±0.076

Age
(FairFace)

AB ↑ 0.848±0.032 0.538±0.250 0.868±0.003

ΦA ↓ 0.338±0.265 1.052±0.706 0.268±0.058

Φdemo ↓ 0.025±0.011 0.045±0.046 0.061±0.011

Φeq ↓ 0.053±0.019 0.091±0.001 0.122±0.021

Table 3: Ablation Study.

5.4 Ablation Study
We conduct an ablation study to evaluate the contri-
bution of each key module of FF-DVP, namely the
fairness-aware DVP and client-specific classifiers.
The results are reported in Table 3. As expected, we
observe that it is necessary to use contrastive loss
to fine-tune the deep visual prompts. For instance,
without the contrastive loss (as well as Lfair), the
adaptation basically fails. In comparison, fcls in-
deed contributes to the fair representation learning
of the model. For instance, the model fairness w.r.t
demographic parity and equalized odds increase
without using fcls, indicating the contribution of
fcls to fair representation learning.

5.5 Scalability Study
We further study the scalability of FF-DVP w.r.t.
the number of clients. We exclude the results of
baseline methods in Figure 5, because baseline
methods could barely converge. They make pre-
dictions randomly and achieve almost perfect but
trivial fairness. We keep scaling up the number
of clients until the training time exceeds the limit
of a week. Moreover, we increase the number of
clients but still control the group shifts to simulate
non-i.i.d. heterogeneous and imbalanced data dis-
tributions (Appendix D). The results on smiling
detection are visualized in Figure 5. We observe
that, under a larger number of clients, our method
could still converge and achieve similar or better
fairness than the CLIP zero-shot performance.

5.6 Robustness Study
We finally study the relationship between the per-
formance of FF-DVP and the length of visual
prompts P . This hyperparameter is directly re-
lated to the communication cost in FL, as the visual
prompts are shared and updated during the training
process. In Table 4, we observe that there exists an
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Figure 5: Scalability study on Smiling: we scaling up
the number of clients to 40.

FAR # Tkns AB ↑ ΦA ↓ Φdemo ↓ Φeq ↓

Smiling
(CelebA)

10 0.708±0.162 1.115±0.719 0.014±0.010 0.028±0.021

20 0.905±0.005 0.158±0.043 0.010±0.011 0.028±0.016

30 0.843±0.092 0.494±0.479 0.012±0.008 0.029±0.009

40 0.894±0.010 0.323±0.094 0.044±0.004 0.087±0.007

50 0.867±0.026 0.409±0.218 0.019±0.017 0.039±0.033

Age
(FairFace)

10 0.838±0.020 0.466±0.287 0.059±0.054 0.131±0.094

20 0.848±0.032 0.338±0.265 0.025±0.011 0.053±0.019

30 0.843±0.040 0.416±0.336 0.032±0.009 0.066±0.018

40 0.831±0.034 0.526±0.319 0.067±0.044 0.135±0.087

50 0.785±0.034 1.067±0.297 0.217±0.103 0.434±0.205

Table 4: Robustness w.r.t. number of tunnable tokens.

optimal length of 20 to use the deep visual prompt-
ing. With shorter prompts, the expressive power
of the model is reduced, indicating both debiasing
and adaptation process is under-fitting the data. In
comparison, with more tunable tokens, the train-
ing becomes slower and unstable. The instability is
caused by the scarcity of the textual modality: there
is insufficient amount of text data to train such a
large model. For instance, in FairFace age detec-
tion, the FL model only achieves 78.5% accuracy
with even 50 visual tokens. This observation indi-
cates that more visual tokens will not necessarily
improve the performance.

6 Conclusion

This work presents a novel fair FL framework using
biased vision language models. FF-DVP provides
an effective solution to develop fair ML models
while protecting data privacy on users’ end. We
highlight the significance of this work: despite the
promising integration of large foundation models
with FL applications, existing literature largely
overlooks the inherent bias of these foundation
models. In contrast, our work is the first to ad-
dress the inherent bias of these foundation models
and their bias implication on FL applications. Fi-
nally, in addition to the performance of FF-DVP,
we show that our method could easily extended to
other PEFT methods for the adaptation of VLMs.
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7 Limitations

One limitation of this work is that our method in-
troduces extra hyperparameters. For different ap-
plications, one might need to finetune these hy-
perparameters, which brings extra computational
cost, such as the trade-off factor λ and number of
tunnable visual tokens. As for the actually trainable
modules, there is only a small two-layer network
and light-weight perturbations. Another limitation
of this work is that our method only focuses on
the bias, whereas CLIP has encoded other ethics-
related issues (e.g., stereotypical data, racism and
hate speech). Such malicious contents could have
negative ethical implications on downstream FL
applications as well. Therefore, a future research
direction is to develop a benign, fair FL frame-
work.
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A Additional Prelinminaries

A.1 Federated Averaging

To find the optimal global model f∗
θ in an FL application, McMahan et al. (2017) proposed Federated

Averaging (FedAvg). Specifically, at each round, each local client firstly receives a copy of the global
model fθ from the central server and trains the model with its own data. All clients will then obtain
different local models (fθ(1) , fθ(2) , ...fθ(K)), and send the trained model weights to the central server.
Next, on the central server, the global model will be updated using a weighted-average of the received
local model weights. Formally, FedAvg operates as follows:

θ∗ =
1∑

k |D(k)|

K∑

k=1

|D(k)| · θ(k)

s.t. θ(k) = argmin
θ

1∑
k |D(k)|

|D(k)|∑

i=1

l(fθ(x
(k)
i , y

(k)
i )

k ∈ {1, ...,K}.

(13)

A.2 Fairness Notions

Definition 1 (Demographic Parity Φdemo (binary case)). For a classifier fθ, demographic parity Φdemo

is defined as:

Φdemo(·) = |Pr(fθ(X) = 1|A = 0)− Pr(fθ(X) = 1|A = 1)|. (14)

Furthermore, we also use fairness-aware accuracy metrics to measure the model’s performance as in
Yue et al. (2022), namely sub-group accuracy gap and balanced accuracy.

Definition 2 (Sub-group Accuracy Asub). For a classifier fθ, the sub-group accuracy Asub is the accuracy
on a specific demographic group characterized by A and Y .

Asub(·) = Pr(fθ(X) = Y |A = a) (15)

Definition 3 (Accuracy Parity ΦA). For a classifier fθ, the accuracy parity ΦA sums up the absolute
error among all demographic groups.

ΦA(·) =
∑

a

∑

y

∑

a′

∑

y′
|Asub(a, y)−Asub(a

′, y′)| (16)

Definition 4 (Balanced Accuracy AB). For a given classifier fθ, the balanced accuracy computes the
averaged sub-group accuracy for all demographic groups.

AB(·) =
∑

a

∑
y Asub(a, y)

|A| · |Y| . (17)

Since the model parameter is learned based on the training data distribution, local fairness could be
highly heterogeneous across different local clients due to the discrepancy across different local data
distributions.

A.3 CLIP Inference

CLIP is a large foundation model pre-trained with 400 million image-caption pairs. During pre-training,
CLIP is trained to predict which images are paired with which texts. With such scale of pre-training
data, CLIP is a powerful zero-shot image classifier and generalizes to different image classification tasks.
To perform image classification, CLIP firstly encodes a query image and a set of text descriptions into
latent representations. Next, CLIP computes the cosine similarity between the image representations and

10012



text representations. To produce the final prediction, CLIP selects the text with highest cosine similarity
among all texts as the final prediction.

Formally, we use fI to denote the CLIP image encoder and fT to denote the CLIP text encoder. For a
query image x and |Y| classes, we firstly craft a set of candidate prompts that contain class information
(e.g., { a photo of [class 1], a photo of [class 2]...}). Then, CLIP encodes x into z, and encodes
the candidate prompts into representations {tcandidate1 , tcandidate2 , ..., tcandidate|Y|}, respectively. After
computing cosine similarity between the image representation z and candidate prompt representations,
CLIP selects the text with highest cosine similarity as the final prediction:

ŷ = argmax
c

cos(z, tcandidatec)∑
c′ cos(z, tcandidatec′ )

,

where z = fI(x),

tcandidatec = fT (”a photo of [class c].”),

c ∈ {1, 2, ..., |Y|}.

(18)
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B Modality-fused Classifier

The modality-fused classifier takes the prompted visual representation and the text representation as input.
It then fuses the features from both data modalities:

ŷ = fcls([Π(z̃),Π(tgt)]), (19)

where z̃ is the prompted visual representation of x, and tgt = fT (ground-truth prompt of x) is the
encoded ground-truth prompts. [·, ·] represents the concatenation operation.

Text Encoder
Prompted Image  

Encoder

a smiling person.

z t
gt

Projection

Classifier

Figure 6: The classifier takes the debiased prompted visual representation and the text representation as input, and
fuses the features from both data modalities.
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C Algorithm in Pseudocode

Algorithm 1: FF-DVP

1 Input CLIP image encoder fI , CLIP text encoder fT , classifier fcls and projection matrix Π,
datasets of local clients D1,D2, ...,DK , task prompts T = {T1, T2, ..., TC}, demographic-only
prompts TA = {Ta1 , Ta2 , .., Ta|A|};

2 Hyperparameters learning rate η, trade-off factor λ1 and λ2, length of visual prompts P ;
3 Initialize visual prompts V of length P at the central server ;
4 Clients download fI and fT ;
5 for global epochs do
6 for k=1,2,...,K do
7 Receive trainable models: f (k)

cls = fcls, V (k) = V ;
8 for local epochs do
9 compute L1 = LCLIP + λ1 · 1

|D|
∑|D|

i=1 lfair(xi) ;

10 compute L2 = Lcls + λ2 · 1
|D|

∑|D|
i=1 Φ̂.(xi);

11 Update V (k) and f
(k)
cls with gradient descent;

12 end
13 Send V (k) and f

(k)
cls to the central server ;

14 end
15 Aggregate the received V (k)s and f

(k)
cls s ;

16 end
17 Output the prompted CLIP image encode f̃I ;
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D Implementation Details

D.1 Non-i.i.d. Local Data Distributions
We explicitly control population shifts for all clients, so that the local training data distributions are
imbalanced and non-i.i.d. Below, we visualize the training data distribution of local clients.

Group 1 Group 2 Group 3 Group 4

client 1

Group 1 Group 2 Group 3 Group 4

client 2

Group 1 Group 2 Group 3 Group 4

client 3

Group 1 Group 2 Group 3 Group 4

client 4

Group 1 Group 2 Group 3 Group 4

client 5

Figure 7: Client data distribution under 5 clients.

Group 1Group 2Group 3Group 4

client 1

Group 1Group 2Group 3Group 4

client 2

Group 1Group 2Group 3Group 4

client 3

Group 1Group 2Group 3Group 4

client 4

Group 1Group 2Group 3Group 4

client 5

Group 1Group 2Group 3Group 4

client 6

Group 1Group 2Group 3Group 4

client 7

Group 1Group 2Group 3Group 4

client 8

Group 1Group 2Group 3Group 4

client 9

Group 1Group 2Group 3Group 4

client 10

Group 1Group 2Group 3Group 4

client 11

Group 1Group 2Group 3Group 4

client 12

Group 1Group 2Group 3Group 4

client 13

Group 1Group 2Group 3Group 4

client 14

Group 1Group 2Group 3Group 4

client 15

Group 1Group 2Group 3Group 4

client 16

Group 1Group 2Group 3Group 4

client 17

Group 1Group 2Group 3Group 4

client 18

Group 1Group 2Group 3Group 4

client 19

Group 1Group 2Group 3Group 4

client 20

Group 1Group 2Group 3Group 4

client 21

Group 1Group 2Group 3Group 4

client 22

Group 1Group 2Group 3Group 4

client 23

Group 1Group 2Group 3Group 4

client 24

Group 1Group 2Group 3Group 4

client 25

Group 1Group 2Group 3Group 4

client 26

Group 1Group 2Group 3Group 4

client 27

Group 1Group 2Group 3Group 4

client 28

Group 1Group 2Group 3Group 4

client 29

Group 1Group 2Group 3Group 4

client 30

Group 1Group 2Group 3Group 4

client 31

Group 1Group 2Group 3Group 4

client 32

Group 1Group 2Group 3Group 4

client 33

Group 1Group 2Group 3Group 4

client 34

Group 1Group 2Group 3Group 4

client 35

Group 1Group 2Group 3Group 4

client 36

Group 1Group 2Group 3Group 4

client 37

Group 1Group 2Group 3Group 4

client 38

Group 1Group 2Group 3Group 4

client 39

Group 1Group 2Group 3Group 4

client 40

Figure 8: Client data distribution under 40 clients.
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D.2 Hyperparameters and CLIP Configuration
For FF-DVP, FF-ADP, FF-LoRA, we select CLIP with configuration of ViT-L/14@336px to run exper-
iments, and the learning rate is initialized as 1e-5. The models are optimized via AdamW. The local
training epoch is 2 and the global epoch is also 2. For other baselines, including FedAvg, AFL, FairFed,
FADE, we train the models by starting with the default training configuration and recommendations.
However, we observed training divergence, and therefore, increased both local epochs (up to 30) and
global epochs (up to 30). For all methods with key hyperparameters, we firstly performed grid search
with the resolution of 0.1 until find the best performance. Based on that, we further reduce the search
resolution to 0.01 until find best performance. Our hardware is NVIDIA A40.

D.3 Prompt Engineering
As a necessary input for CLIP, we manually design sets of prompts for different FAR applications. To
determine whether the prompts are informative, we firstly compare the zero-shot performance of CLIP
on FAR applications with biased or unbiased prompts. A biased prompt contains sensitive demographic
information in addition to the class information. On the contrary, an unbiased prompt only contains class
information. To enable FF-DVP, we also craft the demographic-only prompts defined in Section 4.1. For
better understanding, we provide exemplar prompts for the FAR applications in Table 5 and Table 6.

In our experiments, the biased prompts generally achieve better accuracy because they impose de-
mographic information on the face image, which potentially helps CLIP to recognize the face image.
Given the zero-shot performance, we use biased prompts in experiments. Therefore, in our experiments,
the biased prompts are used as the textual input for CLIP. Note that even if the biased prompts contain
demographic information, FF-DVP can still effectively debias CLIP.

Type Prompts

biased prompts (used)

A photo of a male, and he is [smiling].
A photo of a female, and she is [smiling].
A photo of a male, and he is [not smiling].
A photo of a female, and she is [not smiling].

unbiased prompts A photo of a [smiling] person.
A photo of a [not smiling] person.

demographic-only prompts (used) A photo of a male.
A photo of a female.

Table 5: Crafted prompts for the CelebA smiling detection application. With biased prompts, CLIP achieves
zero-shot accuracy of 84.8% whereas with unbiased prompts, the zero-shot accuracy is only 74.8%. Therefore, we
choose to use the biased prompts in our experiments.

Type Prompts

biased prompts (used)

A photo of a male, and he is [young].
A photo of a female, and she is [young].
A photo of a male, and he is [not young].
A photo of a female, and she is [not young].

unbiased prompts A photo of a [young] person.
A photo of a [not young] person.

demo.-only prompts (used) A photo of a male.
A photo of a female.

Table 6: Crafted prompts for the CelebA age detection and FairFace age detection. To be consistent with smiling
detection and considering the zero-shot accuracy, we also use biased prompts for age detection in our experiments.
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