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Abstract

Direct speech-to-speech translation achieves
high-quality results through the introduction
of discrete units obtained from self-supervised
learning. However, talking head translation,
converting audio-visual speech (i.e., talking
head video) from one language into another,
still confronts several challenges compared to
audio speech: (1) Existing methods invariably
rely on cascading, synthesizing via both au-
dio and text, resulting in delays and cascad-
ing errors. (2) Talking head translation has
a limited set of reference frames. If the gen-
erated translation exceeds the length of the
original speech, the video sequence needs to
be supplemented by repeating frames, lead-
ing to jarring video transitions. In this work,
we propose a model for talking head transla-
tion, TransFace, which can directly translate
audio-visual speech into audio-visual speech
in other languages. It consists of a speech-to-
unit translation model to convert audio speech
into discrete units and a unit-based audio-visual
speech synthesizer, Unit2Lip, to re-synthesize
synchronized audio-visual speech from dis-
crete units in parallel. Furthermore, we in-
troduce a Bounded Duration Predictor, ensur-
ing isometric talking head translation and pre-
venting duplicate reference frames. Experi-
ments demonstrate that Unit2Lip significantly
improves synchronization and boosts inference
speed by a factor of ×4.35 on LRS2. Addi-
tionally, TransFace achieves impressive BLEU
scores of 61.93 and 47.55 for Es-En and Fr-
En on LRS3-T and 100% isochronous trans-
lations. The samples are available at https:
//transface-demo.github.io/

1 Introduction

With the rapid advancement of online communica-
tion technology, the demand for talking head trans-
lation technology (NVIDIA, 2022; Waibel et al.,

*Equal contribution.
†Corresponding author.

2022) has surged across various domains including
online meetings, education, and healthcare. The
aim is to create cross-language talking heads that
both the audio speech and the visual speech cor-
respond to the content of the target language and
keep the audio-visual synchronization. Presently,
most works (Lavie et al., 1997; KR et al., 2019)
is carried out in a cascading manner, entailing au-
tomatic speech recognition (ASR) (Yu and Deng,
2016) , neural machine translation (NMT) (Brown
et al., 1990), text-to-speech (TTS) (Klatt, 1987),
and wav2lip (Prajwal et al., 2020) models working
in succession. However, this approach accumulates
significant errors and results in excruciatingly slow
inference. Moreover, it falls short when dealing
with text-less languages like Minnan and various
dialects. Some speech-to-speech translation efforts
(Lee et al., 2021) have introduced textless NLP,
incorporating discrete units acquired through self-
supervised learning (Hsu et al., 2021) to represent
the speech of the target language. It replaces text
as the training target and enables direct speech-to-
speech translation. (Lee et al., 2021).

Nevertheless, despite these advancements, the
talking head translation models (Waibel et al.,
2023) still rely on both text and audio speech for
wav2lip processing. The current talking head trans-
lation framework primarily grapples with the fol-
lowing hurdles: (1) Sluggish Inference and Cas-
cading Error: Existing methods, being built on
the cascade model approach, necessitate the synthe-
sis of talking heads through text and speech. This
results in a sluggish inference and an failure to pro-
vide additional supplementary visual information
(e.g., visually distinguishable phonemes /ae/ and
/ai/). (2) Lack of Parallel Corpus Data: The
acquisition of visual corpus data is obviously more
challenging compared to audio corpus, which re-
quires frontal videos. Parallel visual translation
corpus for direct talking head translation is diffi-
cult to construct. (3) Fixed Number of Reference
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Frames: The translation outcomes can often be ex-
cessively lengthy, requiring the reuse of reference
frames, which leads to jarring video transitions.

To address these challenges, we propose a di-
rect talking head translation framework, Trans-
face, consisting of a speech-to-unit translation
model (S2UT) to convert audio speech into dis-
crete units and a unit-based audio-visual speech
synthesizer (Unit2Lip) to re-synthesize synchro-
nized audio-visual speech from discrete units in
parallel. Unit2Lip achieves acceleration with paral-
lel synthesis of audio and visual speech (Unit-To-
Audio & Visual) instead of the traditional serial
synthesis (Unit-To-Audio-To-Visual). Meanwhile,
since the S2UT model can learn cross-linguistic
mapping from parallel audio data, we directly ap-
ply this cross-linguistic mapping to the talking head
translation to realize zero-shot Talking Head Trans-
lation without parallel visual corpus. Finally, to
address the challenge of the fixed number of ref-
erence frames, we propose a Bounded Duration
Predictor module, which can uniformly coordinate
the number of frames sustained by each discrete
unit according to the target length, and thus control
the total length, realizing Isometric Talking Head
Translation and improving the translation result.
The main contributions are as follows:

• We introduce the first direct talking head transla-
tion framework, TransFace, capable of synthesiz-
ing talking heads without relying on audio speech
and text. This innovation effectively circumvents
the slowdown and cumulative error typically as-
sociated with model cascading.

• We propose the first unit-based audio-visual
speech synthesizer, Unit2Lip, which can synthe-
size audio and visual speeches in parallel while
maintaining synchronization with audio speech,
achieving 4.35× inference speedup.

• We propose a bounded-duration-predictor that
achieves 100% isometric talking head translation,
which is significant for streaming translation sce-
narios. Also, it effectively avoids jarring video
transitions and improves the acceptance of trans-
lated talking head videos.

• We conduct experiments to demonstrate that
Unit2Lip achieves a notable improvement in syn-
chronization (1.601 LSE-C improvement for orig-
inal speech and 0.982 LSE-C improvement for
generated speech) on LRS2. Additionally, Trans-
Face achieves 61.93 and 47.55 BLEU scores for
Es-En and Fr-En on LRS3-T, respectively.

2 Related Works

2.1 Audio-Visual Speech Synthesis.

The synthesis of high-quality audio and visual
speech is an ongoing area of research, given its
significance as an information carrier. In the
early stages of development, researchers initially
rely on mel spectrograms for resynthesizing audio-
visual speech. WaveNet (Oord et al., 2016) first
demonstrates that convolutional neural networks
can synthesize high-fidelity audio speech from mel-
spectrograms. Some studies (KR et al., 2019; Pra-
jwal et al., 2020) employs GAN networks to gen-
erate the corresponding audio-lip synchronized vi-
sual speech (talking head) from mel-spectrograms.
With the advent of self-supervised learning (Hsu
et al., 2021), researchers are beginning to explore
the resynthesis of audio speech from discrete units
(Polyak et al., 2021). Subsequent efforts (Zhang
et al., 2023; Seamless Communication, 2023) fo-
cus on a range of audio synthesis tasks based on
discrete units. Discrete units reduce the complexity
of modeling sequences and enhance the model’s
comprehension of sequences.

However, although audio-visual speeches are
two temporally parallel media streams containing
temporally consistent semantic information, no re-
searchers have yet attempted to synthesis talking
head from discrete units. In this paper, we intro-
duce a unit-based audio-visual speech synthesizer.
The transition from the original method (Unit-to-
Audio-to-Visual) to a parallel synthesis method
(Unit-to-Audio&Visual) leads to a substantial ac-
celeration. Moreover, Unit2Lip does not have a
dependency on audio speech during synthesis, al-
lowing the synthesized talking head to provide ad-
ditional supplementary visual information.

2.2 Speech-To-Speech Translation.

The speech-to-speech translation (Jia et al., 2019;
Lee et al., 2021; Huang et al., 2022) aims to trans-
late speech from one language to the semanti-
cally consistent speech of other languages, and has
great promise for applications in scenarios such as
transnational meetings and online education. Ear-
lier work (Lavie et al., 1997; Zhang et al., 2021)
was based on a cascade model approach to speech-
to-speech translation. The excessive number of
cascading models results in extremely slow model
inference, which is not suitable for online scenarios
with high real-time requirements, and introduces
additional cascading errors, and is also not suitable
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Figure 1: Illustration of the direct Talking Head Translation system for audio-visual speech. Both audio and visual
speech can be taken as input or be generated. In this paper, we present a sample that takes audio speech as input and
generates synchronized audio-visual speech. The unit-based synthesizer consists of two parallel synthesizers which
can synthesis the corresponding audio speech and visual speech from the same units, respectively.

for languages (e.g., Minnan) and dialects without
text. Some studies (Lee et al., 2021; Huang et al.,
2022) employ the discrete speech units during train-
ing, facilitating text-independent S2ST.

However, the development of the talking head
translation task (Waibel et al., 2022) is currently in
early stages. The lack of parallel visual corpus for
the talking head translation has led existing work
into training with such super-multiple cascade mod-
els. In this paper, we overcomes the challenge of
no parallel visual corpus with a direct talking head
translation framework, TransFace, learning cross-
linguistic mappings from parallel audio-speech cor-
pus. We also propose a bounded-duration-predictor
that dynamically adjusts the duration of each unit,
realizing isometric translation, and addressing jar-
ring video transition.

3 TransFace

The illustration of Direct Talking Head Translation
system (TransFace) for audio-visual speech has
been presented in Figure 1. (1) As shown in Section
3.1, we employ a self-supervised learning (SSL)
model HuBERT (Hsu et al., 2021) that has been
pre-trained on the audio speech corpus to derive dis-
crete units of target audio speech. These units are
then employed to train the Speech-To-Unit Trans-
lation model (S2UT). (2) Furthermore, the SSL
model is also adopted to obtain discrete units of
audio speech from the audio-visual speech, which
are used to train the unit-based synthesizer. In Sec-
tion 3.2, we introduce a speech-to-unit translation
(S2UT) model to translate the source audio speech
into the target units. (3) Subsequently, a unit-based
audio-visual speech synthesizer, which is trained
separately on target language audio-visual dataset,
is applied to convert the translated units into target
audio-visual speech, as detailed in the Section 4.

3.1 HuBERT and Discrete Units
HuBERT (Hsu et al., 2021) is a self-supervised
learning (SSL) model trained on unlabeled audio
speeches, using an iterative approach that alternates
between feature clustering and mask prediction.
In each iteration, the discrete labels of the audio
speech sequences are generated through feature
clustering on intermediate representations (or Mel-
frequency cepstral coefficient features for the first
iteration), and these labels are then used to compute
a BERT-like mask prediction loss. The target au-
dio speech Atgt = {atgt1 , · · · , atgtT } is encoded into
continuous units Ztgt = {ztgt1 , · · · , ztgtT }, ztgti ∈
{0, 1, · · · ,K − 1} at every 20-ms frame, where ai
and zi are the i-th acoustic frame and its clustering
unit, T is the number of frames and K is the num-
ber of cluster centers. We obtain the discrete units
of target audio speech from the parallel speech-to-
speech translation dataset (ie., LRS3-T) to train the
S2UT model, and the discrete units of target lan-
guage audio-visual speech from the audio-visual
speech dataset (ie., LRS2) to train the unit-based
audio-visual speech synthesizer.

3.2 Speech-to-Unit Translation Model
Denote Asrc = {asrc1 , · · · , asrcT } and U tgt =
{utgt1 , · · · , utgtN }, utgti ∈ {0, 1, · · · ,K − 1} as
the source language audio and target language
full orig-unit sequence discrete units. The orig-
unit sequence is obtained by removing repeat-
ing units from the continuous units sequences
Ztgt, resulting a sequence of unique discrete units.
The S2UT model autoregressively decode the
source audio speech into the target probabilities:
p(ut|{ui}t−1

i=1, A
src) = S2UT(Asrc). The S2UT

model is trained with the cross-entropy loss :

Ls2s = −
N∑

t=1

log p(uu|{ui}t−1
i=1, A

src). (1)
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Figure 2: llustration of the (a) unit-based audio-visual speech synthesizer and the (b) unit-based face synthesizer.
The unit-based audio-visual speech synthesizer includes a pre-trained unit-based vocoder for audio speech synthesis
and a unit-based face synthesizer for visual speech synthesis. Speaker Encoder is a stack of residual convolutional
layers that encode the non-lip frames (target faces with lower-half masked) and negative frames (random reference
faces). Face Decoder is a stack of convolutional layers, along with transpose convolutions for upsampling.

4 Unit-based Audio-Visual Speech
Synthesizer

In this section, we present a unit-based audio-visual
speech synthesizer, Unit2Lip, that effectively con-
verts discrete units into synchronized audio and
visual speech. Although the unit-based vocoder
(Polyak et al., 2021; Kong et al., 2020), which
transforms units into audio speech, has been ex-
tensively studied and applied, the synthesizer for
audio-visual speech encounters several additional
challenges: (1) ensuring the synchronization of au-
dio and visual speech, and (2) preserving the output
video length identical to the source video length.

4.1 Discrete Units of Audio-Visual Speech Still
Based on Acoustic Features.

Although there is already audio-visual speech self-
supervised learning (Shi et al., 2022) which can
represent audio-visual speech as corresponding dis-
crete units, it is not able to extract the discrete units
corresponding to audio-only speech. In contrast,
since audio speech and visual speech are tempo-
rally aligned in parallel, discrete units from audio-
only speech can also be used directly for audio-
visual speech representation. In this work, for
S2UT models to be trained using parallel audio
speech corpus without visual speech, we utilize
mHuBERT (Lee et al., 2021), trained on multilin-
gual and large-scale audio-only speech, to generate
clustering units based on only acoustic features in
audio-visual speech.

4.2 Bounded Duration Predictor

The S2UT model decodes the discrete unit se-
quence in an autoregressive manner, but it does not
include the duration information for each unit. The
duration predictor is a two-layer 1D convolutional
network with ReLU activation, each followed by
layer normalization and dropout layer, and an ad-
ditional linear layer that outputs a scalar, which
precisely predicts the duration of each unit. To en-
sure that the generated audio-visual speech has the
same duration as the original audio-visual speech
(isometric translation), we propose a bounded du-
ration predictor that bounds the length of input
unit sequence. The predicted duration sequence
for each unit using the duration predictor can be
represented as: D = {D1, · · · , DN}, where Di is
the predicted duration of i-th unit. Subsequently,
after normalizing the entire duration sequence, it
is multiplied by the target sequence length T (i.e.,
the length of the original audio sequence) to im-
pose length constraints: D′

i =
Di∗T∑N
i=1 D

. We select

T units from highest to lowest for the generation
task. For instance, when U = {u1, u2, u3, u4},
D′ = {2.2, 1.8, 2.3, 2.7} and T = 10, the
weight of each frame can be denoted as U ′ =
{1.0u1, 1.0u1, 0.2u1, 1.0u2, 0.8u2, 1.0u3, 1.0u3,
0.3u3, 1.0u4, 1.0u4, 0.7u4}, where the weight of
0.2u1 is only 0.2. And after enough 10 frames
have been selected in order of highest to lowest
weight, 0.2u1 is discarded. The sequence of in-
put discrete units can be represented as U ′ =
{u1, u1, u2, u2, u3, u3, u3, u4, u4, u4}.
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4.3 Unit-Based AV Speech Synthesizer

As shown in Figure 2, the unit-based audio-visual
speech synthesizer is utilized to synthesis the audio-
visual speech as the talking head video from a
sequence of discrete units, which can be consid-
ered to be a modified version of Wav2Lip (Pra-
jwal et al., 2020). For audio speech, we adopt
the pretrained unit-based vocoder (Polyak et al.,
2021) and leave it unchanged. The Unit-Based
Face Synthesizer architecture (Figure 2.b) consists
of a generator G and a discriminator D. The
generator G consists of three blocks: (i) a set of
looked-up tables (LUT) that embed the represen-
tation fu of discrete units; (ii) Speaker Encoder
to extract speaker representation fs from random
reference frames and pose-prior frames (target-face
with lower-half masked); and (iii) Face Decoder
to upsample the encoded representation to match
the input sample rate. The sequence of discrete
units U = {u1, · · · , uN} is transformed into a con-
tinuous representation through fu

i = LUT(ui). The
speech representation fu = {fu

1 , · · · , fu
N} is then

up-sampled and concatenated with the speaker rep-
resentation fs = {f s

1 , · · · , fs
N}. The discriminator

D consists of a stack of convolutional blocks, and
is trained in turn with generator G.

4.4 Training Loss Terms

GAN Loss. For generator G and discriminator D,
the training objectives are LG = Ex∼Igen log(1−
D(x)) and LD = Ex∼Ireal log(1−D(x)) +
Ex∼Igen log(1−D(x)), where Igen are the frames
of the generated visual speech and Ireak are the
real frames.

Lip Reconstruction Loss. In addition to the
GAN objective, we employ the lip-reconstruction
loss to improve the efficiency of the generator and
the realism of the generated lips. Following the pre-
vious work, reconstruction loss is applied to assist
the generator training by limiting the L1 distance
between the generated lips and the real ones to en-
sure the temporal realism of the generated lips. The
lip reconstruction loss could be defined as:

LLip =
1

N

N∑

i=1

(∥Ireal − Igen∥1) (2)

Synchronicity Loss. The synchronization expert
has proven to be a valuable way to improve the syn-
chronization of the generated talking head with the

audio speech (Prajwal et al., 2020). For the unit-
based audio-visual speech synthesizer, we mini-
mize the distance (Chung and Zisserman, 2017)
between the synthesized audio speech and visual
speech to improve the synchronization of the gen-
erated video, where a and v are the representa-
tion of audio and visual speeches and Psync =

v·a
max(∥v∥2·∥a∥2)

is the similarity of a and v:

Lsync =
1

N

N∑

i=1

− log(P i
sync). (3)

The overall modal is trained with the L = (1 −
λsync−λgen)LLip+λsyncLgen

sync+λgenLG, where
λsync = 0.03 and λgen = 0.07 as the the setting of
(Prajwal et al., 2020).

5 Experiments

5.1 Experimental Setup

Dataset. For the Audio-Visual Speech Resyn-
thesis task, we adopt the setup from the previ-
ous works (Prajwal et al., 2020) on talking head
generation, training on the widely utilized LRS2
dataset (Afouras et al., 2018a). In the Speech(A)-
To-Speech(AV) Translation task, we conduct exper-
iments on the LRS3-T dataset (Huang et al., 2023).
This dataset serves as a parallel translation cor-
pus, featuring English audio-visual speech along-
side audio-speech from other languages (Spanish
and French). It is constructed based on the LRS3
dataset (Afouras et al., 2018b) using the S2ST
dataset construction pipeline as outlined in CVSS-
T (Jia et al., 2022).

Evaluation Metrics. In the audio-visual speech
resynthesis task, we employ various metrics. This
includes utilizing FID (Heusel et al., 2017) to gauge
image similarity as (Prajwal et al., 2020), employ-
ing LSE-C and LSE-D for measuring audio-visual
synchronization (Chung and Zisserman, 2017), and
assessing mean opinion score(MOS) for both syn-
chronization and image quality. For the translation
task, we utilize AVSR (Shi et al., 2022) to recog-
nize the textual content of the translated results and
measure the translation quality with SACREBLEU
(Post, 2018). Simultaneously, we gather Mean
Opinion Scores (MOS) to assess the translation
quality, image quality, synchronization, and overall
sensation of the translated results. The detailed
evaluation process of MOS are presented in Ap-
pendix B.3. Furthermore, we introduce two addi-

9977



Audio(ori.) Audio(gen.)
Method LSE-C↑ LSE-D↓ LSE-C↑ LSE-D↓ FID↓ Speed(FPS)↑ MOS↑

Real Audio Visual Speeches

Audio(GT)+Wav2lip 6.498 7.143 / / 5.08 / 4.23±0.12
Video(GT) 6.221 7.407 / / / / 4.15±0.25

Resynthesized Audio Visual Speeches

U2S+LipGAN 2.875 11.431 3.057 10.964 11.91 671.49(x26.86) 2.64±0.23
U2S+Wav2Lip 5.742 7.958 6.298 7.305 5.54 544.37(x21.78) 3.92±0.22
Unit2Lip(ours) 7.343 7.193 7.280 7.097 5.17 2369.66(x94.79) 3.98±0.24

Table 1: Comparison of the speed and quality among different talking head synthesis methods. Audio (ori.) and
Audio (gen.) respectively represent the synchronization of the synthesized talking-head with the source audio speech
and the synchronization of the synthesized audio-visual speech, respectively. (× Rate) in parentheses represents the
speed compared to real-time.

tional metrics, length ratio (LR) and length com-
pliance (LC), in the form of Isometric translation
(Antonios et al., 2022). LR denotes the ratio of
the length of the prediction result to the length of
the original, and LC@k denotes the acceptance of
samples whose predicted length is within ±k% of
the original length.

Implementation details. Following the unit-
based S2ST approach as outlined in (Lee et al.,
2021), we applied the k-means algorithm to cluster
the representations generated by the normalized
mHuBERT (Huang et al., 2022) into a vocabulary
of 1000 units, establishing a discrete unit repre-
sentation for audio-visual speech. For the Audio-
Visual Speech Resynthesis task, we followed the
previous work by training on the 29-hour training
set from LRS2 and leave the unit-based HiFi-GAN
vocoder (Polyak et al., 2021) unchanged. Our train-
ing process encompassed 300K steps on a single
3090 GPU. As for S2ST task, we performed 200K
steps of training on a single 3090 GPU, consis-
tent with previous methods (Lee et al., 2021). In
the inference process, we employ the S2UT model
to translate the audio speech from the source lan-
guage into a sequence of discrete units in the target
language. These discrete units are subsequently
synthesized into the corresponding target language
audio-visual speech with Unit2Lip. More experi-
mental details are shown in Appendix B.

5.2 Why unit-based instead of mel-based face
synthesizer?

In Table 1, we make a comparison of the per-
formance of the unit-based audio-visual speech

synthesizer (Unit2Lip) and the mel-based Talking
Head Generation methods (LipGAN (KR et al.,
2019) and Wav2Lip (Prajwal et al., 2020)) in terms
of speed and quality. Note that all audio-visual
speech resynthesis here begins with discrete units.
Therefore, in the traditional mel-based talking head
generation method, a unit-based vocoder (Polyak
et al., 2021) (U2S) is needed to generate audio
speech first. Experiments demonstrate that the
unit-based audio-visual speech resynthesis method
(Unit2Lip) is remarkable for the following aspects:
(1) Acoustic Retention. As a single-stage model,
the Unit2Lip can synthesize the corresponding vi-
sual speech directly from discrete units, avoiding
the cascading errors introduced by intermediate
processes. Compared to the two-stage models
(e.g. u2s+wav2lip), the single-stage model (ie.,
Unit2Lip) is more synchronized with the original
audio speech (LSE-C deteriorated by 1.601 and
LSE-D by 0.765). At the same time, the Unit2Lip
is also comparable to the Wav2Lip scheme in terms
of synchronization with the audio(gen.), demon-
strating that discrete units can adequately express
the corresponding audio content.(2) Rapid Pro-
cessing. Unit2Lip enables parallel synthesis of
audio speech and visual speech (Unit-To-Audio &
Lip), significantly enhancing the inference speed
compared to the serial synthesis mode (Unit-To-
Audio-To-Lip). Additionally, the introduction of
codebook further reduces the computation time of
the audio encoder. Experimental results demon-
strate that Unit2Lip achieves an impressive speedup
of × 4.35 times compared to other methods. (3)
High Fidelity. Since the discrete units obtained
from pre-training effectively distinguish different
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ID Method Textual Dataset Es-En Fr-En

SRC TGT BLEU↑ MOS↑ BLEU↑ MOS↑
Ground Truth:

0 Video ✗ ✗ 97.04 - 97.04 -
1 Audio+Wav2Lip ✗ ✗ 87.73 - 87.73 -

Generated From Grount Truth Units:
2 Unit+U2S+Wav2Lip ✗ ✗ 81.03 4.22±0.11 80.71 4.18±0.10
3 Unit+Unit2Lip(ours) ✗ ✗ 83.98 4.35±0.07 83.89 4.32±0.08

Cascaded Models:
4 ST+TTS+Wav2Lip ST TTS 51.20 3.76±0.05 42.60 3.68±0.11
5 ASR+NMT+TTS+Wav2Lip ASR+NMT NMT+TTS 64.09 4.16±0.08 52.34 4.12±0.70

Direct System with High Resource:
6 Translatotron2+Wav2Lip ✗ ✗ 42.31 3.34±0.12 36.44 3.22±0.12
7 S2ST+Wav2Lip ✗ ✗ 60.93 3.99±0.07 45.17 3.76±0.06
8 TransFace(ours)+bounded ✗ ✗ 61.06 4.25±0.07 46.78 4.21±0.10
9 TransFace(ours) ✗ ✗ 61.93 4.12±0.06 47.55 3.88±0.07

Table 2: BLEU scores (↑) and mean opinion scores (MOS ↑) of Speech(A)-To-Speech(AV) Translation on Es-En
and Fr-En of LRS3-T. Textual Dataset denotes an additional textual dataset used, SRC denotes the text in the
source language and TGT denotes the text in the target language. NMT: Neural Machine Translation, ST: Speech
Translation, ASR: Automatic Speech Recognition, TTS: Text-to-Speech.

Method BLEU↑ MOS↑ LR LC@5↑ LC@10↑ LC@20↑
ASR+NMT+TTS+Wav2Lip 64.09 4.16±0.08 +0.082(1.082) 12.38 32.64 53.88
Translatorn2+Wav2Lip 42.31 3.34±0.12 +0.067(1.067) 16.87 34.23 48.10
S2ST+Wav2Lip 60.93 3.99±0.07 +0.055(1.055) 15.80 31.87 57.46
TransFace+Early Stop 52.76 4.02±0.08 -0.051(0.949) 77.63 83.79 93.76
TransFace+bounded 61.06 4.25±0.07 0.000(1.000) 100.00 100.00 100.00

Table 3: Comparison of translation quality (BLEU and MOS) as well as length metrics (LR for length ratio and LC
for length compliance) across various methods for Spanish to English (Es-En) translation on LRS3-T. Early Stop:
Finishing the synthesis according to the frame length. Bounded: Synthesising with the bounded duration predictor.

phonemes, Unit2Lip can easily learn the mapping
from these discrete units to the shape of the tar-
get lips, enabling the synthesis of high-fidelity lip
movements that are comparable to mel-based meth-
ods. We present some synthesized talking head
samples in different languages in Appendix C.1.
(4) Length Regulation. Talking head synthesis,
typically accomplished by adjusting the lip move-
ments of reference frames, can result in abrupt
video transitions if these frames are repeated. By
utilizing discrete units, we can control the length
of the synthesized talking head video as desired.
For example, in Section 5.3, we demonstrate the
synthesis of an translated talking head, matching
the length of the reference frames.

5.3 Direct Speech(A) to Speech(AV)
Translation.

We present the results of the Speech(A)-To-
Speech(AV) Translation experiments conducted on
LRS3-T, as outlined in Table 2, yielding the follow-
ing observations: (1) Cascade System vs. Direct
System (#5 vs. #9). Despite the cascade system
utilizing more textual data for training, there is min-
imal disparity in translation quality between the
two (with only a 2.16 difference in BLEU score,
from 64.09 to 61.93). In contrast, the unit-based ap-
proach (#8), which achieves the length regulation
and ensures non-repeat of video reference frames,
notably enhances user acceptance (MOS, improved
from 4.16 to 4.25). (2) Mel-Based vs. Unit-Based
(#2, 7 vs. #3, 9). The visual speech produced by the
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Es-En

Source(Es) Así que el agua era algo que me asustaba para empezar.
Target(En) so water was something that scared me to begin with.
ASR+NMT+TTS+wav2lip so water was something that scared me in the beginning to ....
ST+TTS+wav2lip so water was something that scared me to begin with.
S2ST+Wav2Lip so water was something that was scaring me to start begin with.
TransFace so water was something that was scaring me to start begin with.
TransFace+bounded so water was something that was scaring me to start begin with.

Table 4: Comparison of translation quality among different methods. Red Strikeout Words: mistranslated words
with opposite meaning, Blue Words: mistranslated words with similar meaning, Gray Words: the absent words.

mel-based method relies entirely on synthesized au-
dio speech. In contrast, the unit-based approach
handles the synthesis of audio and visual speech
independently, providing additional supplementary
visual information (e.g., visually distinguishable
phonemes /ae/ and /ai/) to the audio speech. This
leads to a improvement in translation results, with
the BLEU score rising from 60.93 to 61.93. (3)
S2Spec vs S2U (#6 vs. #9). With the introduc-
tion of discrete units, we convert continuous target
speech into discrete semantic tokens as training
targets, so that the S2ST task can be trained with
well-defined objective as an autoregressive task.
Comparing with the reconstruction-method, from
Speech to Melspectrograms (S2Spec, #6), the au-
toregressive method effectively reduces the diffi-
culty of the training, and improves the translation
quality from 42.31 to 61.93 improved by 19.62
BLEU. (4) Unit-based Isometric Translation. Iso-
metric translation can effectively improve the user
acceptance in the Talking Head Translation. We
show the comparison of the length metrics and
translation quality of the different synthesis meth-
ods in Table 3. We find that the unit-based method
TransFace+bound achieves the 100% isometric
translation without degrading the quality of the
generated translated talking head video. Since it is
fully ideographic and solves the jarring video tran-
sitions, user acceptance is significantly improved
(MOS from 4.12 to 4.25). To further qualify the vi-
sual speech of our generated talking heads, we con-
ducted additional ablation experiments focusing
on visual speech, the results of which are detailed
in Appendix C.2. These experiments demonstrate
that our TransFace is able to generate talking heads
that correspond to the translated content, while also
having semantic complementarities with the audio
speech.

5.4 Case Study

We present some translation results in Table 4,
where the results of TransFace consistently main-
tain a high semantic consistency with the tar-
get results. This substantiates the model can
comprehend discrete unit sequences and establish
cross-language mappings between them. Further-
more, upon reviewing the translated talking head
videos on the demo page, we observe a notice-
able frame jitter phenomenon when the bounded-
duration-predictor method is not employed. This
significantly impacts the quality of the talking
head videos. In contrast, the TransFace+bounded
method achieves a remarkable 100% isometric
translation while ensuring translation quality. Qual-
itative experiments demonstrate that our Trans-
Face+bounded framework exhibits translation qual-
ity on par with cascade models, while also deliver-
ing a higher level of realism.

6 Conclusion

Talking head translation aims to translate speech
from one language to audio-visual speech (i.e., talk-
ing head video) in other languages, which is widely
used in online conferencing, online healthcare and
online education. However, all current methods
rely on cascading multiple models, severely ham-
pering inference speed and rendering them unsuit-
able for online streaming applications. In this pa-
per, we introduce TransFace, a direct talking head
translation model comprising a speech-to-discrete-
unit translator and a unit-based audio-visual speech
synthesizer, Unit2Lip. This framework facilitates
parallel synthesis of audio-visual speech, signifi-
cantly enhancing the speed of generating translated
talking heads. Additionally, we propose a bounded
duration predictor to ensure consistent translation
without compromising quality, addressing the chal-
lenge of abrupt video variations.
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7 Limitations and Ethical Discussions.

Why only compare BLEU in X-EN? In this
work, we only compare BLEU scores for X-En
translation results. This is due to the scarcity of
current audio/video speech datasets in languages
other than English, as well as the notably poorer
performance in audio/video speech recognition for
languages other than English. These factors con-
tribute to a lack of convincing and credible results
in those cases. Nonetheless, we still showcase the
relevant translation results on the demo webpage,
which you are welcome to review.

More Difficult Datasets. The average length of
audio-visual speech data is considerably shorter
than that of audio-only speech data, potentially
making it easier to train. As part of our ongoing
efforts, we will develop longer and more complex
audio-visual speech translation datasets, aiming to
enhance the robustness of Talking Head Transla-
tion.

Isometric translation is a fundamental require-
ment for Talking head translation. In contrast
to speech translation, talking head translation en-
counters a relatively fixed limit on video frame
length, especially evident when dubbing a trans-
lated movie. In such instances, the voice actor for
translated movies must synchronize the translation
to match the original video’s duration. The ab-
sence of a duration-bounded module in the video
results in noticeable frame skipping, leading to a
significant loss of realism (refer to the demo page
for results without the bounded-duration predic-
tor). This limitation renders the approach unsuit-
able for professional scenarios like online meet-
ings and movie translating, where the number of
generated video frames must align with the orig-
inal reference video. The introduction of the
Bounded-Duration-Predictor becomes imper-
ative in such cases, despite tradeoffs in other
factors, as it effectively satisfies the fundamental
requirements of talking head translation. We
also acknowledge this approach may cause exces-
sive speedups and slow reads, we plan to address
this concern in our future work. Specifically, we
intend to investigate the vocabulary length of the
generated content to further enhance the realism
and authenticity of the translated videos.
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Input :
T: The desired length of the translation result.
D: The predicted duration sequence for each unit.

Output :
OUT: The duration of each discrete cell after length regulation.

//Step1:
D′ = Normalize(D)×T;

//Step2:
PRED = Clamp(Round(D′),min = 1) ;

//Step3:
DIFF =D′-PRED ;

//Step4:
ADD=Zeroes() ;
if Sum(PRED) > T then

INDEX=TopK(−DIFF,k =Sum(PRED)−T);
ADD[INDEX]= −1 ;

else
INDEX =TopK(DIFF,k = T−Sum(PRED));
ADD[INDEX]= 1 ;

end
OUT=PRED+ADD

Algorithm 1: Pseudo-code for bounded-duration-predictor implementation details.

A The details of the Bounded Duration
Predictor.

A.1 Algorithmic details

In Algorithm 1, we present the details of the
bounded-duration-predictor algorithm:

1. After normalization, the duration D can be com-
puted as the allocated duration D′ correspond-
ing to each token based on the target length T:

D′ = Normalize(D)×T. (4)

2. Following the rounding method, it is converted
to an integer predicted duration PRED:

PRED = Clamp(Round(D′),min = 1). (5)

3. Calculate the difference DIFF between the pre-
dicted duration PRED and the allocated dura-
tion D′ for each token:

DIFF = D′ −PRED. (6)

4. Determine whether the predicted duration
PRED still needs adjustment in the number
of frames. If an increase is required, select the

highest-weighted difference DIFF from the se-
quence for its duration+1. Conversely, if a de-
crease is needed, select the lowest-weighted dif-
ference DIFF for its duration-1.

A.2 implementation sample
Let’s revisit the previous example in section 4.2
for illustration, when U = {u1, u2, u3, u4}, D′ =
{2.2, 1.8, 2.3, 2.7} and T = 10:

• Step1: D′ = [2.2, 1.8, 2.3, 2.7],T = 10.

• Step2: PRED = [2, 2, 2, 3].

• Step3: DIFF = [0.2,−0.2, 0.3,−0.3].

• Step4: Since SUM(PRED) = 9 < 10, for
the largest T−SUM(PRED) = 1 correspond-
ing token in DIFF, its duration+1, resulting
in OUT = [2, 2, 2 + 1, 3] = [2, 2, 3, 3].

The sequence of discrete units can be represented
as U ′={u1, u1, u2, u2, u3, u3, u3, u4, u4, u4}.

B More Implementation Details

B.1 Data Preprocessing.
For visual speech, we extract the facial region from
the video for Unit2Lip model training. As in prior
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Method Translation Image SYNC Overall Mean

ST+TTS+Wav2Lip 3.78±0.05 4.03±0.08 3.66±0.04 3.57±0.03 3.76±0.05
ASR+NMT+TTS+Wav2Lip 4.23±0.06 4.11±0.07 4.12±0.08 4.18±0.11 4.16±0.08
Translatotron2+Wav2Lip 2.79±0.09 3.98±0.12 3.68±0.07 2.91±0.20 3.34±0.12
S2ST+Wav2Lip 4.03±0.08 4.05±0.04 4.02±0.09 3.86±0.07 3.99±0.07
TransFace(ours) 4.19±0.08 4.08±0.07 4.28±0.04 3.93±0.05 4.12±0.06
TransFace(ours)+bounded 4.17±0.06 4.16±0.06 4.28±0.05 4.39±0.11 4.25±0.07

Table 5: The detailed MOS (Mean Opinion Score) results for talking head translation. Each dimension is scored
individually on a scale of 1 (lowest) to 5 (highest). Translation: translation quality, Image: image quality, SYNC:
Synchronization, Overall: overall sensation.

Method Image quality Synchronization Mean

Audio(GT)+Wav2lip 4.18±0.32 4.12±0.18 4.15±0.25
Video(GT) 4.33±0.13 4.13±0.11 4.23±0.12

U2S+LipGAN 2.89±0.25 2.39±0.21 2.64±0.23
U2S+Wav2Lip 4.01±0.20 3.93±0.24 3.92±0.22
Unit2Lip(ours) 3.95±0.24 4.01±0.24 3.98±0.24

Table 6: The detailed MOS (Mean Opinion Score) results for unit-based talking head generation. Each dimension is
scored individually on a scale of 1 (lowest) to 5 (highest).

research (Prajwal et al., 2020; Shi et al., 2022),
we use dlib (King, 2009) to detect 68 facial key-
points, and then isolate a 96x96 region-of-interest
(ROI) video segment centered around the face. For
the source language audio speech, we extract 80-
dimensional mel-filterbank features at 20-ms inter-
vals as input. Regarding the target language audio
speech, we apply the k-means algorithm to clus-
ter the representations provided by the well-tuned
mhubert into 1000 discrete units for training pur-
poses.

B.2 Model configuration and Training Details.

We adopted the same S2UT model architecture as
(Lee et al., 2021), employing 8 attention heads and
a embedding size of 512. We select one discrete
unit every 20ms to synthesize one audio frame
and every 40ms to synthesize one visual frame.
The audio-speech vocoder utilizes the unit-based
vocoder pre-trained in (Lee et al., 2021), whereas
the decoder of the visual-speech synthesizer em-
ploys the same architecture as Wav2lip (Prajwal
et al., 2020). In the inference process, since the
audio speech in language X lacks a correspond-
ing visual speech as reference frames, we utilize
the visual speech of the English videos as refer-
ence frames for synthesizing the translated talking
head. All the cascade models we utilized are pub-

licly available pre-trained systems in Fairseq (Ott
et al., 2019). For instance, we employed NMT
to convert text from other languages to English,
and the FastSpeech2 model to transform text into
corresponding audio speech.

B.3 The detailed evaluation process of MOS

Our comprehensive MOS scoring process for talk-
ing head translation tasks involves gathering scores
across four dimensions: translation quality, image
quality, synchronization, and overall sensation. For
the unit-based talking head generation, we stream-
line the evaluation to two dimensions: image qual-
ity and synchronization. Translation quality as-
sesses the consistency of the translated content with
the original sentence, while image quality evalu-
ates the presence of artifacts in the generated image.
Synchronization measures the coherence of audio
and visual speech, and overall sensation indicates
the evaluation of the video’s authenticity. Each
sample is randomly scrambled and presented to 15
participants for scoring. A composite MOS is then
calculated by averaging the scores for the corre-
sponding dimensions, with each dimension scored
individually on a scale of 1 (lowest) to 5 (highest).
Here, we present the MOS (Mean Opinion Score)
results for both talking head translation in Table 5
and unit-based talking head generation in Table 6.
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(a) Resynthesis sample for English. The top row is the original, the bottom row is the synthesized one.

(b) Resynthesis sample for French. The top row is the original, the bottom row is the synthesized one.

Figure 3: Quantitative comparison of audio and visual speech resynthesized from discrete units on English and
French. More experimental results are available on the demo page.

C More Experiments

C.1 Samples of Unit-Based Talking Head
Generation

We present samples of our unit-based talking head
generation method (Unit2Lip) in Figure 3. For
each discrete unit, we equidistantly selected 6 pairs
of corresponding original and generated Talking
Head video frames. Notably, the lip shapes be-
tween each pair of images are highly consistent,
suggesting that the model is adept at reconstruct-
ing the lip shapes associated with discrete units
while preserving more of the original video infor-
mation. Furthermore, we conduct experiments in
French and the lip shape consistency is also well-
maintained, demonstrating that the Unit2Lip can be
generalized across languages, not only to English
but also to different languages.

C.2 Can the talking head represent the
corresponding content?

In this paper, due to the relatively lower dis-
criminability of visual speech compared to au-
dio speech, lip reading (visual speech recogni-

Method Modal Es-En Fr-En

1 Audio(GT)+wav2lip V 13.23 13.23
2 Audio(GT)+wav2lip AV 87.73 87.73

3 Random frame V 0.18 0.68
4 S2ST+wav2lip V 8.59 7.56
5 TransFace V 8.62 7.53

6 TransFace A 60.76 46.89
7 S2ST+Wav2Lip AV 60.93 45.17
8 TransFace AV 61.93 47.55

Table 7: BLEU scores of different methods with distinct
modality speech on Es-En and Fr-En of LRS3-T. Ran-
dom Frame: Randomly scrambled video that does not
express any information.

tion) yields significantly lower recognition accu-
racy. Therefore, most experiments in this paper
employ audio-visual speech recognition (AVSR)
results for computing BLEU scores. In this subsec-
tion, we conduct additional ablation experiments
focused on visual speech to investigate its effec-
tiveness in representing the corresponding content.

9985



Fr-En

Source(Fr) No fuimos considerados la cosa real.
Target(En) we weren’t considered the real thing.
ASR+NMT+TTS+wav2lip we were not weren’t considered the real thing.
ST+TTS+wav2lip we were not weren’t considered the real ones thing.
S2ST+Wav2Lip we were not weren’t considered as the real thing.
TransFace we were not weren’t considered as the real thing.
TransFace+bounded we were not weren’t considered as the real thing.

Table 8: Comparison of translation quality on Fr-En among different methods. Red Strikeout Words: mistranslated
words with opposite meaning, Blue Words: mistranslated words with similar meaning, Gray Words: the absent
words.

In Table 7, we show the BLEU comparisons for
different modalities of speech in different methods.
(1) The talking head can effectively convey the
corresponding content. Comparing with random
frames results (#3), the BLEU of the translated
video (#5) is improved by 8.46, which proves that
it contains some useful information and is not di-
rectly random synthesis. Meanwhile, compared
with the translated video synthesized by wav2lip
(#4), the results of TransFace and S2ST+Wav2Lip
are basically the same (8.59 vs. 8.62), which indi-
cates that the synthesized result of our method is
basically consistent with that of wav2lip. (2) The
talking head can provide complementary infor-
mation to audio speech. Comparing the TransFace
results for audio-only (#6) and audio-visual (#8),
we can observe a further improvement in the BLEU
of translation (from 60.76 to 61.93) with the addi-
tional introduction of talking head. This indicates
that the talking head, synthesized directly from the
discrete units, contains valuable supplementary in-
formation to audio speech, further enriching the
speech content.

C.3 More translation results

In addition to the result of Es-En in Table 4, we fur-
ther show the translation results of Fr-En in Table
8 to visualize the translation performance of our
model on different language pairs. The results in-
dicate that our approach consistently delivers high-
quality translation performance across various lan-
guages, including Es-En and Fr-En. Additional
translation results for other language pairs (En-Es
and En-Fr) are available on the demo page.

C.4 Why m-hubert instead of av-hubert?

Among various discrete unit schemes (encodec (Dé-
fossez et al., 2022), av-hubert(Shi et al., 2022), hu-
bert(Hsu et al., 2021), mhubert(Lee et al., 2021),

Method En Es

NMI(↑) Purity(↑) NMI(↑) Purity(↑)

AV-HuBert 43.7 65.8 12.8 9.1
m-HuBert 42.6 65.1 41.7 63.2

Table 9: Comparison of clustering effects of m-HuBert
and AV-HuBert on En and Es.

etc.), only mhubert is publicly available and widely
used as a multilingual discrete unit extractor.
Hence, we chose mhubert to extract discrete unit
representations. As demonstrated in other research
(Le et al., 2023), if we want the model to encode
languages other than English, it must be pre-trained
on the speech of these languages.

Here, we also present a comparison of the cluster-
ing effect (Shi et al., 2022) of avhubert and mhubert
on different languages in Table 9. Notably, there is
no difference in performance between the two in
English, but their effectiveness varies significantly
in other languages. Furthermore, in this paper, we
showcase that discrete units based on acoustic-only
feature can also be effectively utilized for visual
speech synthesis.
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