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Abstract

Recent advances have made non-autoregressive
(NAT) translation comparable to autoregressive
methods (AT). However, their evaluation using
BLEU has been shown to weakly correlate with
human annotations. Limited research compares
non-autoregressive translation and autoregres-
sive translation comprehensively, leaving un-
certainty about the true proximity of NAT to AT.
To address this gap, we systematically evaluate
four representative NAT methods across vari-
ous dimensions, including human evaluation.
Our empirical results demonstrate that despite
narrowing the performance gap, state-of-the-
art NAT still underperforms AT under more
reliable evaluation metrics. Furthermore, we
discover that explicitly modeling dependencies
is crucial for generating natural language and
generalizing to out-of-distribution sequences.

1 Introduction

Non-autoregressive translation, where the model
generates translations in parallel, demonstrates no-
table decoding speed advantages compared with tra-
ditional autoregressive translation (Vaswani et al.,
2017) and large language models for transla-
tion (OpenAI, 2023). However, it suffers from
performance degradation compared to autoregres-
sive counterparts (Gu et al., 2018). The degradation
stems from the independence assumption, which
ignores the inter-token language dependency on
the target side. Various methods are proposed to
mitigate the performance gap (Ghazvininejad et al.,
2019; Qian et al., 2021; Saharia et al., 2020; Du
et al., 2021; Li et al., 2022; Huang et al., 2022b,c).

Although representative methods (Saharia et al.,
2020; Li et al., 2022; Huang et al., 2022b,c) have
reported comparable translation performance to
AT, almost all NAT methods are evaluated under
BELU scores (Papineni et al., 2002). Although
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BLEU has been long adopted, recent work (Freitag
et al., 2022) argues that it is not a reasonable metric,
considerably underperforming alternative metrics
such as COMET (Rei et al., 2020) or large language
model evaluation (Kocmi and Federmann, 2023).
Limited work has been devoted to a systematic
evaluation of advanced NAT against AT, leaving a
significant gap in the research literature.

To address this gap, we conduct a comprehensive
evaluation of representative NAT methods, aim-
ing to reveal existing limitations and provide in-
sights for future research. Our primary focus is
on fully non-autoregressive methods which gen-
erate translations in a one-shot manner, achieving
the most decoding efficiency advantage. We con-
sider MgMO (Li et al., 2022) for advanced op-
timization, CTC (Saharia et al., 2020) for mod-
eling latent alignment, and DAT (Huang et al.,
2022b) for explicit target-side dependency model-
ing. CMLM (Ghazvininejad et al., 2019) is adopted
as the representative iterative NAT method. All
models are tested on representative benchmark
datasets under a comprehensive evaluation , in-
cluding rule-based metrics, model-based metrics
and GPT4-based metrics (Kocmi and Federmann,
2023). Moreover, we conduct human evaluation
under the MQM framework (Freitag et al., 2021)
to gain further insights into the performance of
NAT models that may be overshadowed by global
automatic evaluations.

Automatic evaluation demonstrates varying de-
grees of advantage for AT over NAT models. In
general, DAT achieves the most competitive per-
formance, followed by MgMO and CTC. Under
rule-based evaluation metrics such as BELU and
chrf (Popović, 2015), DAT can achieve compara-
ble or even superior performance compared to AT.
However, this competitiveness diminishes when
using model-based metrics such as COMET (Rei
et al., 2020) or GPT4-based evaluation, under
which AT significantly outperforms all NAT mod-
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els. Fine-grained human evaluation indicates that
NAT models incorporating explicit dependency
modeling (e.g., DAT and CMLM) achieve similar
levels of translation fluency with AT, yet suffering
various translation accuracy errors. Compared with
AT, NAT tends to produce more grammar or punc-
tuation errors. Models without explicit dependency
modeling (MgMO and CTC) suffer the most mis-
translation and omission errors. On the other hand,
models with latent alignments (CTC and DAT) are
more prone to spelling and addition errors.

Most of these errors are due to NAT’s inade-
quate dependency modeling. Specifically, DAT’s
addition errors occur when it generates repeated
translations, known as n-gram repetition. This can
be easily overlooked by BLEU evaluation, which
measures n-gram precision, explaining why DAT
performs well in terms of BLEU but not COMET.
The n-gram repetition mainly stems from the weak,
though explicit, dependency modeling. DAT lim-
its inter-token dependency within one step using
a one-linear-layer attention module for decoding
efficiency. In contrast, AT can depend on the en-
tire generation history and encode it with powerful
Transformer blocks. To validate our assumption,
we train an asymmetric AT with a one-layer de-
coder and observe similar n-gram repetitions. Fur-
thermore, adding an additional linear layer to the
transition attention in DAT effectively reduces the
repetition, corroborating our hypothesis.

Apart from translation quality, we compare AT
with NAT from the perspective of generalization
and robustness. Empirical findings demonstrate
that explicit dependency modeling is crucial for
generating human-like languages and generalizing
to out-of-distribution samples, which NAT methods
lack or are still weak at. On the other hand, weak
dependency exhibits stronger robustness to input
perturbations, as it is less affected by exposure
bias (Bengio et al., 2015; Ranzato et al., 2016).
Future research on NAT should focus on how to
consolidate explicit language dependency while
maintaining decoding efficiency. We release our
resources at https://github.com/HJZnlp/NAT_
vs_AT.

2 Method

We begin with a brief introduction to autoregressive
and non-autoregressive machine translation, before
introducing four representative NAT methods.

2.1 Neural Machine Translation
The machine translation task can be formally de-
fined as a sequence-to-sequence generation prob-
lem, where the model generates the target language
sequence y = {y1, y2, ..., yT } from the target vo-
cabulary V , given the source language sequence
x = {x1, x2, ..., xS} based on the conditional prob-
ability pθ(y|x) (θ denotes the model parameters).

Autoregressive Translation. Autoregressive
neural machine translation factorizes the condi-
tional probability to

∏T
i=1 p(yi|y1, ..., yt−1,x),

where the model is trained in a teacher-forcing way
with cross-entropy (XE):

LAT = − log p(y|x) = −
T∑

i=1

log pθ(yi|x, y<i).

(1)
During inference, the model sequentially generates
tokens based on previous predictions.

Non-autoregressive Translation. In contrast,
non-autoregressive machine translation (Gu et al.,
2018) ignores the dependency between target to-
kens and factorizes the probability as

∏T
i=1 p(yi|x),

where tokens at each time step are predicted inde-
pendently. Vanilla NAT models are optimized with
XE loss with target dependency ignored:

LNAT = − log p(y|x) = −
T∑

i=1

log pθ(yi|x), (2)

with an additional loss for length prediction:

Llength = − log pθ(T |x). (3)

Challenges of NAT. The major difficulty of non-
autoregressive translation lies in that the decoder
side relies solely on the source-side information
without any target inputs, e.g., history predictions
in AT. Autoregressive models utilize previous to-
ken predictions to select the next token from the
distribution over the whole vocabulary space:

pθ(yi|y<i,x) = softmax(WPTransformer(y<i,x),
(4)

where WP is the vocabulary projection weight. The
inter-token dependency involves layers of Trans-
former blocks. In contrast, NAT models generate
translations in a "one-shot" manner, ignoring or
weakening the strong language dependency on the
target side. As a result, vanilla NAT is not capa-
ble of properly modeling the highly multi-modal
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distribution of target translations, i.e., a source sen-
tence can have multiple valid translations. Various
methods aim to alleviate the conditional indepen-
dence assumption. In this work, we consider four
representative methods: (1) alternative optimiza-
tion with model architecture unchanged (Li et al.,
2022); (2) introducing latent alignments based on
an upsampled decoder prediction (Saharia et al.,
2020); (3) building shallow but explicit target-side
dependency (Huang et al., 2022b); and (4) iterative
decoding (Ghazvininejad et al., 2019).

2.2 NAT with Advanced Optimization
Instead of exerting token-by-token cross-entropy
supervision, Li et al. (2022) propose multi-
granularity optimization (MgMO) to collect multi-
granularity feedback on generations sampled from
the models and gather them for backpropagation:

LMO = −
K∑

k=1

qθ(h
k|x)R(hk,yk), (5)

where K is the sample space size. qθ(h
k|x) is

defined as the normalized probability for each hy-
pothesis hk:

qθ(h
k|x;α) = p̂θ(h

k|x)α∑
h′∈K(x) p̂θ(h

′|x)α , (6)

where K(x) denotes the sample space and α con-
trols the distribution sharpness. R(h,y) is a re-
ward function that encourages the generations to be
similar with references under various granularity.
MgMO requires no architecture modification and
thus maintains decoding efficiency.

2.3 NAT with Latent Alignments
Saharia et al. (2020) introduce latent alignment
models, e.g., Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006), to mitigate the
target-side independence assumption. CTC utilizes
a sequence of discrete latent alignment variables
to monotonically align the non-autoregressive pre-
dictions of the model and target side tokens. The
marginal probability over latent alignments a is
derived as:

LLA = − log pθ(y|x)
= − log

∑

a∈β(y)
pθ(y|a,x)pθ(a|x), (7)

where β(y) is a function that returns all possi-
ble alignments for a sequence y. Then a =

{a1, . . . , aM} is predicted by the decoder output
states H = {h1, . . . ,hM}, where ai ∈ V ∪ {“_”}.
“_” is a special blank token to allow many-to-one
and null alignment. For instance, for a target se-
quence “thank you”, valid alignments a include “_
thank thank you” and “thank _ you _”. The de-
coder state length is set as several times the source
sequence length to allow long translations. The
alignment probability pθ(a|x) is derived by:

pθ(a|x) =
M∏

i=1

pθ(ai|x)

=

M∏

i=1

softmax(WPhi). (8)

Since ai ∈ V ∪ {“_”}, the posterior probability of
y becomes:

pθ(y|a,x) =
{
1 if a ∈ β(y)

0 otherwise.
(9)

MgMO and CTC avoid token-by-token CE su-
pervision by introducing segment-level optimiza-
tion or marginalizing latent alignments. However,
they suffer independence assumption in generating
tokens (Equation 2) or alignments (Equation 8).
Consequently, both MgMO and CTC cannot inher-
ently handle multi-modal problems and heavily rely
on techniques such as knowledge distillation (Zhou
et al., 2020a) to mitigate this limitation.

2.4 NAT with Explicit Dependency
Huang et al. (2022b) propose directed Acyclic
Transformer (DAT) to construct explicit depen-
dencies, by formalizing an alignment as a path
in a direct acyclic graph. Similar to CTC, the de-
coder state length is upsampled to M and H =
[h1, . . . ,hM ] denotes the decoder output hidden
states, which are defined as the vertex states. The
probability of path a is redefined as the position
transition probability:

pθ(a|x) =
∏

i

pθ(ai+1|ai,x) =
∏

i

Eai,ai+1 ,

where E ∈ RM×M is the transition matrix normal-
ized by rows. a = {a1, a2, . . . , aT } is a possible
path represented by a sequence of vertex indexes
of the vertex states H, i.e., ai ∈ {1, 2, 3, . . . ,M}.
Specifically, the transition matrix is obtained by:

E = softmax(
QKT

√
d

), (10)

Q = HWQ, K = HWK,
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where d is the hidden size, WQ and WK are learn-
able matrices. Conditioned on the vertex states in
H and the selected path a, the posterior probability
of y is computed as:

pθ(y|a,x) =
T∏

i=1

Pθ(yi|ai,x)

=
T∏

i=1

softmax(Wphai), (11)

where hai is the representation of the i-th vertex
on the path a.

Different from previous NAT methods, DAT ex-
plicitly models token dependencies through vertex
transitions. DAT first parallelly predicts a subset
of all possible tokens for translating the source
sentence and stores it as H, whose size is usually
several times (e.g., 8) that of the source sequence.
In contrast to Equation 4, the inter-token depen-
dency is a one-step local transition for each vertex
hi, to determine the next token from the rest of the
set, i.e., {hi+1, . . . ,hM}:

pθ(y) =
T∏

i=1

pθ(yai |yai−1), (12)

pθ(yai |yai−1) = softmax(WPhargmax(Eai−1,ai )
),

(13)

where yai is the predicted token of the i-th vertex
on the path a*. The explicit though weak depen-
dency modelled by one-layer linear weights WQ
and WK alleviate the necessity of knowledge dis-
tillation, yet suffering n-gram repeating issues (dis-
cussed in Section 4.3).

2.5 NAT with Iterative Refinement
The iterative NAT model (Ghazvininejad et al.,
2019) is typically trained with conditional masked
language modeling (CMLM) to build inter-token
dependencies:

LCMLM = −
∑

yt∈Y(y)

logpθ(yt|Ω(y,Y(y)),x),

(14)
where Y(y) is a randomly selected subset of tar-
get tokens and Ω denotes a function that masks a
selected set of tokens in Y(y). During decoding,
starting from a sequence of initiative tokens, e.g.,
“<unk>”, CMLM models iteratively refine trans-
lations from previous iterations to generate target
language sequences.

*We omit conditional dependency on x for simplicity.

3 Experiment and Setup

Datasets and Models. We conduct experiments
on WMT16 En⇒Ro and WMT21 De⇒En with 4
representative NAT methods apart from the vanilla
NAT and AT. For knowledge distillation, We train
an autoregressive model on the raw data as the
teacher model to generate the distilled dataset. To
achieve peak performance, we employ glancing
training (Qian et al., 2021) for CTC and DAT train-
ing. Based on empirical results, we adopt standard
beam search for all models during inference. Fur-
ther details are provided in Appendix C.

Evaluation. For translation quality, we adopt
four commonly used metrics, which include two
rule-based metrics, i.e., BLEU score(Papineni et al.,
2002) and chrf (Popović, 2015), and two model-
based metrics, i.e., COMET (Rei et al., 2020) and
BLEURT (Sellam et al., 2020). Specifically, for
COMET, we utilize the wmt22-comet-da model
(Rei et al., 2022), and for BLEURT, the BLEURT-
20 model (Pu et al., 2021) is employed. Kocmi
and Federmann (2023) propose a GPT-based met-
ric, namely GEMBA, to evaluate translation quality,
and demonstrate state-of-the-art correlation with
human labels. We adopt GEMBA-GPT4-DA based
on GPT-4 (OpenAI, 2023) as an advanced evalua-
tion metric. For human evaluation, we follow (Fre-
itag et al., 2021), an evaluation methodology based
on the Multidimensional Quality Metrics (MQM)
framework, which provides a hierarchical analysis
of translation errors. Human evaluation details can
be found in Appendix D.

4 Translation Quality

4.1 Automatic Evaluation
The automatic evaluation results on WMT16
En⇒Ro and WMT21 De⇒En are presented in Ta-
ble 1. DAT obtains the most competitive perfor-
mance compared with the AT counterpart across all
automatic metrics, followed by MgMO and CTC.
MgMO and CTC achieve stronger performance
than the representative iterative method, CMLM,
when considering COMET and GEMBA which
have shown better correlation with human annota-
tion (Rei et al., 2020; Kocmi and Federmann, 2023).
Notably, MgMO obtains comparable performance
with CTC, without modifying model architecture.

Reliance on Knowledge Distillation. In both
translation directions, all fully non-autoregressive
methods except DAT and CMLM suffer more from
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Model BLEU↑ chrf↑ COMET↑ BLEURT↑ GEMBA↑ Speed↑
WMT16 En⇒Ro

w/o Knowledge Distillation

AT (Vaswani et al., 2017) 34.39† 58.48 78.90† 69.89† 86.18† 1.0×
NAT (Gu et al., 2018) 23.75 50.72 65.78 53.91 67.29 15.9×
MgMO (Li et al., 2022) 30.97 56.65 73.54 63.19 80.04 14.9×
CTC (Saharia et al., 2020) 32.73 57.77 74.26 63.99 81.16 14.5×
DAT (Huang et al., 2022b) 33.18 57.35 76.14 66.72 83.72 13.8×
CMLM (Ghazvininejad et al., 2019) 31.97 56.78 74.11 63.34 78.72 2.7×

w/ Knowledge Distillation

AT (Vaswani et al., 2017) 33.92 58.45 78.49† 69.26† 86.22† 1.0×
NAT (Gu et al., 2018) 30.97 56.52 72.60 62.12 77.47 15.8×
MgMO (Li et al., 2022) 32.86 57.40 75.52 65.36 82.73 14.9×
CTC (Saharia et al., 2020) 33.28 58.28 75.54 65.71 82.94 14.5×
DAT (Huang et al., 2022b) 33.25 57.89 76.59 67.01 84.27 13.7×
CMLM (Ghazvininejad et al., 2019) 32.71 56.76 72.36 63.42 76.67 2.7×

WMT21 De⇒En

w/o Knowledge Distillation

AT (Vaswani et al., 2017) 31.89 60.25 84.26† 71.94† 92.91† 1.0×
NAT (Gu et al., 2018) 16.85 43.46 55.87 44.80 36.94 15.5×
MgMO (Li et al., 2022) 28.89 58.11 77.76 64.08 83.51 13.8×
CTC (Saharia et al., 2020) 27.35 56.53 75.38 61.79 79.14 13.5×
DAT (Huang et al., 2022b) 31.69 59.60 81.12 69.00 88.29 13.1×
CMLM (Ghazvininejad et al., 2019) 29.36 57.79 76.39 65.00 82.07 2.4×

w/ Knowledge Distillation

AT (Vaswani et al., 2017) 32.04 60.85 84.72† 72.53† 93.39† 1.0×
NAT (Gu et al., 2018) 27.55 56.56 75.50 62.72 76.89 15.2×
MgMO (Li et al., 2022) 30.32 59.36 81.15 67.76 89.17 13.8×
CTC (Saharia et al., 2020) 30.52 59.83 80.06 67.24 86.91 13.4×
DAT (Huang et al., 2022b) 32.26 60.80 83.32 71.44 92.05 13.1×
CMLM (Ghazvininejad et al., 2019) 30.25 58.40 77.14 65.63 82.98 2.4×

Table 1: Automatic evaluation results of different translation models on WMT16 En⇒Ro and WMT21 De⇒En,
considering both raw data and distillation data settings. We encompass a wide range of metrics including rule-based
metrics (BLEU and chrf), model-based metrics (COMET and BLEURT) and LLM-based metrics (GEMBA). Bold
numbers represent the best performance and underlined numbers denote the top 3 performance. † denotes translation
quality of AT is significantly better than all other NAT models with a p < 0.01 (Koehn, 2004).

training without distillation. Typically, the vanilla
NAT models suffer a decrease of more than 7
BLEU points without KD. For strong NAT methods
such as MgMO and CTC, on WMT21 De⇒En, the
BLEU scores decrease by more than 2 and 3 points,
respectively. On the contrary, the performance of
DAT and CMLM is as similarly affected as the AT
counterpart, due to explicit dependency modeling
similar to AT. In the subsequent sections, we utilize
knowledge distillation by default to analyze NAT
models in the best-performing setting.

Evaluation Metrics. We consider a set of rep-
resentative metrics to comprehensively compare
NAT methods with AT. We perform significance
tests on all pairs of NAT models and their AT
counterparts across all metrics. Except for DAT,
current NAT methods significantly underperform

AT methods in various evaluation metrics includ-
ing rule-based (BLEU and chrf), model-based
(COMET and BLEURT), and GPT4-based met-
rics (GEMBA), particularly in the raw data setting.
A notable observation is that DAT models are more
competitive with AT models when evaluated using
rule-based metrics, which assess the similarity be-
tween generated text and references. In contrast,
AT models outperform DAT models significantly
under model-based metrics or GPT4 evaluation
(GEMBA). These metrics evaluate translation qual-
ity by measuring semantic similarity between two
sentences based on parametric knowledge. To gain
a deeper understanding of this phenomenon, we
conduct human evaluation using a systematic and
fine-grained framework, i.e., MQM (Freitag et al.,
2021), to further compare NAT with AT.

7589



Model MQM↓ FLC. Err↓ ACC. Err↓ NON. Err↓
AT 176.67 34.33 142.00 0.33
MgMO 301.33 52.00 240.00 9.33
CTC 360.67 63.33 280.67 16.67
DAT 229.33 38.00 183.67 0.33
CMLM 375.67 47.33 153.33 175.00

Table 2: Human evaluation results under MQM frame-
work. MQM denotes weighted error counts of three
major error types: fluency (FLC.), accuracy (ACC.) and
non-translation (NON.).

AT MgMO CTC DAT CMLM

ACC/Addition

ACC/Untranslated Text

ACC/Mistranslation

ACC/Omission

ACC/Punctuation

FLC/Register

FLC/Grammar

FLC/Spelling

FLC/Character Encoding

FLC/Inconsistency

Non-translation

Major-level Error

AT MgMOCTC DATCMLM

Minor-level Error

0

5

10

15

20

25

Er
ro

r C
ou

nt

Figure 1: Heatmap visualization of MQM evaluation:
darker colours indicate larger error counts for certain
error types. The left side presents major-level errors
while the right side shows minor-level errors.

4.2 Human Evaluation

The evaluation results, obtained by averaging the
error counts from three translators, are presented in
Table 2. We omit human evaluation on the vanilla
NAT due to its poor performance under automatic
evaluation. The performance ranking of human
evaluation aligns with the automatic evaluation: AT
performs the best, followed by DAT, MgMO, CTC,
and CMLM. Models with explicit dependency mod-
eling (AT, DAT and CMLM) generate more fluent
translations than those without (MgMO and CTC).
, with fewer fluency errors. Despite comparable flu-
ency to AT, DAT exhibits low translation accuracy.
All NAT methods, particularly CMLM, generate
non-translations in certain cases.

A fine-grained error visualization is presented
in Figure 1. The mistranslation error type at the
major level has the highest proportion among all
models, with the models lacking explicit depen-
dency (MgMO and CTC) producing the most er-
rors. AT performs generally better than NAT except
for a considerable number of omission errors. In
contrast, NAT models tend to generate translations
with additional or duplicated content (addition),

Ref. AT NAT MgMO CTC DAT CMLM

0.00 0.50 27.64 16.47 1.85 0.00 14.52

0.00 0.10 31.10 23.50 1.60 0.00 12.60

Table 3: Uni-gram repetition ratios on WMT16 En⇒Ro
(first row) and WMT21 De⇒En (second row). The term
“Ref.” refers to the reference translation

particularly CTC and DAT which increase decoder
length to model latent alignments. These two mod-
els also exhibit more spelling errors. Compared to
AT, NAT models tend to produce more punctuation
errors and grammar errors. Similar to AT, MgMO
and CTC translations also frequently lack partial
source content (omission).

We explore human annotations to understand
typical patterns. Regarding omission errors, AT
often exhibits incomplete generation at the sen-
tence’s end. On the other hand, MgMO and CTC
frequently omit content throughout the entire sen-
tence, such as missing adjectives or verbs. The
NAT’s grammar errors primarily stem from incor-
rect verb tense and singular/plural usage, resulting
from its limited language dependency modeling.
The case study indicates that, for CTC, the major
addition errors are attributed to generating words
with spelling errors, which are regarded as irrele-
vant content by annotators. For DAT, these addi-
tion errors stem from n-gram repetition, where the
model generates a repeated segment from the pre-
vious context. For example, “By the beginning of
November, there are seven races until the beginning
of November.” To give an intuitive representation,
we present several cases for the aforementioned er-
ror types in Appendix G. All these patterns can be
attributed to inadequate language dependency mod-
eling with limited or redundant decoding length.

4.3 Effects of Explicit Dependency

Repetition Ratio. We first examine token repeti-
tion ratio (Zhou et al., 2020a; Ghazvininejad et al.,
2020; Du et al., 2021) in model translations, which
is the ratio of generations with repeated tokens,
e.g., “He is is a lawyer”. The results are shown in
Table 3. We can observe that models without latent
alignment modeling (NAT, MgMO and CMLM)
suffer severe token repetition during generation.

N-gram Repetition. Besides consecutive uni-
gram repetition, a more subtle phenomenon is non-
adjacent n-gram repetition. Such a repetition can be
overlooked under traditional metrics such as BLEU
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Figure 2: N-gram repetition of different models
(WMT21 De⇒En), where the x-axis represents the size
of the n-gram and the y-axis represents the count.

score, which only calculates the n-gram precision
of the generations. Consequently, translations that
contain n-gram repetition may even achieve higher
BLEU scores. This could explain why DAT per-
forms better than AT under rule-based metrics but
not under model-based or GPT4-based metrics. We
collect the n-gram repetition count for each model,
as shown in the left part of Figure 2. We can ob-
serve that DAT demonstrates a stronger tendency
to generate repeating n-grams with higher counts
across various n-gram granularity (2 to 10), which
aligns with a substantial number of addition errors
in human evaluation.

Enhancing Dependency Modeling. DAT uti-
lizes one-linear-layer attention modules to model
local vertex transitions. Such explicit dependency
modeling can be limited when dealing with long
sequence generation. For example, consider the
sentence "By the beginning of November, there are
seven races until the beginning of November." In
this case, both the beginning and the end of the
sentence are valid positions for the temporal prepo-
sitional phrase "the beginning of November" In
DAT, at the vertex state corresponding to the token
"races," only information from that current vertex
state is used to determine the index of the next
vertex state using one-linear-layer attention layers.
In contrast, AT considers all previously generated
tokens and utilizes Transformer decoder layers to
determine the next token. Under weak dependency
modeling in DAT, early generations can be ignored
and repeated phrases can be falsely pointed to (e.g.,
“the beginning of November”). To validate this
assumption, we train an asymmetrical AT model
with a shallow decoder to simulate weak depen-
dency modeling, and a deep encoder to guarantee
model size. As shown in Figure 2 (right-side), AT-
11/1 (11-layer encoder and 1-layer decoder) also
tends to generate repeated n-grams, and adding one
decoder layer (AT-10/2) mitigates this issue. Nev-
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Seuqence Length

40
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80
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DAT
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CMLM

Figure 3: Translation quality (COMET) w.r.t. source
sequence length on WMT21 De⇒En.

ertheless, AT-11/1 performs better than DAT as it
relies on the entire generation history rather than
just considering the current token. To alleviate this
issue without influencing decoding efficiency, we
introduce an additional linear layer for both Q and
K to strengthen the token transition modeling. This
refined model is referred as DAT∗ (Appendix H).
With 0.7% additional parameters compared to DAT
alone, we observe that DAT∗ exhibits less n-gram
repetition while maintaining decoding speed. We
present a case study of how DAT∗ alleviates n-gram
repetition in Appendix G. Nevertheless, DAT∗ is
limited in a one-step local transition foundation and
cannot fundamentally resolve n-gram repetition.

5 Generalization and Robustness

Length Generalization. Figure 3 illustrates that
all models experience a decline in performance
as the length of the source sequence increases, al-
beit at varying rates. AT surpasses all NAT meth-
ods in length generalization. Models incorporating
explicit dependency (e.g., AT, DAT, and CMLM)
exhibit slower degradation compared to others. No-
tably, CTC and CMLM experience severe perfor-
mance drops on sequences longer than 60.

Cross-domain Generalization. Figure 4 illus-
trates the cross-domain performance averaged
across 5 domains. Models with explicit depen-
dency, such as AT and DAT, achieve high cross-
domain performance. On the other hand, CTC and
CMLM demonstrate substantial degradation in per-
formance when tested on out-of-domain datasets
This is due to CTC models generating spelling er-
rors and CMLM models propagating errors from
early steps. These issues are further exacerbated in
cross-domain testsets that contain more terminolo-
gies, leading to subpar performance. The complete
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AT NAT MgMO CTC DAT DAT* CMLM
Model

40

60

80

CO
M

ET

76.03

33.62

70.36
55.41

75.52 75.28

55.86

Figure 4: Average cross-domain performance
(COMET) of WMT21 De⇒En models on out-of-
domain testsets.

Model AT DAT DAT∗

Instance-level CTER↓ 28.42% 43.66% 42.52%
Aggregate-level CTER↓ 62.88% 79.49% 79.12%

Table 4: Compositional generalization performance.

results can be found in Appendix I.

Compositional Generalization. We measure
compositional generalization on GoGnition (Li
et al., 2021) which evaluates the ability to trans-
late unseen phrases of simple and known semantic
units. The results are shown in Table 4 †. Instance-
level CTER and Aggregate-level CTER denote
the compound translation error rates of translating
novel compounds. Despite the narrowing gap in
in-domain and out-of-domain testsets, we observe
a significant difference in compositional general-
ization between DAT and AT. This discrepancy is
reflected in higher error rates, indicating a disparity
in dependency modeling capabilities.

Robustness to Input Perturbations. Finally, we
explore models’ robustness to different input per-
turbations, including random replacement, deletion
and permutation (Details in Appendix C), with re-
sults shown in Figure 5. In contrast to previous
findings that suggest explicit modeling provides
advantages, models without explicit incorporation
of modeling (e.g., MgMO and CTC) are less af-
fected by input noises. This can be because explicit
dependency generation may introduce exposure
bias (Bengio et al., 2015; Ranzato et al., 2016),
where errors occurring at early time steps (AT and
DAT) or iterative steps (CMLM) can accumulate
and propagate into future predictions, making them
susceptible to input perturbations. For complete
results, please refer to Appendix J.

To the best of our knowledge, this is the first
comparison of NAT and AT in terms of general-
ization and robustness. In addition to the disparity

†We only evaluate AT and DAT as they do not rely on
knowledge distillation.

Replacement Deletion Permutation

AT

NAT

MgMO

CTC

DAT

DAT*

CMLM

-24.54 -14.29 -26.07
-24.00 -14.75 -29.43
-20.07 -12.40 -24.65
-19.72 -12.02 -24.24
-23.16 -14.45 -27.04
-22.18 -14.30 -27.18
-24.12 -16.17 -26.21 30

25

20

15

10

5

COM
ET Score Decrease (%

)

Figure 5: Translation performance (COMET) decreases
(%) on noisy testsets of WMT21 De⇒En, with darker
colours indicating greater degradation.

in translation performance on benchmark datasets,
inadequate language dependency modeling causes
NAT methods to significantly lag behind AT. How-
ever, this weak dependency does provide an advan-
tage in resisting input perturbations.

6 Related Work

We discuss several representative NAT methods
in Section 2. A more detailed discussion on NAT
advances is presented in Appendix A. Different
from surveys (Xiao et al., 2023; Li et al., 2023) that
conduct a comprehensive survey on recent NAT
advances, we focus on comparing NAT with AT
comprehensively. Our work is also related to pre-
vious work analyzing neural machine translation
(Appendix B). Zhou et al. (2020a) find that knowl-
edge distillation boosts NAT performance by reduc-
ing data complexity. Agrawal et al. (2022) discuss
knowledge transfer in the context of multilingual
NAT. Huang et al. (2022a) understand the learning
process of NAT both theoretically and empirically.
Differently, we focus on systematically comparing
common NAT techniques with their AT counter-
parts in a systematic manner to showcase existing
performance gaps for future research.

7 Conclusion

We compared representative NAT methods with
AT under a comprehensive evaluation that encom-
passes a set of evaluation dimensions, including
human evaluation. Our research aims to fill in the
research gap of the real competitiveness of NAT
to AT. Both automatic and human evaluations in-
dicated that despite the narrowing gap, NAT meth-
ods underperform AT, with varying error patterns
such as translation omission, spelling errors and
n-gram repetitions. Our empirical results and anal-
yses demonstrated that explicit dependency model-
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ing is crucial for generating human-like languages,
although strong dependence can suffer explore bias.
Future research on NAT should focus on how to
consolidate explicit language dependency while
maintaining decoding efficiency.

Limitations

We systematically evaluate NAT and AT, highlight-
ing performance gaps for future research. How-
ever, there are limitations: Firstly, we assess state-
of-the-art NAT models using research-oriented
datasets (WMT, OOD, CG), which mainly con-
sist of English-centric text with a formal style and
limited topic range. Secondly, each NAT model is
annotated with only 100 samples. This may not
cover all potential error types. Finally, we focus
primarily on fully non-autoregressive methods due
to their superior decoding efficiency. Our results
are also limited to training-from-scratch methods;
extending conclusions to large language models is
left for future work.

Ethical Considerations

We honor the ACL Code of Ethics. No private data
or non-public information is used in this work. For
human annotation, we hired three annotators who
have degrees in English Linguistics or Applied Lin-
guistics. Before formal annotation, annotators were
asked to annotate 100 samples randomly extracted
from the dataset, and based on average annotation
time we set a fair salary (i.e., 32 dollars per hour)
for them. During their training annotation process,
they were paid as well. The annotation does not
involve any personally sensitive information. The
annotation strictly follows the annotation guide of
MQM (Freitag et al., 2021), with details presented
in Appendix D. We adhere to the terms of compa-
nies offering commercial LLM APIs and express
our gratitude to all global collaborators for their
assistance in utilizing these APIs.

Acknowledgement

We would like to thank all reviewers for their in-
sightful comments and suggestions to help im-
prove the paper. This work has been supported
by the China Strategic Scientific and Technolog-
ical Innovation Cooperation Project Grant No.
2022YFE0204900 (The Macao counterpart project
Grant No. FDCT/0070/2022/AMJ). This work is
also supported by a grant from Lan-bridge Informa-
tion Technology Co., Ltd. We extend our gratitude

to colleagues at Lan-bridge for their professional
annotations and evaluations of model translations.
Special thanks to Xianchao Zhu and Jing Li for
their invaluable assistance in organizing the anno-
tation process.

References
Sweta Agrawal, Julia Kreutzer, and Colin Cherry. 2022.

Exploring the benefits and limitations of multilingual-
ity for non-autoregressive machine translation. In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 177–187, Abu Dhabi,
United Arab Emirates (Hybrid). Association for Com-
putational Linguistics.

Yu Bao, Shujian Huang, Tong Xiao, Dongqi Wang,
Xinyu Dai, and Jiajun Chen. 2021. Non-
autoregressive translation by learning target categori-
cal codes. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5749–5759, Online. Association for
Computational Linguistics.

Yu Bao, Hao Zhou, Shujian Huang, Dongqi Wang, Li-
hua Qian, Xinyu Dai, Jiajun Chen, and Lei Li. 2022.
GLAT: glancing at latent variables for parallel text
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 8398–8409. Association for
Computational Linguistics.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence
prediction with recurrent neural networks. In Ad-
vances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Process-
ing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 1171–1179.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F. Wong,
Dacheng Tao, and Zhaopeng Tu. 2021a. Progres-
sive multi-granularity training for non-autoregressive
translation. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
2797–2803, Online. Association for Computational
Linguistics.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F. Wong,
Dacheng Tao, and Zhaopeng Tu. 2021b. Rejuvenat-
ing low-frequency words: Making the most of paral-
lel data in non-autoregressive translation. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3431–3441, Online.
Association for Computational Linguistics.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F.
Wong, Dacheng Tao, and Zhaopeng Tu. 2021c. Un-
derstanding and improving lexical choice in non-

7593

https://aclanthology.org/2022.wmt-1.11
https://aclanthology.org/2022.wmt-1.11
https://doi.org/10.18653/v1/2021.naacl-main.458
https://doi.org/10.18653/v1/2021.naacl-main.458
https://doi.org/10.18653/v1/2021.naacl-main.458
https://aclanthology.org/2022.acl-long.575
https://aclanthology.org/2022.acl-long.575
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://doi.org/10.18653/v1/2021.findings-acl.247
https://doi.org/10.18653/v1/2021.findings-acl.247
https://doi.org/10.18653/v1/2021.findings-acl.247
https://doi.org/10.18653/v1/2021.acl-long.266
https://doi.org/10.18653/v1/2021.acl-long.266
https://doi.org/10.18653/v1/2021.acl-long.266
https://openreview.net/forum?id=ZTFeSBIX9C
https://openreview.net/forum?id=ZTFeSBIX9C


autoregressive translation. In 9th International Con-
ference on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net.

Cunxiao Du, Zhaopeng Tu, and Jing Jiang. 2021. Order-
agnostic cross entropy for non-autoregressive ma-
chine translation. In Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages
2849–2859. PMLR.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

Javier Ferrando, Gerard I. Gállego, Belen Alastruey,
Carlos Escolano, and Marta R. Costa-jussà. 2022.
Towards opening the black box of neural machine
translation: Source and target interpretations of the
transformer. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 8756–8769, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Markus Freitag, George Foster, David Grangier, Viresh
Ratnakar, Qijun Tan, and Wolfgang Macherey. 2021.
Experts, errors, and context: A large-scale study of
human evaluation for machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 9:1460–1474.

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo,
Craig Stewart, Eleftherios Avramidis, Tom Kocmi,
George Foster, Alon Lavie, and André F. T. Martins.
2022. Results of WMT22 metrics shared task: Stop
using BLEU – neural metrics are better and more
robust. In Proceedings of the Seventh Conference
on Machine Translation (WMT), pages 46–68, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Marjan Ghazvininejad, Vladimir Karpukhin, Luke
Zettlemoyer, and Omer Levy. 2020. Aligned cross
entropy for non-autoregressive machine translation.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 3515–3523. PMLR.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112–
6121, Hong Kong, China. Association for Computa-
tional Linguistics.

Alex Graves, Santiago Fernández, Faustino J. Gomez,
and Jürgen Schmidhuber. 2006. Connectionist tem-
poral classification: labelling unsegmented sequence

data with recurrent neural networks. In Machine
Learning, Proceedings of the Twenty-Third Interna-
tional Conference (ICML 2006), Pittsburgh, Pennsyl-
vania, USA, June 25-29, 2006, volume 148 of ACM
International Conference Proceeding Series, pages
369–376. ACM.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K.
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In 6th International Con-
ference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 11179–11189.

Nuno M. Guerreiro, Elena Voita, and André Martins.
2023. Looking for a needle in a haystack: A com-
prehensive study of hallucinations in neural machine
translation. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 1059–1075, Dubrovnik,
Croatia. Association for Computational Linguistics.

Junliang Guo, Xu Tan, Linli Xu, Tao Qin, Enhong Chen,
and Tie-Yan Liu. 2020. Fine-tuning by curriculum
learning for non-autoregressive neural machine trans-
lation. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 7839–7846. AAAI Press.

Fei Huang, Tianhua Tao, Hao Zhou, Lei Li, and Minlie
Huang. 2022a. On the learning of non-autoregressive
transformers. In International Conference on Ma-
chine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 9356–9376.
PMLR.

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie
Huang. 2022b. Directed acyclic transformer for non-
autoregressive machine translation. In International
Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
9410–9428. PMLR.

Xiao Shi Huang, Felipe Pérez, and Maksims Volkovs.
2022c. Improving non-autoregressive translation
models without distillation. In The Tenth Inter-
national Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net.

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish
Vaswani, Niki Parmar, Jakob Uszkoreit, and Noam

7594

https://openreview.net/forum?id=ZTFeSBIX9C
http://proceedings.mlr.press/v139/du21c.html
http://proceedings.mlr.press/v139/du21c.html
http://proceedings.mlr.press/v139/du21c.html
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://aclanthology.org/2022.emnlp-main.599
https://aclanthology.org/2022.emnlp-main.599
https://aclanthology.org/2022.emnlp-main.599
https://doi.org/10.1162/tacl_a_00437
https://doi.org/10.1162/tacl_a_00437
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2
http://proceedings.mlr.press/v119/ghazvininejad20a.html
http://proceedings.mlr.press/v119/ghazvininejad20a.html
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
https://aclanthology.org/2023.eacl-main.75
https://aclanthology.org/2023.eacl-main.75
https://aclanthology.org/2023.eacl-main.75
https://aaai.org/ojs/index.php/AAAI/article/view/6289
https://aaai.org/ojs/index.php/AAAI/article/view/6289
https://aaai.org/ojs/index.php/AAAI/article/view/6289
https://proceedings.mlr.press/v162/huang22k.html
https://proceedings.mlr.press/v162/huang22k.html
https://proceedings.mlr.press/v162/huang22m.html
https://proceedings.mlr.press/v162/huang22m.html
https://openreview.net/forum?id=I2Hw58KHp8O
https://openreview.net/forum?id=I2Hw58KHp8O


Shazeer. 2018. Fast decoding in sequence models
using discrete latent variables. In Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2395–2404. PMLR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Tom Kocmi and Christian Federmann. 2023. Large lan-
guage models are state-of-the-art evaluators of trans-
lation quality. In Proceedings of the 24th Annual
Conference of the European Association for Machine
Translation, EAMT 2023, Tampere, Finland, 12-15
June 2023, pages 193–203. European Association for
Machine Translation.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395, Barcelona,
Spain. Association for Computational Linguistics.

Feng Li, Jingxian Chen, and Xuejun Zhang. 2023. A
survey of non-autoregressive neural machine transla-
tion. Electronics, 12(13).

Yafu Li, Leyang Cui, Yongjing Yin, and Yue Zhang.
2022. Multi-granularity optimization for non-
autoregressive translation. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5073–5084, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Yafu Li, Yongjing Yin, Yulong Chen, and Yue Zhang.
2021. On compositional generalization of neural ma-
chine translation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4767–4780, Online. Association for
Computational Linguistics.
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A Recent Advances in NAT

Various techniques have been proposed to address
the performance limitations of NAT. Guo et al.
(2020); Liu et al. (2020); Ding et al. (2021a); Qian
et al. (2021) devise dedicated training curriculums
to reduce the learning difficulty of NAT models,
whereas Zhou et al. (2020b); Ding et al. (2021c,b)
propose improved distillation training. Latent vari-
able modeling has received significant attention
in enhancing NAT performance (Libovický and
Helcl, 2018; Kaiser et al., 2018; Ma et al., 2019;
Saharia et al., 2020; Bao et al., 2022, 2021). Typi-
cally, Huang et al. (2022b) explicitly models target
dependency as paths in a directed acyclic graph.
Another line of research focuses on enhancing the
cross-entropy loss or alternating to metric-based
objectives (Sun et al., 2019; Shao et al., 2020;
Ghazvininejad et al., 2020; Du et al., 2021; Shao
et al., 2019; Li et al., 2022). In contrast to fully
non-autoregressive methods mentioned earlier, an-
other approach decomposes one-shot generation
into multiple iterative non-autoregressive genera-
tions (Gu et al., 2019; Ghazvininejad et al., 2019;
Huang et al., 2022c). Schmidt et al. (2022) align
common NAT techniques and compare translation
quality and speed implications under uniform envi-
ronments. Despite claiming improved performance
and comparability with autoregressive models (AT),
these approaches are limited in their evaluation us-
ing rule-based metrics like BLEU score (Papineni
et al., 2002), which demonstrates poor correlation
with human preference (Rei et al., 2020; Freitag
et al., 2022).

B Analysis Research in NMT

Voita et al. (2021) interpret NMT’s learning pro-
cess during training, and Ferrando et al. (2022);
Yan et al. (2022) interpret and analyze model pre-
dictions during inference. Müller et al. (2020a)
study NMT generalization ability to novel domains,
whereas Li et al. (2021) demonstrate that NMT’s
weak compositional generalization capability. Ad-
ditional metrics proposed by Niu et al. (2020) quan-
tify the effects of input perturbations. Hallucina-
tion, which refers to the generation of unrelated
outputs by the model, has also been extensively
studied (Xu et al., 2023; Guerreiro et al., 2023).

C Experiment Setup

Datasets To evaluate general translation perfor-
mance, we choose WMT16 En⇒Ro, a widely used

benchmark dataset for non-autoregressive transla-
tion. In addition, we select a large-scale benchmark
dataset, i.e., WMT21 De⇒En, which consists of
101.35M parallel sentences and is further filtered to
88.66M. We apply BPE (Sennrich et al., 2016) on
the concatenated training sets with 32,000 opera-
tions. Knowledge distillation is commonly used for
training NAT models (Gu et al., 2018; Sun et al.,
2019; Ghazvininejad et al., 2019, 2020). We train
an autoregressive Transformer base model on the
raw dataset as the teacher model and use it to gen-
erate the distilled dataset. To assess cross-domain
translation, we employ the test sets from (Müller
et al., 2020b), which encompass test instances from
5 domains: medical, IT, koran, law, and subtitles,
and we evaluate the models (trained on WMT21
De⇔En) on these test sets. For compositional gen-
eralization, we utilize CoGnition (Li et al., 2021)
with its original data configurations. Following
the approach in (Edunov et al., 2018), we measure
model robustness on the WMT21 De⇒En testset
by introducing three types of input noise: (1) word
deletion with a probability of 0.1; (2) word replace-
ment with "<unk>" with a probability of 0.1; (3)
word swapping within a range of 3 words with a
probability of 0.1.

Model Settings We adhere to the best-
performing model configuration outlined in the
corresponding papers (Vaswani et al., 2017; Gu
et al., 2018; Saharia et al., 2020; Li et al., 2022;
Huang et al., 2022b; Ghazvininejad et al., 2019).
For all models, we utilize Transformer with a
Transformer_Base configuration: both the encoder
and decoder comprise 6 layers with 8 attention
heads. The hidden dimension is set to 512, while
the feedforward layer dimension is set to 2,048.
The model is trained using Adam (Kingma and
Ba, 2015) optimizer. We apply a weight decay
of 0.01 and label smoothing of 0.1. The learning
rate initially increases to 5 · 10−4 within the first
10K steps and subsequently decays exponentially.
For glancing training, the glancing probability
is gradually annealed from 0.5 to 0.1 in 200k
steps. All results are based on models trained
on the KD dataset unless otherwise stated. For
inference, we present results obtained through
beam search with a beam size of 5. In the case of
iterative models such as CMLM, we set the number
of iterative steps as 10. Following the official
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Model BLEU COMET 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram 9-gram 10-gram

AT 32.04 84.72 130 10 0 0 0 0 0 0 0
DAT(Beam) 32.26 83.32 472 251 175 120 80 54 33 19 12
DAT(Viterbi) 31.99 82.41 410 193 126 78 53 34 23 17 6
MgMO 30.32 81.15 149 17 3 1 0 0 0 0 0
CTC 30.52 80.06 133 11 1 0 0 0 0 0 0

Table 5: Comparison of different models on WMT21 De⇒En translation task with distillation. The table reports
BLEU, COMET, and N-gram repetition rates (2-grams to 10-grams) for each model. DAT(Beam) and DAT(Viterbi)
are two variants of the DAT model.

DA-Transformer guidelines‡, we compared Viterbi
Decoding with beam search and found that beam
search slightly outperformed Viterbi in terms of
BLEU and COMET metrics. Therefore, we chose
beam search to present DAT’s best performance.
The performance comparison, including BLEU,
COMET and n-gram repetition is presented in
the following table 5. Despite Viterbi Decoding’s
reduction in n-gram repetition, this issue was still
more pronounced in DAT compared to AT and
other NAT methods, aligning with the conclusion
in our paper. We utilized 4 NVIDIA V100 GPUs
for our computations, dedicating two days for the
CTC process and five days for DA. Other methods
were executed within one day each.

D Human Annotation

We follow Freitag et al. (2021), an evaluation
methodology based on the Multidimensional Qual-
ity Metrics (MQM) framework, which provides a
hierarchical analysis of translation errors. We adopt
two common error hierarchy categories: Accuracy
and Fluency. Accuracy covers fine-grained 4 error
sub-types such as Addition, Omission, Mistransla-
tion and Untranslated Text, whereas Fluency covers
Punctuation, Spelling, Grammar, Register, Incon-
sistency and Character Encoding. Translations that
are too badly garbled to permit error classification
are classified as Non-translation. In addition to
the error type, each error is also annotated with a
severity label: minor and major. We follow the
error weighting in Freitag et al. (2021) to compute
the weighted error counts for each system. An-
notation details are presented in Appendix E. We
hire three expert translators to conduct side-by-side
human evaluations on the 5 German-English trans-
lation models, i.e., AT, NAT, MgMO, CTC, DA
and CMLM. We randomly sample 100 translations
from the WMT21 De⇒En testset and ask transla-
tors to annotate translation errors for each instance

‡https://github.com/thu-coai/DA-Transformer/
tree/v1.0

Severity Category Weight

Major Non-translation 25
all others 5

Minor Fluency/Punctuation 0.1
all others 1

Table 6: MQM error weighting (Freitag et al., 2021).

following the MQM annotation guideline. We aver-
age the error counts from the 3 annotators as human
evaluation results. For conducting human annota-
tion, we hired three annotators who have degrees
in English Linguistics or Applied Linguistics. Be-
fore formal annotation, annotators were asked to
annotate 100 sampled translations from 5 systems,
and based on average annotation time we set a fair
salary (i.e., 32 dollars per hour) for them. During
their training annotation process, they were paid as
well.

E MQM Annotation

We present the details of the error type description
in Table 7, the error severity description in Table 8
and error weights in Table 6.

F Human Evaluation Results

The annotation results (average from 3 translators)
are presented in Table 9.

G Case Study

We present a case study to showcase the n-gram
repetition phenomenon in Table 10. We present sev-
eral cases to showcase the spelling errors of CTC
and DAT in Table 11. A case study of omission er-
rors is shown in Table 12. A case study of grammar
and punctuation errors is shown in Table 13. A case
study of how DAT∗ alleviates n-gram repetition is
presented in Table 14.

H Model Details of DAT∗

To strengthen the inter-token dependency of DAT,
we increase the depth of the transition model by en-
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Error Category Description

Accuracy Addition Translation includes information not present in the source or repeated content.
Omission Translation is missing content from the source.
Mistranslation Translation does not accurately represent the source.
Untranslated text Source text has been left untranslated.

Fluency Punctuation Incorrect punctuation (for locale or style).
Spelling Incorrect spelling or capitalization.
Grammar Problems with grammar, other than orthography.
Register Wrong grammatical register (eg, inappropriately informal pronouns).
Inconsistency Internal inconsistency (not related to terminology).
Character encoding Characters are garbled due to incorrect encoding.

Non-translation Impossible to reliably characterize the 5 most severe errors.

Table 7: MQM hierarchy (Freitag et al., 2021).

Severity Description

Major Errors that may confuse or mislead the reader due to significant change in meaning or because they appear
in a visible or important part of the content.

Minor Errors that don’t lead to loss of meaning and wouldn’t confuse or mislead the reader but would be noticed,
would decrease stylistic quality, fluency or clarity, or would make the content less appealing.

Table 8: MQM severity levels (Freitag et al., 2021).

coding Q in Equation 10 with an additional linear
layer:

Q∗ = ReLU(Q)W∗
Q, (15)

where ReLU is the rectified linear unit activation
function. The same applies to K. We refer to this
model as DAT∗.

I Cross-domain Performance

The complete cross-domain performance on 5
De⇒En out-of-domain testsets are presented in
Table 15.

Compositional generalization in NMT refers to
the model’s generality to translate compounds (e.g.,
phrases) of known semantic units (e.g., words). We
test AT and DAT on the CoGnition dataset since
they do not rely on knowledge distillation, and
present the results in Table 4. As shown, DAT
underperforms the AT counterpart in compositional
generalization by a considerable margin, due to its
weak dependency modeling. DAT∗

J Robustness to Noisy Input

The translation performance on the WMT21
De⇒En testsets with different types of noises are
shown in Table 16, where “None” denotes the per-
formance on the original testset without noise.
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AT MGMO CTC DA CMLM

Maj. Min. Maj. Min. Maj. Min. Maj. Min. Maj. Min.

ACC/Addition 0.33 1.33 2.00 3.33 6.33 7.00 8.67 6.00 1.33 0.67
ACC/Untranslated Text 1.00 0 1.00 0.00 1.33 0.67 1.00 0.00 0.00 0.00
ACC/Mistranslation 14.33 4.00 29.67 3.67 26.67 6.33 19.33 6.00 22.33 7.67
ACC/Omission 11.00 3.67 13.33 4.33 18.00 4.67 5.00 1.33 4.33 5.00
ACC/Punctuation 0.00 1.67 0.00 7.67 0.00 3.33 0.00 3.00 0.33 2.33
FLC/Register 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00
FLC/Grammar 1.33 4.00 3.00 7.67 2.33 7.33 1.67 5.00 5.67 8.00
FLC/Spelling 0.00 1.67 1.00 1.67 3.67 8.33 0.33 3.00 0.67 1.00
FLC/Character Encoding 4.00 0.33 2.67 0.00 2.67 0.00 3.33 0.00 0.00 1.00
FLC/Inconsistency 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.33 0.00 0.00
Non-Translation 0.00 0.00 0.33 0.00 0.67 0.00 0.33 0.00 7.00 0.00

Table 9: Human Evaluation Results - Error Counts by Type (Averaged from Three Translators’ Annotations).
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Case 1

Source Sentence In Sachen Kindergarten- respektive Krippenplätzen hat sie bereits Kontakt mit einer örtlichen
Einrichtung aufgenommen.

Reference Sentence Regarding kindergarten respectively nursery places she has already established contact with the
local facilities.

DAT Translation She has already made contact with a local institution in terms of kindergarten and crib places,

she has already made contact with a local institution .

DAT∗ Translation In terms of kindergarten or crib places, she has already contacted a local institution.

Case 2

Source Sentence 31 Spieler begrüßte er an der Säbener Straße, darunter auch die neuen Akteure um Edel-Einkauf
Leroy Sané, der erstmals nach seinem Wechsel von Manchester City alle neuen Kollegen auf dem
Platz traf.

Reference Sentence He greeted 31 players at the Säbener Straße, among them the new players around special purchase
Leroy Sané who met all new colleagues on the field for the first time after his transfer from
Manchester City.

DAT Translation He welcomed 31 players on Säbener Straße, including the new players
for fine shopping Leroy Sané, who met all new colleagues on the square
for the first time after his move from Manchester City , met all the new colleagues on the

pitch for the first time after his move from Manchester City .

DAT∗ Translation He welcomed 31 players on Säbener Straße, including the new players around fine shopping Leroy
Sané, who met all new colleagues on the pitch for the first time after his move from Manchester
City.

Case 3

Source Sentence In der Stadt Oakland in Kalifornien wurde ein Gerichtsgebäude in Brand gesteckt.

Reference Sentence A courthouse was set on fire in Oakland, California.

DAT Translation In the city of Oakland, California , a courthouse was set on fire

in the city of Oakland, California .

DAT∗ Translation A courthouse was set on fire in the city of Oakland, California.

Case 4

Source Sentence Die Windkraftwerke auf der deutschen Nordsee haben in den ersten sechs Monaten des Jahres
11,51 Terawattstunden Strom in das Netz eingespeist.

Reference Sentence The wind power plants of the German North Sea delivered 11.51 terawatt hours electricity to the
net in the first six months of the year.

DAT Translation In the first six months of the year , the wind power plants on the German North Sea fed 11.51

terawatt hours of electricity into the grid in the first six months of the year .

DAT∗ Translation The wind power plants on the German North Sea fed 11.51 terawatt hours of electricity into the
grid in the first six months of the year.

Case 5

Source Sentence Bis Anfang November stehen sieben Rennen an.

Reference Sentence Until the beginning of November seven races are planned.

DAT Translation By the beginning of November , there are seven races until the beginning of November .

DAT∗ Translation There are seven races until the beginning of November.

Table 10: A case study of n-gram repeating of DAT models, comparing with DAT∗ which enhances dependency
modeling by adding a linear layer. The text in the grey background denotes the repeated segment.
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Case 1

Source Sentence Sie steckten vor einem Jugendgefängnis Bauwagen in Brand, die Polizei setzte Blend-
granaten und Pfefferspray ein.

Reference Sentence They set construction trailers on fire in front of a youth detention center, the police used
stun grenades and pepper spray.

CTC Translation They set construction fire in front of a youth prison, the police used glgrenades (glare
grenades) and pepper spray.

Case 2

Source Sentence Es gebe aber keine Anhaltspunkte, dass die Anzahl von illegalen Autorennen tatsächlich
steige.

Reference Sentence However, there are no real indications that the number of illegal car races does in fact
increase.

CTC Translation However, there is no indicevidence (indication/evidence) that the number of illegal car
races is actually increasing.

Case 3

Source Sentence Auf der A81 registriert die Polizei sogar mehr Rennen als auf jeder anderen Bundesauto-
bahn.

Reference Sentence The police registers even more races on the A81 than on any other federal autobahn.

CTC Translation On the A81, the police registregister (register) even more races than on any other federal
highway.

Case 4

Source Sentence Im 24-Stunden-Vergleich wurden in Wien 60 Corona-Neuinfektionen gemeldet - in
Niederösterreich gab es 22 Neuinfektionen.

Reference Sentence In a 24 hour comparison 60 Corona new infections were reported in Vienna - in Lower
Austria there were 22 new infections.

DAT Translation In a 24-hour comparison, 60 corona (Corona) new infections were reported in Vienna -
in Lower Austria there were 22 new infections.

Case 5

Source Sentence "Ich denke es ist uns gelungen, Rakoczy-Flair zu verbreiten", sagt Kurdirektorin Sylvie
Thormann.

Reference Sentence “I think we still succeeded in spreading Rakoczy flair,” said the Kurstadt director, Sylvie
Thormann.

DAT Translation “I think we have succeeded in spreading rakoczy (Rakoczy) flair,“ says Prime Director
Sylvie Thormann

Table 11: A case study of spelling errors of CTC and DAT. The text in the gray background indicates segments
with spelling errors, followed by the correct spelling enclosed in brackets.
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Case 1

Source Sentence In diesem Jahr sind die Fluten besonders schlimm, was Wissenschaflter auf den Klimawan-
del zurückführen.

Reference Sentence The floods were especially bad this year, which scientists have connected to climate
change.

CTC Translation This year, the floods are particularly bad, which scientists (have connected) to climate
change.

Case 2

Source Sentence Den Punkterekord im englischen Fußball verpasste Coach Jürgen Klopp mit seinem Team
nur knapp.

Reference Sentence Coach Jürgen Klopp with his team only narrowly missed the points record in English
soccer.

CTC Translation Coach Jürgen Klopp narrowly missed the (points) and his team in English football.

Case 3

Source Sentence Zuletzt hatten Thole/Wickler im September des vergangenen Jahres beim World Tour
Final in Rom gespielt.

Reference Sentence Thole/Wickler recently played in the World Tour Final in Rome in September of last year.

CTC Translation Thole/Wickler last (year) played at the World Tour Final in Rome (in) September.

Case 4

Source Sentence Acht Filme drehte sie mit dem Herzensbrecher.

Reference Sentence She filmed eight films with the heart breaker.

MgMO Translation She filmed eight films with the (heart) breaker.

Case 5

Source Sentence Frankfurt/Main - Der siebenmalige Zeitfahrweltmeister Tony Martin kann sich durchaus
vorstellen, seine Radsport-Karriere fortzusetzen.

Reference Sentence Frankfurt/Main - The seven-time time trial specialist Tony Martin can clearly picture
continuing his bicycling career.

MgMO Translation Frankfurt/Main - The seven-time time-trial world champion Tony Martin can (clearly)
imagine continuing his cycling career.

Table 12: A case study of omission errors of CTC and MgMO. The text indicated within brackets highlights the
segments missed by models.
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Case 1

Source Sentence Auf der A81 registriert die Polizei sogar mehr Rennen als auf jeder anderen Bundesauto-
bahn.

Reference Sentence The police register even more races on the A81 than on any other federal autobahn.

DA Translation On the A81, the police registered (register) even more races than on any other federal
motorway.

Case 2

Source Sentence Auch in der amerikanischen Metropole Seattle lieferten sich Demonstranten am Samstag
Zusammenstöße mit der Polizei.

Reference Sentence In the American metropolis of Seattle demonstrators also ran into clashes with police on
Saturday.

CTC Translation In the American metropolis of Seattle, demonstrators also clashes (clash/clashed) with
the police on Saturday.

MgMO Translation In the American metropolis of Seattle, demonstrators also clashes (clash/clashed) with
the police on Saturday.

Case 3

Source Sentence Die Polizei war seit dem frühen Abend mit zahlreichen Beamten im Einsatz, im gesamten
Stadtgebiet war ein größeres Polizeiaufgebot zu sehen.

Reference Sentence The police was in use with numerous officers since the early evening, a major police
detachment was observed in the entire city area.

CMLM Translation The police have been working (worked) since the early evening with numerous officials,
with a larger police squad throughout the city.

Case 4

Source Sentence Zuletzt hielten sich noch einige Dutzend Menschen auf dem Platz auf, verließen ihn jedoch
vor Beginn der Sperrstunde um 1 Uhr.

Reference Sentence Until last, some dozens of people were still present at the place, however, they also left
before beginning of the curfew at 1 a.m.

CTC Translation Finally, a few dozen people stayed on the square, but left it before the start of the curfew
at 1 o clock (o’clock).

Case 5

Source Sentence Wie die Polizei mitteilt, kam es danach wieder zu Auseinandersetzungen zwischen den
beiden Personen.

Reference Sentence Another scuffle followed between the two persons, according to the police.

MgMO Translation As the police say, there were clashes between the two people (.)

Table 13: A case study of grammar and punctuation errors. The text in the gray background indicates segments
with errors, followed by the correct format enclosed in brackets.
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Case 1

Source Sentence Bis Anfang November stehen sieben Rennen an.

Reference Sentence Until the beginning of November seven races are planned.

DAT Vertex Predictions <BOS> By The Seven There Seven races are been races By the As of early beginning of
the beginning of of November , there there will there will be be been are been are seven
seven event@@ seven races races have seven seven the races p@@ races are place have
run are been planned in p@@ ending scheduled until the run scheduled p@@ ending up
by beginning the early beginning beginning of early of November November beginning
November . <EOS>

DAT Translation By the beginning of November , there are seven races until

the beginning of November .

DAT∗ Vertex Predictions <BOS> There are Seven Seven There By seven races By are The are been seven races
scheduled As until the beginning by the early early beginning of November early
November of November , there will are are be have seven been up be are seven seven
appear@@ seven races races have seven are races run are been scheduled p@@ place
until play be scheduled take place until the beginning beginning beginning of in early of
early early November . <EOS>

DAT∗ Translation There are seven races until the beginning of November .

Case 2

Source Sentence Bei der Kollision fliegen Hand- und Fußbremshebel weg.

Reference Sentence When they collided hand and foot brake pedals break off.

DAT Vertex Predictions <BOS> During The Hand Flying Hand@@ brake and In case During the case During
the event of the col@@ col@@ Col@@ ding col@@ col@@ sion li@@ sion col@@
li@@ li@@ sion , sion , the is li@@ des leaves fly , the Hand le@@ es Hand@@ away
Hand held of Hand of hand hand hand@@ wr@@ held hand and hand le@@ hand le@@
ver ver and ver foot le@@ ver ver and foot b@@ le brake foot foot brake foot bra@@
k@@ king brake brake brake le@@ vers fly le@@ le@@ le@@ le@@ vers vers vers
are vers are fly fly fly fle@@ vers fly fly flying fly from the away f@@ away away away
during the event col@@ li@@ ding col@@ sion col@@ li@@ sion sion <EOS>

DAT Translation During the collision , hand and foot brake levers fly away during the collision .

DAT∗ Vertex Predictions <BOS> Hand@@ -@@ Hand Hand@@ Flying In brake -@@ During and The foot
col@@ le@@ vers away Col@@ during the event of the col@@ li@@ ding col@@
col@@ col@@ sion li@@ sion li@@ sion , li@@ breaks involves session li@@ li@@
sion there , fly brake re@@ moves fly away of the Hand@@ Hand vers by Hand hand
hand@@ held of hand hand hand le@@ - and hand brake brake hand le@@ and vers and
and foot F@@ foot foot oot and foot foot under@@ king brake brake brake brake le@@
le@@ bra@@ vers arms vers are fly col@@ le@@ vers vers fly are fly fly flying f@@
fly ail away during away the col@@ A@@ way away away during the col@@ col@@
li@@ sion li@@ way <EOS>

DAT∗ Translation During the collision , hand and foot brake levers fly away.

Table 14: A case study of vertex predictions of DAT and DAT∗ models. The text in the grey background denotes the
repeated segment in DAT. Tokens in bold denote the set of related vertex predictions that construct the phrase “the
begging of November”. generating repeated n-grams via finding a better vertex transition path, due to its stronger
dependency modelling.
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Model IT Koran Law Medical Subtitles Average

AT 78.29 62.08 85.44 79.25 75.09 76.03
NAT 32.97 33.10 34.53 32.61 34.90 33.62
MgMO 72.39 57.89 79.00 73.27 69.24 70.36
CTC 50.39 46.66 49.71 57.20 73.10 55.41
DAT 77.86 61.15 85.07 78.78 74.76 75.52
CMLM 61.67 38.30 71.94 59.97 47.42 55.86
DAT* 77.57 61.33 84.05 78.78 74.65 75.28

Table 15: Cross-domian translation performance (COMET). Bold numbers represent the best performance.

Model None Replace Delete Permutation

AT 84.72 63.93 (-20.79) 72.61 (-12.11) 62.63 (-22.09)
NAT 75.50 57.38 (-18.12) 64.36 (-11.14) 53.28 (-22.22)
CMLM 77.14 58.53 (-18.61) 64.67 (-12.47) 56.92 (-20.22)
CTC 80.06 64.27 (-15.79) 70.44 (-9.62) 60.65 (-19.41)
MgMO 81.15 64.86 (-16.29) 71.09 (-10.06) 61.15 (-20.00)
DAT 83.32 64.02 (-19.30) 71.28 (-12.04) 60.79 (-22.53)
DAT* 83.20 64.75 (-18.45) 71.30 (-11.90) 60.59 (-22.61)

Table 16: Results of translation performance (COMET) on noisy testsets of WMT21 De⇒En.
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