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Abstract

Non-compositional expressions, such as id-
ioms, are an integral part of natural language
and their figurative meanings cannot be directly
derived from the meanings of their component
words. Considering the scenario, where these
expressions form a long-tailed process in lan-
guage, either because of their occurrence in
corpora and/or their gradual integration into
use over time, this paper studies the ability of
contemporary pre-trained language models to
continually learn them and generate them. For-
mulating this as a mask infilling task termed as
CLoNE, the study probes the combined chal-
lenges of non-compositionality and their con-
tinual learning. Using a set of three diverse id-
iomatic expression datasets repurposed for this
task, we benchmark different large pre-trained
language models and different continual learn-
ing methods on the task of non-compositional
expression generation. Our experiments on the
CLoNE task show that pre-trained language
models are limited in their ability to generate
non-compositional expressions and available
continual learning methods are inadequate for
our proposed CLoNE task, calling for more
effective methods for continual learning of non-
compositionality. Our datasets and code will
be available at https://github.com/
zhjjn/ContinualGeneration.git

1 Introduction

Large language model advancements have pro-
vided a new context to study non-compositional
expressions (or idiomatic expressions) and the chal-
lenges they pose to classical NLP tasks involving
them, such as sentiment analysis (Biddle et al.,
2020), paraphrase generation (Zhou et al., 2021c),
natural language inference (Zeng et al., 2023),
metaphor detection (Su et al., 2020; Gong et al.,
2020), and contextual disambiguation (Zeng and
Bhat, 2021; Zhou et al., 2023a).Furthermore, given
the significance of non-compositional expressions
in enhancing the naturalness and stylistic richness
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Figure 1: Training with different data streams. Different
colors represent different tasks (here, idioms) in their
sentences (grey). The top scenario (Boundary) refers to
the setting that data for different tasks have clear bound-
aries and the bottom scenario (No Boundary) refers to
the setting that data for different tasks do not have clear
boundaries.

of everyday language (Moon et al., 1998; Bald-
win and Kim, 2010), their generation by large pre-
trained language models (trained without explicitly
accounting for non-compositionality) remains an
important, yet inadequately explored aspect in NLP
(Zhou et al., 2021c).

A related, but distinct inquiry pertains to the
continual addition of non-compositional expres-
sions into language (Makkai, 2013). Specifically,
it raises the question of how large pre-trained lan-
guage models learn new non-compositional expres-
sions that were not part of their training data with-
out requiring retraining. Additionally, since the
meaning of non-compositional phrases cannot be
inferred from the meanings of their component
words (Gläser, 1988; Makkai, 2013), and learn-
ing the meaning of one non-compositional phrase
does not aid in understanding another, each non-
compositional phrase must be learned individually.
This calls for a continual learning (CL) setting to
study large language models’ ability to generate
non-compositional expressions. Formulating this
as a mask infilling task with idiomatic expressions,
the study probes the combined challenges of non-
compositionality and their continual learning.
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Continual learning, also known as lifelong learn-
ing, is a machine learning paradigm to adap-
tively learn new knowledge from a continuous data
stream over time while still being able to remember
and reuse previously learned knowledge (Robins,
1995). In efforts to mitigate the issue of “catas-
trophic forgetting" often seen in neural models,
there is a rising interest in creating CL algorithms
for natural language processing (NLP) tasks (Shu
et al., 2016; Xu et al., 2018; Li et al., 2019; Jin
et al., 2020) that have shown limited success in
handling compositional phrases. This focus of this
study is the equally significant challenge of pro-
cessing non-compositional phrases like idioms and
metaphors.

In a recent study, Zhou et al. (2023b) investi-
gated non-compositional expression generation by
employing CL over examples organized by dynam-
ically changing difficulty levels, potentially rein-
troducing previously seen idioms at later stages.
In contrast, our approach explores their contin-
ual learning and generation by randomly select-
ing expressions from a pool without replacement.
This ensures that expressions encountered earlier
in training will not reappear later and better rep-
resents their continual learning, focusing on their
nuanced learning rather than broader difficulty lev-
els. In this novel setup, we study the extent to
which popular CL algorithms alleviate the problem
of catastrophic forgetting when learning to generate
non-compositional expressions.

Our study is centered around three research ques-
tions. R1: How difficult is it for language models
trained with an MLM objective to learn to generate
multi-word non-compositional expressions (which
would still be generated word by word)? R2: To
what extent do large pre-trained language models
suffer from catastrophic forgetting when learning to
generate non-compositional expressions? and R3:
To what extent can popular CL algorithms reduce
the problem of catastrophic forgetting when learn-
ing to generate non-compositional expressions?

Answers to these questions lead to the main con-
tributions of our work summarized below.
1. We propose CLoNE, a new task for studying non-
compositional expression generation in a continual
learning setting.
2. We construct three datasets, which will be made
publicly available upon acceptance, to simulate
non-compositional expression acquisition and to
probe a set of pretrained language models that yield

comprehensive insights about their capabilities to
learn non-compositional expressions, also in a CL
setting.
3. Comparing CL algorithms with the constructed
datasets we find that (a) current large pre-trained
language models are limited in their ability to gen-
erate non-compositional expressions; (b) current
large pre-trained language models are plagued by
catastrophic forgetting when learning to generate
non-compositional expressions; and (c) SOTA CL
algorithms are not beneficial in alleviating catas-
trophic forgetting for the CLoNE task. Detailed ab-
lation studies and analyses substantiate our claims
providing insights about the CLoNE task.

The paper is organized as follows. In Section
3 we explore the first research question, where
we fine-tune a set of pre-trained language mod-
els to generate idioms and evaluate their perfor-
mance. Then we explore the second research ques-
tion in Section 4, where the goal is to understand
the forgetting problem for pre-trained language
models when learning to generate idioms. To this
end, we propose the continual learning of non-
compositional expressions (CLoNE) task to mea-
sure the ability of pre-trained language models to
learn to generate them in a continual manner. This
is depicted in Figure 1. Finally, we explore the
third research question in Section 5, where using
the CLoNE dataset, we explore the extent to which
popular CL algorithms alleviate the forgetting prob-
lem.

2 Related Works

Non-compositionality. Processing phrases char-
acterized by non-compositionality has been the
classical “pain in the neck" for NLP (Sag et al.,
2002). Prior work has mainly focused on identi-
fying potentially non-compositional expressions
(Salehi et al., 2014; Senaldi et al., 2016; Flor
and Klebanov, 2018; Amin et al., 2021; Zeng
and Bhat, 2021), disambiguating between their
figurative/literal use (Peng and Feldman, 2015;
Köper and im Walde, 2016; Liu and Hwa, 2017,
2018; Zhou et al., 2023a), and paraphrasing be-
tween non-compositional expressions and their lit-
eral counterparts (Liu and Hwa, 2016; Agrawal
et al., 2018; Shirin and Raseek, 2018; Zhou et al.,
2021a,b). Yet, the task of learning and generat-
ing non-compositional expressions—a challenging
task because of non-compositionality—remains un-
explored and this study aims to fill the research
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gap. We focus on pretrained language models’
ability to generate non-compositional expressions
by requiring them to reconstruct the masked non-
compositional expression.
Continual Learning. Continual learning en-
ables models to learn new knowledge and preserve
knowledge acquired from a data stream by train-
ing only on the newly received data without re-
training. Although a natural ability for humans,
continual learning remains challenging for neu-
ral networks due to the well-known problem of
catastrophic forgetting (French, 1993). Different
methods to alleviate forgetting have been proposed,
including those that are rehearsal-based (Robins,
1995; Shin et al., 2017; Aljundi et al., 2019; Pelle-
grini et al.), regularization-based (Kirkpatrick et al.,
2017; Li and Hoiem, 2017; Chaudhry et al., 2018)
and architecture-based (Xu and Zhu, 2018; Wen
et al., 2019). While originally and primarily stud-
ied in computer vision settings (Rebuffi et al., 2017;
Zenke et al., 2017; Aljundi et al., 2019), recently
they are being studied in the context of NLP, in-
cluding representation learning (Xu et al., 2018;
Liu et al., 2019), language modeling (Sun et al.,
2019), classification (Chen et al., 2015; Shu et al.,
2016), and generation (Thompson et al., 2019). Yet,
the overall number of methods purely designed for
NLP problems is still quite limited.

3 Understanding Non-compositional
Expression Generation in Pre-trained
Language Models

3.1 Task Formulation

To explore large pre-trained language models’ abil-
ity to generate non-compositional expressions, we
train multiple large pre-trained language models to
generate idioms, formulated as a mask infilling task.
Given a sentence with a masked fragment, the task
is to generate an appropriate non-compositional
expression to fill the mask. In our setup, we re-
strict each sentence to contain only one masked
fragment and the model is required to fill exactly
one non-compositional expression. We create in-
put sentences by selecting a sentence containing
a non-compositional expression with a known po-
sition and replacing the entire expression with a
<mask> token. The single <mask> token pre-
vents the model from making a decision based on
the number of words in the expression. For ex-
ample, to test if the model is able to successfully
generate “out of the question," we use the sentence,

“It is a relatively small basement room, so a large
imposing piece was out of the question.", converted
to “It is a relatively small basement room, so a
large imposing piece was <mask>." To account
for instances where the right context of the non-
compositional expressions could help with their
generation, we formulate our task as a mask infill
task instead of a causal generation task.

3.2 Data Collection

Our data are constructed from three popular
datasets for idiomatic expression usage recogni-
tion with labels whether the idiomatic expression
was used figuratively or literally: SemEval (Ko-
rkontzelos et al., 2013), VNC (Cook et al., 2008)
and MAGPIE (Haagsma et al., 2020). We only
use the figurative sense so as to ensure the non-
compositional property holds. for the mask infilling
task, we first mask the non-compositional expres-
sion in each sentence. For SemEval and MAGPIE,
the original SemEval and MAGPIE datasets pro-
vide the position of the non-compositional expres-
sion within the sentences, which we use to directly
mask the expressions. VNC, on the other hand,
provides only the identity of the expression for
each sentence without its position. Given that all
expressions from VNC are verb-noun compounds,
we identify the position of the expressions by first
lemmatizing and generating part-of-speech tags for
each word in a given sentence and then matching
each verb-noun phrase with the given expression1.
Once the position is identified, we mask the ex-
pression. This method finds the position of all the
idiomatic verb-noun compounds correctly.

3.3 Experiments

Set up. In these experiments, we follow the clas-
sical method of performing stochastic gradient up-
date on a batch of data, which is randomly sampled
from the entire training set. Each batch contains
data sampled from all tasks use for training over
multiple epochs, which we call the offline training.
Models. For pre-trained language models, we
choose BART, T5, T0 and flan-T5 for our exper-
iments because of their outstanding performance
and scale. Besides, we also utilize GPT4 for our
experiments in a zero-shot setting.
Evaluation. We resort to ROUGE (Lin, 2004) and
BLEU (Papineni et al., 2002) for evaluation. Be-
sides, phrase-level BLEU and phrase-level ROUGE

1The NLTK lemmatizer and POS tagger were used.
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Data Model Acc BLEU ROUGE

Phrase Total Phrase Total

S

BART 0.68 87.58 94.40 94.29 96.29
T5 0.57 83.35 90.29 86.91 93.76
T0 0.64 90.90 94.43 93.56 96.49
flan-t5 0.63 86.85 92.81 90.14 94.79
GPT4 0.37 33.96 63.67 51.27 75.01

V

BART 0.37 35.81 69.41 57.90 80.30
T5 0.40 47.06 76.09 66.20 85.16
T0 0.46 54.90 79.65 70.37 87.11
flan-t5 0.49 57.79 81.25 74.07 88.12
GPT4 0.12 9.00 47.74 23.16 61.92

M

BART 0.45 66.01 79.25 71.88 85.93
T5 0.39 58.92 74.53 65.20 82.57
T0 0.47 64.54 80.00 72.79 86.27
flan-t5 0.44 62.30 76.95 69.39 84.07
GPT4 0.23 33.67 54.59 38.67 67.45

Table 1: Performance of different models in different
datasets. S refers to the SemEval dataset. V refers to
the VNC dataset. M refers to the MAGPIE dataset.

scores calculated on the target non-compositional
expressions and corresponding phrases in the out-
put are used. We also evaluate with a stricter metric
of phrase-level Accuracy, in which the generated
non-compositional expression is counted as correct
if and only if every word strictly matches the target
expression.

3.4 Results

Table 1 presents the base model’s performance in
the offline setting. From Table 1, we note that even
in the optimal offline setting, the performance of
the pretrained large language models is limited,
with the highest accuracy of 0.68 on SemEval, 0.49
on VNC and 0.47 on MAGPIE. The performance in
terms of the lenient evaluation metrics, i.e., phrase-
level BLEU and phrase-level ROUGE, are also lim-
ited. This suggests that the current SOTA model
struggles to learn to generate non-compositional ex-
pressions despite its pre-training on the task. Only
for 19 out of the 1528 idiomatic expressions in
MAGPIE, the best performing pre-trained language
model’s accuracy is greater than 0.8. This holds for
10 out of 40 idiomatic expressions in VNC.

Furthermore, we use GPT4 in a zero shot setting
by prompting to fill the mask in the given context
with an idiomatic expression. As shown in Table 1,
we note that GPT4 does not perform this task well.

4 Learning to Generate
Non-compositional Expressions and
Catastrophic Forgetting

To explore the catastrophic forgetting problem in
large pre-trained language models and their abili-
ties to learn and generate non-compositional ex-
pressions in a continual way, we propose our
CLoNE task and construct the corresponding
datasets for experiments.

4.1 The CLoNE Task

The CLoNE task challenges the models’ ability (1)
to handle non-compositionality and (2) to continual
learn. To simulate a continual learning scenario,
we construct two data streams, namely, the bound-
ary and the no-boundary.
Tasks in CL: In CLoNE, the generation of each
non-compositional expression type is regarded as
an individual task for the purpose of CL. For ex-
ample, learning to generate the non-compositional
expression out of the question is one task while
learning to generate in the bag is another task.
Data Stream. In the traditional setting (termed
offline training) of the mask infill task, sentences
from different tasks are all shuffled during each
training pass. In CL scenarios, a model encoun-
ters data streams that are different from this tradi-
tional setting in two aspects. First, the model is
not permitted to receive multiple passes through
the training data. Second, data composition in CL
is different from that in the offline setting. During
CL, the boundary stream groups data by tasks with
clear demarcations such that the model is presented
with instances pertaining to one task as a batch
during training (upper part of Figure 1), while the
no-boundary stream allows a controlled mixture
of data between tasks, thereby permitting a more
natural and gradual shift in data distribution from
one task to another (lower part of Figure 1).

4.2 Data Stream Construction

Our data streams are constructed from three pop-
ular datasets for idiom usage recognition: Se-
mEval (Korkontzelos et al., 2013), VNC (Cook
et al., 2008) and MAGPIE (Haagsma et al., 2020).
Here we still only use the figurative idioms so
as to ensure the non-compositional property. To
guarantee large pre-trained language models could
learn the non-compositional expressions in our
datasets, which makes studying the continual learn-
ing of them reasonable, we only choose the non-
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Dataset Model Accuracy BLEU ROUGE Forget
Phrase Total Phrase Total

B N B N B N B N B N B N
VNC
-CL

Vanilla 0.47 0.55 34.90 52.22 66.69 75.63 48.10 78.54 67.89 87.03 0.55 0.68
Offline (1-p) 0.92 90.62 94.74 93.89 97.30 - -

MAGPIE
-CL

Vanilla 0.58 0.63 72.01 83.45 84.39 89.29 76.75 80.29 89.51 92.66 0.65 0.55
Offline (1-p) 0.89 96.66 97.99 96.69 98.51 - -

Table 2: Performance of different settings. Mem refers to memory size. Forget refers to the forgetting scores. B
and N refer to the performance on the boundary and no-boundary data stream respectively.

compositional expressions on which large pre-
trained language models could achieve an accu-
racy above 0.8 based on our experiments in Section
3. In this way, we make sure the model is able
to learn each non-compositional expression in our
constructed dataset. It should be noted that only the
accuracies on one non-compositional expression in
SemEval is higher than 0.8. Therefore, we exclude
the SemEval dataset. We call our datasets VNC-CL
and MAGPIE-CL.
Boundary Data Stream: In the boundary data
stream, data for different tasks have clear bound-
aries. Therefore, with a set of tasks T where Ti ∈
T, we randomly generate a permuted sequence
of tasks: {T0, T1, ..., TN} as the order in which
the data of each task arrives in the stream. Then,
we group all the data by the tasks: Sboundary =

{DTi}Ni=0, where DTi = {dTi
k }|Ti|

k=0 refers to all the
data of task i. |Ti| indicates the number of training
examples of task i. Finally, the examples of differ-
ent tasks arrive sequentially with clear boundaries.
Here we only consider a random order and leave
more systematic orderings to a future study.
No-boundary Data Stream: For preparing the no-
boundary stream, we utilize the method proposed
in (Jin et al., 2020). We first generated a permuted
sequence of tasks: {T0, T1, ..., TN} as the order
in which the centroid of each task distribution ar-
rives in the no-boundary stream. We assume that
each task conforms to a Gaussian distribution. For
example, for task i the parameters of its Gaussian
distribution N (µi, σi) are µi = |Ti|/2+

∑
k<i |Tk|

and σi = |Ti|/2. Finally, the proposed number of
instances are greedily assigned to each data batch
to construct the no-boundary data stream. For all
three datasets, we used their original train, devel-
opment, and test splits.

4.3 Experiments

Set up. In this experiment for learning catastrophic
forgetting problem, the model takes a single pass
over the boundary data stream and the no-boundary

data stream without applying any CL algorithm,
which is called vanilla CL setting. Different from
the offline setting in RQ1, during training the in-
stances will not be shuffled to maintain the order
of the tasks.
Models. Based on our experiments in Section 3,
we choose the model that is consistently outper-
forming for each dataset to evaluate their abilities
of generating non-compositional expressions in a
continual way. Therefore, we choose T0.
Evaluation. Same metrics are used for evaluation.
Furthermore, to evaluate models’ forgetting prob-
lem, we utilize a forgetting score. The forgetting
score is calculated as f = 1

T
∑

t∈T (AT (Dt) −
Aet(Dt)) where et = argminci∈C Aci(Dt). T is
the set of all tasks, C is the set of all checkpoints and
Dt represents all test examples of task t. Aet(Dt)
is the averaged accuracy over all test examples
of task t at the checkpoint et and T is the time
step when the training ends. A good method that
preserves the knowledge learned in the past will
achieve a low forgetting score.

4.4 Results

Based on Table 2, compared to the offline setting,
the performance of vanilla CL on both the boundary
and no-boundary data streams is 26-45% lower in
accuracy, 13.21-55.72 points lower in phrase-level
BLEU and 16.4-45.79 points lower in phrase-level
ROUGE. This shows that the catastrophic forget-
ting problem persists in the CLoNE task using both
the boundary and the no-boundary streams. Note
that the performance gap in sentence-level BLEU
(and ROUGE) score between the vanilla CL set-
ting and the offline setting is not as wide as that in
phrase-level BLEU (and ROUGE) score. This is
because copying context words around the target
expression over-inflates the scores, which suggests
the need for phrase-level BLEU, ROUGE and Ac-
curacy for evaluation.

Based on forgetting score, we also conclude that
the catastrophic forgetting problem persists in the
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CLoNE task for all the large pre-trained language
models based on both the boundary and the no-
boundary streams. We could also see that all the
models’ performance on boundary stream is worse
than their performance on no-boundary stream.

5 RQ3: To what extent can popular CL
algorithms alleviate the problem of
catastrophic forgetting

Given the conclusion from Section 4 that current
large pre-trained language models still suffer from
catastrophic forgetting problem when learning to
generate non-compositional expressions, we next
plan to explore if some traditional and popular CL
algorithms could effectively alleviate this forget-
ting problem in the context of large pre-trained
language models and non-compositionality. All the
experiments on Section 4 are repeated again with
the application of different CL algorithms.

5.1 Methodology

Here we introduce the CL methods used to bench-
mark for the CLoNE task and study RQ3.
(1) Experience Replay (ER) (Robins, 1995) re-
hearses data from previous tasks by randomly sam-
pling visited examples and then storing them in a
buffer of fixed size. These stored examples are later
randomly sampled and added into the training set
to mitigate catastrophic forgetting.
(2) Experience Replay with Maximally Interfering
Retrieval (ER-MIR) (Aljundi et al., 2019) provides
control over the memory buffer sampling by retriev-
ing the samples that are most negatively influenced
by a subsequent update.
(3) Average Gradient Episodic Memory (AGEM)
(Chaudhry et al., 2018) maintains a memory buffer
similar to the ER-based methods. However, AGEM
also controls gradient updates by projecting the
gradient to a direction of decreasing average loss
computed based on the examples in the memory
buffer.

5.2 Experiments

Set up. All the settings are same with the settings in
the experiments in Section 4 except for the applica-
tion of different CL algorithms. For VNC-CL, we
choose a memory size of 30, whereas for MAGPIE-
CL, we use 100. Model settings and evaluation are
same with those in Section 4.

(a) Begin (b) Middle (c) End
Figure 2: Comparing of continual learning algorithms,
exemplified with performance on tasks in different po-
sitions in training data stream. The x-axis is the train-
ing examples visited and the y-axis is the phrase-level
BLEU.

5.3 Results

To compare the different CL strategies, we see from
Table 3 that ER and ER-MIR have little improve-
ment on all the datasets, especially when evaluat-
ing with Accuracy, the strictest metric. Even in
terms of the more lenient phrase-level BLEU and
ROUGE scores, the improvement is still limited
and unstable, ranging from 1 to 20 points.

Note that AGEM always outperforms ER and
ER-MIR and has consistent improvement over the
performance under vanilla continual learning set-
ting. This can be attributed to AGEM’s ability to
control the gradient update. However, in Table 3,
we see that AGEM’s improvement is not stable:
the improvement ranges from 20-30% in accuracy,
sometime even worse than the ER and ER-MIR
methods. The forgetting score for AGEM is still
very high for both data streams (0.52 and 0.38),
which indicates that AGEM is not effective on con-
tinual learning of non-compositional expressions.
Even with a memory of 50 for the MAGPIE-CL
dataset, the performance of AGEM is rather far
from the offline performance, which emphasizes
the challenges and difficulty posed by the CLoNE.

6 Analysis

6.1 Data Distribution

Boundary vs. No-boundary: The performance
on the no-boundary data stream is consistently bet-
ter than the performance on the boundary data
stream across all the datasets, methods and memory
sizes. This is expected because the lack of clear
task boundaries in the no-boundary data stream
helps the model alleviate the forgetting of learned
knowledge by reviewing data from different non-
compositional expressions in each training batch.

6.2 Influential Factors

Here we provide an analysis of different factors that
influence the performance, including the length
of the idioms, the number of training examples
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Dataset Model Mem Accuracy BLEU ROUGE Forget
Phrase Total Phrase Total

B N B N B N B N B N B N

VNC
-CL

Vanilla / 0.47 0.55 34.90 52.22 66.69 75.63 48.10 78.54 67.89 87.03 0.55 0.68
ER 10 0.57 0.67 49.95 63.95 73.88 81.50 59.44 75.86 82.82 90.00 0.44 0.63
ER-MIR 10 0.59 0.68 50.62 65.09 75.61 83.65 61.67 78.07 84.73 91.55 0.43 0.60
AGEM 10 0.78 0.85 72.01 82.54 85.41 92.98 79.44 85.26 91.71 94.28 0.49 0.62

MAGPIE
-CL

Vanilla / 0.58 0.63 72.01 83.45 84.39 89.29 76.75 80.29 89.51 92.66 0.65 0.55
ER 50 0.79 0.81 93.68 86.28 95.22 93.75 91.23 90.14 96.95 95.60 0.56 0.44
ER-MIR 50 0.79 0.82 93.83 87.19 95.70 94.88 91.40 91.31 97.29 96.54 0.55 0.41
AGEM 50 0.78 0.83 89.63 91.93 92.38 96.09 87.01 92.96 95.37 97.29 0.52 0.38

Table 3: Performance of different settings.

Model Memory Pos. Num. Com. Length.
Vanilla - 0.18 19.16 0.05 0.02
ER 50 -0.62 18.11 -0.02 -0.05
ER-MIR 50 -0.58 15.14 -0.01 0.01
AGEM 50 -0.24 37.28 -0.05 0.005

Table 4: Coefficients for different features. Pos. rep-
resents tasks’ position. Num. refers to the number of
training examples of tasks. Com. refers to the degree
of compositionality of different tasks. Length. refers to
the length of the target idiom.

of a task and the degree of compositionality of
a non-compositional expression. A linear regres-
sion model is trained given the above features
as input and accuracy as output for every non-
compositional expression. The coefficients of dif-
ferent features under different settings are pre-
sented in Table 4. To provide enough samples to
train such a linear regression model, we only use
the MAGPIE-CL dataset because it contains the
most non-compositional expressions.

For number of training examples, the coefficients
under different setting are consistently positive,
which is easy to understand because with more
examples the performance would get better. For
degree of compositionality, we use the ratio of the
number of a non-compositional expression’s id-
iomatic examples and the number of its literal ex-
amples to represent its degree of compositionality.
Table 4 shows that the coefficients for degree of
compositionality under different settings are con-
sistently low, which means that the performance is
not related to the degree of compositionality.

Under vanilla continual learning setting, it
should be noting that the coefficient of tasks’ posi-
tion is positive, which means that for tasks in the
later stage of training the model would have a better
performance whereas the performance for tasks in
the earlier stage is worse due to the forgetting prob-
lem as expected. After different continual learning
methods have been utilized, it is obvious that the

coefficients for taskscg’ position are all negative
because of the use of memory in these continual
learning methods. The use of memory will force
the model to review the training examples and tasks
in the earlier stages, which therefore strengthens
the performance on these earlier tasks. However,
a successful continual learning method should not
only help the model to memorize the earlier tasks
but also avoid affecting the learning of later tasks
negatively. Therefore, the coefficient for tasks’ po-
sition should be negative and also as close to zero
as possible.

6.3 Attention

Here we turn to focusing on the attentions in the
large pre-trained language models to analyze their
poor abilities of learning to generate idioms. The
non-compositionality of idioms depends on the
context – e.g. compare “in culinary school, I
felt at sea” to “the sailors were at sea”. Within
Transformer, contextualisation of input tokens is
achieved through the attention mechanisms, which
is why they are expected to combine the represen-
tations of the idioms’ tokens and embed the idiom
in its context. This section discusses the impact
of non-compostional expressions on the encoder-
decoder cross-attention and decoder self-attention.
We choose T0 as our model.

To analyze the attentions, we decode generation
with beam size 5 and then extract the decoder’s self-
attention weights and the encoder-decoder cross-
attention weights for those generation. Attention
distribution for the weights that go from words in
the generated phrase to context and the other words
in the generated phrase and the attention distribu-
tion for the weights that go from the generated
phrase to mask token and the context are presented.
There is no significant difference between correctly
generated phrase and wrongly generated phrase.
As is shown in Table 6, the model always tends
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Input Generation Truth
Everything is too loud : The amplification , my guitar , the crowd ’s cheery conversation
. It ’s not easy . Martin takes them on unamplified , and after about an hour ’s struggle ,
<mask> handsomely ...

gets stuck in wins the day

. . . it contains only a few genuinely brilliant minds, and fewer still who are likely to
<mask>. make the grade rock the boat

. . . should instead of feeling the need to get yourself noticed. Do not deliberately <mask>

... steal the show keep a low pro-
file

Table 5: One example of generated output.

Generation
Decoder EncDec

Context Phrase Context Mask
Correct 0.82 0.18 0.98 0.02
Wrong 0.81 0.19 0.98 0.02

All 0.81 0.19 0.98 0.02

Table 6: Attention distribution for the weights of both
self-attention in the decoders and cross-attention be-
tween the encoder-decoder. Correct, Wrong and All
refer to the attention distribution for the weights of the
correct generation, wrong generation and all the genera-
tion results respectively.

to focus more on the context instead of the words
in the generated phrase on the decoder side or the
mask token on the encoder side.

Therefore, we manually analyzed 100 wrongly
generated examples to further study the attentions.
According to our manual analysis, the poor ability
of large pre-trained language models to generate
non-compositional expression is due to the over-
emphasis on the single token and nearby tokens
and ignorance on the whole semantic meaning of
the context. Among the 100 wrongly generated
results, 63 of them present the attention weights
that focus more on some single tokens that could
trigger the generation of some related idioms. Be-
sides, 20 wrongly generated results present the
attention weights that focus more on the nearby
tokens but ignore the overall semantics. The re-
maining 17 wrongly generated results present the
attention weights that focus more on both some
single tokens and nearby tokens. For example, as
shown in Table 5, the model wrongly generates
‘gets stuck in’ due to the over-emphasis of atten-
tion on the single word ‘struggle’, which causes
the wrong generation result.

6.4 Insights into CLoNE

It should be noted that Jin et al. (2020) found
that for CL of simple compositional phrases ER
method performed better than ER-MIR and AGEM,
which is in stark contrast with what we observed
in our CLoNE task. This suggests that non-
compositionality poses a challenge not only to tra-

ditional language learning tasks (e.g., sentiment
analysis (Hwang and Hidey, 2019) and machine
translation (Fadaee et al., 2018)) but also to learn
them in a continual manner.

Based on our experiments and analysis on the
attention patterns, it should be noted that current
pre-trained language models still heavily rely on
single words when processing non-compositional
expressions. However, to fully understand and gen-
erate non-compositional expressions, it is necessary
for them to refer to the semantic meanings of the
whole sentences.

In addition to evaluating the performance of dif-
ferent CL methods, the CLoNE task could also
be used to evaluate different models’ ability to
handle non-compositionality. One could hypoth-
esize that current SOTA models’ reliance on the
linear combination of word representations to infer
the meaning of phrases and generate them, may
be insufficient for the CLoNE task due to the in-
herent non-compositionality. More importantly,
given that non-compositional expressions cannot be
learned by transferring previously learned knowl-
edge (again due to non-compositionality), CLoNE
presents definite challenges for CL methods to al-
leviate the catastrophic forgetting problem. This
calls for more advanced models for learning non-
compositionality and more effective CL methods
for alleviating forgetting are both required.

7 Conclusion

In this study, we propose CLoNE, the first task
focusing on generation of non-compositional ex-
pressions and their continual learning, whose chal-
lenges are non-compositionality and continual
learning. Benchmarks and analysis of SOTA large
pre-trained language models and continual learn-
ing methods provide exploration towards our pro-
posed three research questions. Our experiments
show that even the most SOTA large pre-trained
language model struggles with non-compositional
expression generation and still suffers from catas-
trophic forgetting problem. Furthermore, even the
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best-performing CL method still struggles with
continual learning of non-compositionality. The
gap between the best performance in a CL setting
and the upper-bound performance in an offline set-
ting calls for more advanced models for learning
non-compositionality and more effective CL algo-
rithms.

8 Limitations

This study can be expanded in many ways. First,
enlarging our CL datasets with other types of IEs
beyond idioms (e.g., phrasal verbs) and studying
their effect would shed more light into the pro-
cess. Second, we only consider a random order
for the tasks in different data streams, leaving a
potentially more systematic ordering that takes the
properties of non-compositional expressions into
consideration, such as their frequency, for future
explorations. Lastly, improved methods that ad-
dress the drastic change of important weights for
seen tasks in neural networks would extend this
work.

It should be noted that the automatic evalua-
tion metrics we used are only based on n-gram
overlap, which is not the most appropriate eval-
uation metrics for non-compositional expression
generation because there are cases where non-
compositional expressions with different words
share the same meaning. Besides, other evalua-
tion metrics based on semantic meaning such as
BERTScore are also inappropriate because they
rely on the combined contextual embeddings to
represent the semantic meaning whereas the mean-
ings of non-compositional expressions are not the
sum of their parts. Therefore, future works should
also explore the more appropriate evaluation met-
rics for non-compositional expression generation.
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Dataset Train Size Dev Size Test Size # Tasks
VNC-CL 285 0 60 10
MAGPIE-CL 1230 157 131 19

Table 7: Statistics of our constructed datasets.

A Dataset

The statistis of our constructed dataset is presented
in Table 7.

B Prompt

We provide the masked sentence to GPT4 and ask
it to fill in the mask with an idiom. The complete
prompt is as follows:

Fill in the mask in the given sentences with an
idiom. Please return the whole given sentence with
<mask> replaced by an idiom. Sentence: [sentence]

We also provide the format of the input to other
models:

Fill in the mask in the given sentence with an
idiom: [sentence]
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