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Abstract 

Although diagrams are fundamental to 
Rhetorical Structure Theory, their 
interpretation has received little in-depth 
exploration. This paper presents an 
algorithmic approach to accessing the 
meaning of these diagrams. Three 
algorithms are presented. The first of these, 
called Reenactment, recreates the abstract 
process whereby structures are created, 
following the dynamic of coherence 
development, starting from simple 
relational propositions, and combing these 
to form complex expressions which are in 
turn integrated to define the comprehensive 
discourse organization. The second 
algorithm, called Composition, implements 
Marcu’s strong nuclearity assumption. It 
uses a simple inference mechanism to 
demonstrate the reducibility of complex 
structures to simple relational propositions. 
The third algorithm, called Compression, 
picks up where Marcu’s assumption leaves 
off, providing a generalized fully scalable 
procedure for progressive reduction of 
relational propositions to their simplest 
accessible forms. These inferred reductions 
may then be recycled to produce RST 
diagrams of abridged texts. The algorithms 
described here are useful in positioning 
computational descriptions of rhetorical 
structures as discursive processes, allowing 
researchers to go beyond static diagrams 
and look into their formative and 
interpretative significance. 

1 Introduction 

It has been shown that rhetorical structures and 
relational propositions are interchangeable (Potter, 
2023a). The structure of an RST diagram can be 
restated as a relational proposition and relational 
propositions can be returned to RST diagrams. 

Relational propositions, as defined by (Mann & 
Thompson, 1986a, 1986b, 2000),  are implicit 
assertions arising between clauses within a text and 
are essential to the functioning of the text. They can 
be considered as an alter ego of RST relations, with 
each assertion consisting of a predicate (or relation) 
and two variables (representing a satellite and 
nucleus). Because the predicate notation developed 
for relational propositions is Python conformant 
(Potter, 2023a, 2023b), mapping RST diagrams to 
relational propositions opens the possibility of 
exploring rhetorical structures algorithmically, 
presenting a range of analytic possibilities. The 
immediate effect of rendering RST diagrams as 
code is to unlock the picture: If, as the saying goes, 
a picture is worth a thousand words, the diagram 
now becomes a movie. It is a story about what is 
happening in a text. The objective of the research 
described in this paper was to investigate some of 
these possibilities.  

Three algorithms are presented, each addressing 
a distinct aspect of Rhetorical Structure Theory. 
The first of these is called Reenactment. This 
algorithm replays the abstract process of structure 
formation, demonstrating the step-by-step 
construction of discourse formation starting with 
elementary relational propositions, and combining 
these to form complex expressions which are in 
turn integrated to define the comprehensive 
discourse organization. The second algorithm, 
referred to as the Composition algorithm, 
implements Marcu’s strong nuclearity assumption 
and demonstrates the reducibility of complex 
structures to simple relational propositions. The 
third algorithm, called Compression, picks up 
where Marcu leaves off, providing a generalized 
scalable method for progressive reduction of 
relational propositions down to their simplest 
possible forms. 

These algorithms provide the opportunity for a 
direct and deep look into information implicit in 
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RST diagrams. A benefit of this is that it should set 
aside any notion that RST diagrams are incapable 
of articulating in-depth aspects of discursive 
development, or that they are merely static 
specifications (Martin, 1992). On the contrary, 
although RST is only a partial explanation of 
discourse coherence, the part it plays is an 
important one. If we can restate RST diagrams in 
computational terms and allow these terms to 
describe what a diagram is doing, then perhaps we 
can begin to enjoy a deeper appreciation for what 
they are telling us about the text, and that these 
diagrams, far from static depictions of discourse 
structure, are actually renderings of a dynamic 
process, showing how a discourse germinates from 
its elementary units to become a whole that is 
greater than its parts. 

2 Framework 

The interlocking property of rhetorical structures, 
where a satellite’s support for a nucleus creates a 
span which in turn becomes the satellite for yet 
another nucleus, suggests that the typical rhetorical 
relation is rhetorically transitive, with the 
consequence that their intended effects develop 
cumulatively across complex structures, ultimately 
converging on an identifiable locus of effect. This 
abstract process is an assumption of the research 
described here; otherwise, the algorithms would 
fail to achieve produce their expected results. 
Potter’s (2023a) algorithm for transforming RST 
analyses into relational propositions is used to 
provide the input for this framework. Throughout 
this process, these propositions maintain their 
structural isomorphism with RST diagrams.  

Marcu’s strong nuclearity assumption, also 
known as the strong compositionality criterion, 
says that when two complex text spans are 
connected through a rhetorical relation, the same 
rhetorical relation holds between the nuclei of the 
constituent spans (Marcu, 1996, 2000). This means 
that from relations between spans, simple 
structures may be inferred. The algorithmic 
implementation of this supports its application to 
RST analyses of any size. The reenactment 
algorithm implements a bottom-up perspective on 
RST structures by enacting the dynamic process of 
structure development, starting with elementary 
relational propositions, and combining these to 
form a complex expression ultimately of the 
comprehensive discourse organization. The 

Compression algorithm implements a technique 
previously proposed by Potter (2023b). As a 
generalization of strong nuclearity, it progressively 
eliminates the precedent satellite within the RST 
nuclear path to reduce the relational proposition to 
its simplest possible expression. The technique 
specifies delimited transitivity for handling 
multinuclears and unrealized relations. Taken 
together the three algorithms provide a 
foundational set of capabilities for analyzing 
rhetorical structures and exploring various features 
of the theory, such as inference, transitivity, 
reducibility, intentionality, and structural 
dynamics. In short, the algorithms can be used for 
investigating a range of discourse characteristics 
following a well-defined algorithmic approach. 
These algorithms are neither large nor complex. 
They are of interest more  for what they do rather 
than for how they do it. What they do is offer 
insights into the nature of discourse. How they do 
this is largely reliant on the representation of RST 
structures as Pythonic relational propositions. I 
believe their simplicity is a by-product of the 
alignment of the theory with the discursive 
organizations it describes. 

3 Related Work  

While the literature on Rhetorical Structure Theory 
is vast, only a rather narrow strand of that research 
is relevant to this study. This naturally 
encompasses the founding RST documents, 
including but not limited to Mann and Thompson 
(1988) and Mann and Thompson (1987). These 
publications define Rhetorical Structure Theory 
(RST) as a descriptive theory of text organization, 
as a tool for describing and characterizing texts in 
terms of the relations that hold among the clauses 
within a text. A detailed exemplification of the 
theory can be found in Mann, et al.’s (1992) 
analysis of a fund-raising text. Matthiessen and 
Thompson (1987) provide an in-depth discussion 
of the theoretical foundations of RST.  

Of continuing research interest in RST has been 
the possibility that it could be used as a text 
summarization technology. Most prominent in this 
area has been the works of (Marcu, 1997, 1998a, 
1998b, 1998c, 1999, 2000). There has also been 
ongoing work in extending and refining the RST 
relation set. Generally this has been aimed at 
enhancing the ability of parsers to correctly identify 
relations while at the same time increasing the 
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specificity of relations (Carlson & Marcu, 2001; 
Zeldes, 2017).  

Other research has been aimed at enriching the 
theory. In particular, Marcu is known for 
articulating the aforementioned strong nuclearity 
assumption. Stede (2008) explored the problems of 
nuclearity. In his investigation of different types of 
salience phenomena, he found that nuclearity as 
defined in RST tends to conflate information from 
different realms of description within a single 
structure. He proposed a multilevel analysis 
approach that would reconcile these issues. A 
variety of formalisms have been developed that 
would address limitations in RST (e.g., Asher & 
Lascarides, 2003; Webber & Prasad, 2009; Wolf & 
Gibson, 2005). An assumption made for this paper 
is that the theory and practice of RST is sufficiently 
well developed as to produce useful and interesting 
analyses. 

In a parallel but lesser-known universe is the 
theory of relational propositions. This theory is an 
antecedent to the conceptualization of RST. With 
relational propositions, relations between satellites 
and nuclei are treated as implicit coherence-
producing assertions (Mann & Thompson, 1986b). 
A relational proposition consists of a predicate and 
a pair of arguments. The predicate corresponds to 
the RST relation, and the arguments correspond to 
its satellite and nucleus. A shortcoming in the early 
work in relational propositions was its limitation to 
elementary expressions. There were no provisions 
for complex structures. Mann and Thompson 
(2000) attempted to address this but without 
success. That leaves off where this research begins. 

Potter (2019a, 2023b) devised a functional notation 
to support representation of complex relational 
propositions. The original objective was to develop 
a deductive interpretation of RST, one that would 
support investigation of logical operations such as 
transitive implication in discourse. That work 
provided an initial proof of concept for the 
algorithms described in this paper. However, rather 
than rely on propositional logic, the discourse 
features of interest were accessed directly.  

This was expedited by using Potter’s (2023a) 
program for mapping of RST diagrams to relational 
propositions. Automating this step enables 
scalability, reduces the likelihood of error, and 
eliminates a lot of tedium. Because the notation 
used for these relational propositions is conformant 
with the Python programming language, the 
algorithm effectively converts a diagram into 
machine processable code. An RST analysis like 
the Arithmetic analysis shown in Figure 1 can be 
automatically converted to its relational 
proposition: 

 
concession( 
   condition( 
      2,1), 
   evidence( 
      condition( 
         5, 
         concession( 
            7,6)), 
      antithesis( 
         4,3))) 

 
These encoded relational propositions are the 
drivers for the algorithms described here. Each 
relation has a corresponding function within the 

 

Figure 1: Reenacting a Rhetorical Structure (text from Cheng, 
2022) 

condition(2,1)
concession(7,6)
condition(5,concession(7,6))
antithesis(4,3)
evidence(condition(5,concession(7,6)),antithesis(4,3))
concession(condition(2,1),evidence(condition(5,concession(7,6)),antithesis(4,3)))
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code, called a relation handler, so that performance 
of the relational proposition causes execution of the 
defined functions. 

4 Algorithmic Analyses of Rhetorical 
Structures 

As introduced earlier, this paper describes three 
algorithms for analyzing rhetorical structures. 
Reenactment models the bottom-up production of 
discourse organization. Composition implements 
Marcu’s (2000) strong nuclearity. And 
Compression leverages the asymmetry of RST 
relations to implement transitive inference directly 
into relational propositions.  

Each of these algorithms uses Pythonized 
relational propositions as input. For each algorithm 
there is a set of functions called relation handlers, 
one handler per relation. Typically, these functions 
return a tuple-formatted relational proposition, i.e., 
the name of the relation and a nested tuple 
containing satellite and nucleus identifiers, 
including the relation names and tuple information 
for any relational propositions nested within them. 
At runtime the handlers are invoked in order of 
precedence as specified by the relational 
proposition. Each algorithm defines a collector 
function that manages the values returned by the 
relation handlers. The output consists of one or 
more relational propositions, constituting the 
reenactments, inferences, or compressions as 
determined by the algorithm.  

Input to each algorithm starts with RST analyses 
created using RSTTool or RST-Web (O'Donnell, 
1997; Zeldes, 2016). These analyses are 
transformed into relational propositions using 
Potter’s (2023a) conversion tool. The relational 
propositions are then input to the algorithms which 
transform them into reenacted, inferred, or 
compressed relational propositions. These 
relational propositions may be analyzed as is, or 
they may be used to construct new RST analyses. 
The following sections provide detailed 
descriptions of the algorithms and their 
applications.1 

4.1 Reenactment Algorithm 

The hierarchical appearance of RST diagrams 
encourages the impression of top-down tree 
structures. But these trees do not sprout branches as 

 
1 https://github.com/anpotter/aaars 

it were from a root, branch, or stem. On the 
contrary, from a functional perspective, the 
diagrams are upside down: the segment nodes at 
the lower part of the diagram combine to form 
composite structures. These composite structures 
become increasingly complex at higher levels of 
the diagram. Although a completed diagram might 
seem to depict a static situation, what is revealed 
there is the end-state of a dynamic process. By 
modeling the abstract bottom-up process of 
discourse organization, the reenactment algorithm 
provides guidance for reading RST diagrams. The 
replay of a rhetorical structure shows how 
elementary discourse units combine logically to 
form relational propositions and how these 
propositions combine with other relational 
propositions to create increasingly complex 
expressions until a comprehensive analysis 
emerges. It is this comprehensive analysis that is 
modeled in an RST analysis.  

The reenactment algorithm performs a bottom-
up evaluation of a nested relational proposition. 
The design of the algorithm is simple. A relational 
proposition is evaluated as a Python expression. A 
relation handler is invoked whenever the relation 
occurs within an expression. These relation 
handlers convert a relational proposition from code 
to data. The function returns the name of the 
relation and a nested tuple containing identifiers for 
its satellite and nucleus. The contents of the tuple 
reflect the depth of the nesting of the relational 
proposition. The tuple representation of the 
relational proposition is assembled in precedence 
order, working from the inside out. The replay 

 

Figure 2: A Fully Compressible Analysis 

evidence(volitional_cause(circumstance(2,3),4),1)
evidence(volitional_cause(3,4),1)
evidence(4,1)
1
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manages the recursion of the expression and 
collects the output. 

As the function makes its way through the 
relational proposition, it constructs the expression 
as it goes. In other words, it performs the relational 
proposition. A completed relational proposition can 
thus be thought of not as a static entity but as the 
result of an abstract process. And because relational 
propositions are isomorphic with their respective 
RST diagrams, the interpretation of the diagram 
can be understood as consistent with the 
performance of the relational proposition. As the 
reenactment in Figure 1 shows, RST structures 
define themselves from elementary relational 
propositions which combine to form complex 
expressions, enacting a logical process through 
which rhetorical intentionality emerges. This 
abstract process follows the precedence of the 
relational proposition.  

4.2 Composition Algorithm 

The composition algorithm is an implementation of 
Marcu’s strong compositionality criterion. The 
criterion states that any relation between two spans 
will also hold between the nuclei of those spans 
(Marcu, 2000). Thus, simplified structures may be 
inferred from complex structures. In discussions of 
the criterion, it seems to be assumed that both the 
satellite and nucleus are themselves complex spans 
(e.g., Das, 2019; Demberg, Asr, & Scholman, 
2019; Egg & Redeker, 2010; Marcu, 1996; Sanders 
et al., 2018; Stede, 2008). However, for the 
criterion to be delimited in this way suggests that 
relations between elementary units and relations 
between complex spans are in some way 
fundamentally different from one another. While 
there would be no difficulty in limiting the 
algorithm to comply with this, I have adopted a 
broader interpretation: nuclearity arises as a result 
of the relation of a unit or span to some other unit 
or span; hence the criterion is more broadly 
applicable. The only constraint is that at least one 
part of the relation be a span. Otherwise, any 
inference would be a simple repetition. Thus, the 
algorithm as written permits inferences in which 
either the satellite or the nucleus is an elementary 
unit, so that, for example, from the relational 
proposition: 

 
volitional_cause( 
   circumstance( 
      2,3),4) 

 
the algorithm makes the inference:  
 

volitional_cause(3,4) 
 

The algorithm evaluates the relation handlers for 
the relational proposition, collects the relational 
tuples, and determines which of those meet the 
compositionality criterion. The set of inferences 
generated from the RST analysis shown in Figure 
1 are listed in Table 1. 

4.3 Compression Algorithm  

The compression algorithm is a procedure for 
progressive reduction of relational propositions to 
their simplest accessible form. By evaluating the 
expression in precedence order, the expression is 
progressively reduced from the innermost 
relational propositions outward. With each iteration 
the relation and satellite of the precedent 
proposition is eliminated. In effect, the relational 
proposition collapses inward. Usually, but not 
always, the ultimate reduction will be the single 
elementary discourse unit identifiable as the locus 
of intended effect. When not, it will be the simplest 
accessible relational proposition containing the 
nucleus that would have been the locus of intended 
effect, were that relation realizable. In other words, 
the algorithm takes the compression as far as it can, 
and yet acknowledges that some relations are by 

 

Table 1:  Inferences Generated by Composition 
Algorithm 

InferenceRelational Proposition
6concession(

7,6)
condition(5,6)condition(

5,
concession(

7,6))
3antithesis(

4,3)
evidence(concession(7,6),3)evidence(

condition(
5,
concession(

7,6)),
antithesis(

4,3))
concession(1,antithesis(4,3))concession(

condition(
2,1),

evidence(
condition(

5,
concession(

7,6)),
antithesis(

4,3)))
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definition or by position resistant to reduction. The 
Tax Program analysis (Figure 2, above) provides a 
simple example of a fully compressible analysis. 
With each step, the innermost relation and its 
satellite are eliminated. The CIRCUMSTANCE and 
its satellite are dropped first. Next VOLITIONAL-
CAUSE and its satellite are dropped, followed by 
elimnating the satellite from the EVIDENCE 
relation, ultimately leaving only segment 1: the 
program as published for calendar year 1980 
really works. Applying this procedure to a variety 
of RST analyses has yielded positive results. 
However, not all RST analyses are as simple as the 
Tax Program.  

Some relations are not compressible and require 
special treatment. These include multinuclears, 
relations with unrealized satellites, and attribution 
relations. While multinuclears may seem 
syntactically and semantically simple, they present 
complications. The nuclei within a multinuclear 
relation may consist solely of elementary discourse 
units, but quite commonly these nuclei are complex 
relational propositions that must themselves be 
reduced. So, on one level multinuclears may be 
treated as unanalyzable virtual units, but on the 
other, it is necessary to analyze the members of the 
relation, subjecting each to the compression 
process.  

Relations with unrealized satellites include 
CONDITION, PURPOSE, UNLESS, and OTHERWISE. 
Unrealized relations do not permit inference or 
realization of the nucleus from the satellite. With 
the CONDITION relation the satellite presents a 
hypothetical, future, or otherwise unrealized 
situation such that realization of the nucleus is 

dependent on it. Hence the nucleus remains 
hypothetical. Similar dependencies hold for 
UNLESS and OTHERWISE. With PURPOSE, the 
nucleus is an activity that must be performed in 
order for the satellite to be realized. The relation 
between the satellite and nucleus holds but has not 
been realized. The compressibility of these 
relations depends on their position within a 
relational proposition. If the relation is positioned 
as the satellite of a relational proposition, it may be 
eliminated, but if it is the nucleus, it may not. This 
is because the process of reduction involves the 
progressive elimination of satellites. This, 
particularly when combined with multinuclear 
relations, can result in structures that are resistant 
to compression. The New Brochure Time analysis 
shown in Figure 3 is an example of this. There the 
OTHERWISE relation cannot be reduced because 
neither the satellite nor the nucleus is realized. 
SAME-UNIT is a pseudo-relation used for linking 
discontinuous text fragments that are really a single 
discourse unit. It is modeled on the multinuclear 
schema. The compression completes after only one 
reduction.  

Alternatively, it can be useful to relax the 
reducibility constraint in order to focus on 
intentional development. For example, this can be 
of interest when the unrealized relations involve 
actions that might be taken by the reader. This is the 
case for the CONDITION and OTHERWISE relations 
for the New Brochure Time analysis shown above 
in Figure 3, presumably the writer of the text 
expected that these conditions would hold for to 

 

 

Figure 3: A Partially Compressible Analysis 

justify(cause(1,2),otherwise(6,same_unit(condition(4,3),5)))
justify(2,otherwise(6,same_unit(condition(4,3),5)))

6



 
 
 

 

some readers. With the constraints removed, the 
analysis reduces to same_unit(3,5), or 
Anyone…should have their copy in by December 1. 

Sometimes, as a compression proceeds, a non-
compressible relation will be shifted from a nuclear 
to a satellite position.  When this occurs, the 
relation can be eliminated. This can be observed in 
the process shown in Figure 4. There are two 
SEQUENCE relations in the analysis, one as satellite 
and the other as nucleus of an ELABORATION 
relation. When the ELABORATION is eliminated, it 
takes with it its satellite, thus eliminating the first 
of the SEQUENCE relations. The remaining 
SEQUENCE is now satellite to the INTERPRETATION 
relation, making it eligible for elimination, which 
occurs when it becomes the precedent relational 
proposition. The status of the ATTRIBUTION 
relation has been debated from time immemorial, 
so perhaps it is fitting that it should require special 
attention here. Mann and Thompson (1987) 
rejected it as a legitimate relation, but it was 
subsequently instated and refined by Carlson and 
Marcu (2001), as well as by Zeldes (2023), and yet 
provisionally rejected by Stede, Taboada, and Das 
(2017) and reduced to alternative relations by 
(Potter, 2019b). For the present research, ours is not 
to reason why, but rather to process any and all 
analyses as they presented. ATTRIBUTION is treated 
(at least optionally) as irreducible in part because 
sourcing of information is often part of the intended 
effect, particularly when the intention of the 
attributed material differs from that of the writer.  

In order to assess the algorithm’s applicability 
over larger texts, the compression algorithm was 
tested on several analyses from the GUM corpus 
(Zeldes, 2017). Because these analyses make 

frequent use of multinuclear relations, this resulted 
in reduced compressibility, so that the results are 
sometimes lengthy in their own right. Code was 
added to the algorithm to enable recovery of 
compressed texts. The results of this suggest 
coherence is preserved, albeit with some 
irregularities in surface cohesion and punctuation. 
For the GUM Academic Thrones analysis, the 
original contains 87 segments, and compression 
reduced this to 17 segments. The compressed text 
was mapped to its relational proposition to create 
an RST analysis relationally consistent with the 
source. The compressed text generated by the 
compression is shown in Figure 5. For readability, 
line breaks were inserted for each of the 
ORGANIZATION-HEADING relations. This text, 
along with the relational proposition, was used to 
create the RST analysis shown in Figure 6. The 
original segment identifiers are preserved for 

 

Figure 4: Reduction of Multinuclear Relations (Adapted from Lu et al., 2019) 

 
Figure 5: Academic Thrones Compressed Text  

 

AComparative Discourse Analysis of Fan Responses to Game of
Thrones

For us , as digital humanists , defining the “ transmedia fan ” is of
particular relevance

Methodology

As a first step the current project undertakes a comparative
discourse analysis of online conversations of Game of Thrones
fans . As a pilot project , the current work takes the content of
both comment threads and analyzes each thread separately
Through this analysis , a categorization of themes emerges A
comparison of categories and sub-categories between both
groups provides preliminary findings to support an emergent
model , or models , of the “ transmedia fan ” .

Conclusion

The present research represents a first step The question is ,
fundamentally , an examination Future research should explore
the negotiation tactics The current study will contribute to the
development of further qualitative and quantitative research This
project is of relevance to researchers in media studies , fan
studies , information studies and digital humanities.
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reference. The rhetorical structure as well as the 
text survived the compression process. For the 
complete original text, see Forcier (2017). 

The compression algorithm supports a 
longstanding view about nuclearity: simple 
summarizations should be possible merely by 
lopping off satellites. Moreover, this is reflected in 
a limitation that surfaced during testing. In analyses 
of longer documents where the JOINT relation and 
its variants are necessary to hold the structure 
together, guideposts such as ORGANIZATIONAL-
HEADING become helpful for assuring readability. 
This is as true for the compressions as it is for the 
original texts.  

 In compressions of longer texts, such as the 
GUM analysis of Nancy Pelosi’s speech on George 
Floyd, where such guideposts are lacking, minor 
digressions which work well in the original spoken 
medium become difficult in the transcript, and 
these difficulties are apparent in the compressions. 
That these reflect the features of the original should 
be understood as an affirmation of RST as an 
explanation of discourse coherence. The features of 
the document are carried forward through multiple 
layers of analysis.  

As to whether the compression algorithm’s 
contribution provides anything new or unique, I 
would argue that it affirms claims often left to 
intuition, and that it does so in a systematic and 
repeatable manner. The code is freely available to 
anyone who cares to take it for a test drive. 
Moreover, the approach is generalizable to other 
RST problems – once their solutions can be stated 
algorithmically, they can be readily evaluated and 
applied to a wide range of cases.  

5 How it Works 

The algorithms described here all share a common 
design. Each consists of two parts: a set of relation 
handlers and a core algorithm. A handler is 
provided for each relation in the RST relation set. 
These handlers are functions evaluated in response 
to each occurrence of their corresponding relation 
in a relational proposition. They are simple one-
liners. Each handler returns a tuple containing the 
function’s name and a nested tuple containing its 
satellite and nuclear identifiers. The functions 
obtain their names at runtime using a system call. 
Thus, in the reenactment and composition 
algorithms, an occurrence of the relational 
proposition concession(1,2) will return the 
tuple: ('concession',(1,2)), and an occurrence 
of the relational proposition evidence(3, 
concession(1,2)) will return the tuple: 
('evidence',(3,('concession',(1,2))) 

When a relational proposition is evaluated, each 
handler is called in precedence order, with each 
function returning its name and arguments to the 
calling function. In this way, the program 
essentially performs the relational proposition, 
starting with the innermost (hence higher 
precedence) functions, working outward to the 
edges of the expression. The reenactment 
algorithm exploits that process. 

The compress algorithm is only slightly more 
complicated. Each of its relation handlers makes a 
call to the core compression algorithm, passing it 
its relation name and arguments. Special handling 
for nonreducible relations is specified syntactically 
in the handler functions. The evaluation of the 

 

Figure 6: Compressed GUM Academic Thrones RST Analysis 
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relational proposition shown at the top of Figure 7 
invokes each of the cited relation handlers and each 
of these call the compress function, first 
circumstance, followed by volitional_result, 
antithesis, concession, evidence, and finally 
the outermost relation, background. This leaves 
little for the core algorithm to do. Since 
multinuclears are non-compressible, the algorithm 
simply formats them and returns the formatted 
expression. For compressible relations, the 
algorithm simply replaces the current relational 
proposition with its nucleus, thus for each step 
eliminating the relation and satellite. Functionally, 
it infers the nucleus from the relational proposition. 
This is consistent with Marcu’s strong nuclearity 
assumption. Because this process is implicit within 
the relational proposition, we can say it is also 
implicit within the RST diagram from which the 
proposition is derived, and therefore inferable from 
within the text itself. Figure 7 shows the complete 
code for the compress algorithm. For space 
reasons, the list of relation handlers has been 
limited to what is required for the example.  

6 Conclusion 

An RST analysis can be understood as an 
explanation of the organizational composition of a 

text. By identifying the text structure, by showing 
how its elements come together, an RST analysis 
explains how the text accomplishes what it is 
intended to do. The algorithms described in this 
paper contribute to that explanation. Reenactment 
is a step-by-step articulation of coherence 
development. The composition algorithm identifies 
relational propositions implicit within the text. The 
compress algorithm performs a deconstruction of 
the structure from its totality down to its intentional 
essence. These algorithms show that rhetorical 
structures can be studied in terms of their relational 
propositions. The relational propositions generated 
by the algorithms are inferences which follow 
directly from the source rhetorical structure. For 
each inference there is an isomorphic RST analysis 
and a corresponding text, that is, a structure within 
the structure and a text within the text.  Thus, these 
simple algorithms provide interpretations of 
rhetorical structures as discursive processes, 
enabling the analyst to move beyond static 
diagrams and study formative and interpretative 
features of rhetorical structure. By positioning the 
algorithms within the framework of relational 
propositions, considerable simplicity is achieved. 
The algorithms extend the scope of RST as a tool 
for explaining discourse organization. 

 
Figure 7: How it Works 

Input relational 
proposition

Relation handlers

Core algorithm

Compression 
output
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