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Abstract

This paper is dedicated to the design and evalua-
tion of the first AMR parser tailored for clinical
notes. Our objective was to facilitate the pre-
cise transformation of the clinical notes into
structured AMR expressions, thereby enhanc-
ing the interpretability and usability of clini-
cal text data at scale. Leveraging the colon
cancer dataset from the Temporal Histories of
Your Medical Events (THYME) corpus, we
adapted a state-of-the-art AMR parser utilizing
continuous training. Our approach incorporates
data augmentation techniques to enhance the
accuracy of AMR structure predictions. No-
tably, through this learning strategy, our parser
achieved an impressive F1 score of 88% on the
THYME corpus’s colon cancer dataset. More-
over, our research delved into the efficacy of
data required for domain adaptation within the
realm of clinical notes, presenting domain adap-
tation data requirements for AMR parsing. This
exploration not only underscores the parser’s
robust performance but also highlights its po-
tential in facilitating a deeper understanding of
clinical narratives through structured semantic
representations.

1 Introduction

Abstract Meaning Representation (Banarescu et al.,
2013)(AMR)is a highly adaptable and expressive
framework designed to capture the semantics of
natural language expressions. Automatic AMR
parsing is a natural language processing (NLP)
method that translates natural language inputs into
formal AMR expressions – representations which
have proven to be useful across a wide range of
downstream applications (Kapanipathi et al., 2021;
Liu et al., 2015; Liao et al., 2018; Li and Flanigan,
2022; Bonial et al., 2020; Bai et al., 2021) includ-
ing those in the biomedical domain (Garg et al.,
2016; Rao et al., 2017).

Formally, AMR expressions take the form of la-
beled, rooted, directed, and acyclic graphs, g =

(V,E), where V represents the set of AMR nodes,
which can be of type predicate, abstract concept
and attributes; E represents the possible semantic
relations between nodes such as prototypical agent
and patient denoted by arg0 and arg1. The AMR
graph structure underpinned by Neo-Davidsonian
semantics can then effectively encapsulate the ab-
stract concepts, relationships, and entities present
in individual sentences or utterances.

From a practical standpoint, AMR expressions
encompass the semantic content typically ad-
dressed by individual representation schemes such
as semantic role labeling (Palmer et al., 2005),
named entities (Wang et al., 2022), and corefer-
ence chains (Joshi et al., 2020), thereby unifying
these diverse aspects of meaning into a single com-
prehensive representation. Figure 1 illustrates an
AMR expression selected from the clinical domain.

As Figure 1 demonstrates, concepts including
events, entities and properties are captured as nodes
in the graph, while the relations among the con-
cepts are captured by labeled edges connecting
the nodes. Events are represented using PropBank
frames (Palmer et al., 2005), and the semantic rela-
tions of both entities and events to these predicates
are specified either by a frame’s numbered argu-
ment or one of the relations from AMR’s role inven-
tory. For example, the see-09 predicate represents
the event of “visit/consultation by a medical profes-
sional.” In this case, the agent of the seeing event
is “Dr. Chandler Bing”, represented by see-09’s
ARG0 relation, and the semantic role of patient for
the event is “she” indicated by the ARG1 semantic
relation. AMR graphs also specify the temporal
information in a formal way. In the above example,
the time of the seeing event is specified by two
temporal modifier subgraphs. It is a conjunction of
“after now” and “within this week” which makes
“later this week” a concrete time range.

AMR parsers based on pretrained large lan-
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Figure 1: the AMR graph of sentence “We will have her
see Dr. Chandler Bing in surgical consultation later this
week following her testing.”

guage models and sequence-to-sequence (encoder-
decoder) architectures have demonstrated impres-
sive accuracy when trained and evaluated on stan-
dard datasets. The use of AMR parsers has con-
tributed to improved performance across a range
of NLP tasks including question answering (Fu
et al., 2021), information retrieval (Liao et al.,
2018), knowledge-graph construction (Ribeiro
et al., 2022), and text generation (Bai et al., 2022).

These successes have sparked growing interest
in employing AMR in domains that diverge from
the existing training data, such as human-robot in-
teraction tasks, educational applications involving
classroom discourse analysis, and diverse biomedi-
cal use cases. Unfortunately, as language form and
meaning deviate from the general language cap-
tured in generic training data, parsing performance
shows a rapid decline. This decline stems from dis-
parities in vocabulary, syntax, and overall discourse
structure. Addressing these challenges necessi-
tates dedicated human expert annotation efforts to
create domain-specific AMR resources. However,
such endeavors can be costly and time-consuming.
Hence, the preference lies in maximizing the uti-
lization of existing data and parsers and adapting
them to new domains, rather than building entirely
new systems from scratch.

The contributions of this paper include:

• We adapted the high-performance SPRING
parser (Bevilacqua et al., 2021) to the clinical
domain, specifically leveraging the Temporal
Histories of Your Medical Events (THYME)
corpus (Wright-Bettner et al., 2020), and
achieved state-of-the-art performance in AMR
parsing within this context..

• We demonstrated that by tailoring an existing
general domain English neural AMR parser
with a relatively modest amount of gold-
standard in-domain data, we could attain sig-
nificantly high accuracy.

• We showcased data augmentation techniques
that effectively enhance the parser’s robust-
ness across different domains.

2 Data

Supervised training data for AMR parsers con-
sists of pairs of linguistic expressions along with
their associated human annotated gold-standard
AMR expressions. The current standard dataset
for AMR development is AMR 3.0 (Knight et al.,
2020) available from the Linguistic Data Consor-
tium as LDC2020T02. This general domain dataset
is the basis for our baseline efforts prior to do-
main adaptation. AMR 3.0 consists of over 59k
English expressions from a variety of broadcast
conversations, newswire, weblogs, web discussion
forums, fiction and web text. To facilitate evalua-
tion and model comparison, AMR 3.0 is divided
into standard training, development and test splits
consisting of 55,635, 1,722, and 1,898 expressions
respectively.

To adapt AMR to the clinical narrative, we de-
veloped 8,327 in-domain AMRs (separate paper
with detailed description under review) on a sub-
set of the THYME colon cancer corpus (Styler
et al., 2014; Wright-Bettner et al., 2020). The
colon cancer part of the THYME corpus consists of
594 de-identified physicians’ notes for 198 patients
with colon cancer. Each patient is represented by
one pathology note and two clinical notes. The
corpus has undergone several prior annotation ef-
forts, including temporal and coreference annota-
tion (Styler et al., 2014; Wright-Bettner et al., 2019,
2020) and entity tagging as defined by the Unified
Medical Language System (UMLS (Bodenreider,
2004)). As part of our AMR annotation process,
we adopted seven clinical-domain named entity
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(NE) types (anatomical-site, clinical-attribute, de-
vices, disease-disorder, medications-drugs, sign-
symptom) from the UMLS project and relied heav-
ily on the UMLS in classifying many AMR con-
cepts.

Like other genre-specific AMR tasks (Bonial
et al., 2019; Bonn et al., 2020), we found it
necessary to modify the standard AMR annota-
tion approach to support meaningful annotation
of domain-unique linguistic phenomena. Two phe-
nomena are pervasive in the clinical narrative. First,
physician notes frequently drop eventive mentions
when they are inferable by human readers. For
example, “Declines tetanus” does not mean the
patient declined having tetanus; they declined a
tetanus immunization. We expanded AMR’s guide-
lines to permit explicit rendering of certain implicit
concepts like the immunization:

(d / decline-02
:ARG1 (s / shot-13 :implicit +

:ARG3 (d2 / disease-disorder :
name (n / name :op1 "tetanus"))))

Second, like other specialized domains, clinical
texts are rife with semantically dense noun phrases
(NPs) (Grön et al., 2018). In AMR, NPs must be
treated in one of two ways: Either all components
are extracted and related (white marble = marble
that is white), or they are analyzed as single units
of meaning, i.e., NEs (White House). However,
semantic compositionality exists on a spectrum
(Nakov, 2013), and many specialized NPs in par-
ticular strain the adequacy of a binary approach.
This can be seen even in simple clinical NPs: One
annotator might decide “blood pressure” is a sin-
gle, cohesive unit of meaning and annotate it as an
NE, while another might decide “pressure” is an
extractable property of “blood”. To address this,
we implemented a two-pass strategy: In the first
pass, for NPs that fell under one of the clinical NE
types mentioned above, an experienced annotator
made these compositionality judgments and added
each unique phrase to a searchable, phrasal NE Dic-
tionary along with an AMR fragment that “defined”
the compositionality for each phrase. Annotators
then referenced the Dictionary when building the
AMR graphs in the second pass. This approach
supported consistency and speed of annotation.

Finally, the THYME corpus contains frequent
repetition of many other multiword expressions and
phrases. For extremely formulaic phrases, such
as those found in Vital Signs sections (Height =
167.60 cm, e.g.), we implemented a template-filling

script that deterministically produced the AMRs,
again saving significant manual annotation time.
Of the 8,327 AMRs, 1,640 were produced by this
script; the rest were created manually. The final
8,327 THYME-AMR data are split into training,
development and test sets randomly with 4,955,
1,641 and 1,731 sentence-AMR pairs, respectively.
All of the model training is conducted on the train-
ing set of the AMR 3.0 and THYME AMR corpora.
We show the Inter Annotator Agreement between
three annotators on 107 THYME-AMRs in Table 1

Comparison P R F1
gold vs annotator 1 0.93 0.93 0.93
gold vs annotator 2 0.93 0.93 0.93

annotator 1 vs annotator 2 0.91 0.90 0.90

Table 1: Smatch scores on 107 manuall THYME AMRs,
representing three clinical notes

3 Methods

We treat the AMR parsing task as a supervised
machine learning problem and train a parameter-
ized model to map natural language expressions to
their corresponding AMR graphs. Various model
architectures and training methods and paradigms
have been employed over the years (Flanigan et al.,
2014; Foland and Martin, 2017; Lyu and Titov,
2018; Cai and Lam, 2019; Zhang et al., 2019; Wang
et al., 2015; Ballesteros and Al-Onaizan, 2017; Fer-
nandez Astudillo et al., 2020; Hoang et al., 2021),
resulting in a continuous improvement in the state
of the art on the general domain AMR dataset(i.e.
AMR 2.0 and 3.0 corpus (LDC2020T2)). How-
ever, these improvements are highly dependent on
the availability of significant amounts of annotated
training data hampering the development of parsers
for specific genres and languages other than En-
glish. Our approach here is to leverage an existing
high-performance parser and adapt it to the clini-
cal domain using the modest amount of domain-
specific training data described in the last section.

Meanwhile, the great advances of the pre-trained
foundational models has introduced a new model-
ing paradigm in the field of NLP as well as to
structure-prediction problems such as AMR pars-
ing. In particular, the sequence-to-sequence model-
ing, originally developed for machine translation,
has proven a highly effective approach for AMR
parsing (Bevilacqua et al., 2021; Konstas et al.,
2017; Xu et al., 2020). In this approach, two neu-
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Figure 2: AMR graph to PENMAN linearization
pipeline. The transformation map between the AMR
graphical representation and its linearized representa-
tion is one-to-one-and-onto.

ral network components are involved: an encoder,
which takes the natural language sentence as input
and maps it to a continuous manifold as a sequence
of high-dimensional vectors, and a decoder, which
takes the embedded sentence representation vec-
tors and maps them to the output embedding space,
corresponding to the target sequence tokens.

Here we make use of the SPRING parser
(Bevilacqua et al., 2021), one of the state-of-the-art
AMR parsers on AMR 3.0 evaluation. The under-
lying pre-trained language model is BART-large
(Lewis et al., 2020), a transformer-based language
model that has been trained using a set of denoising
pre-training objectives, such as a masked language
modeling objective and a document reconstruction
objective, on general domain unlabeled English
text. The neural network architecture relies on
the self-attention and cross-attention mechanism
to learn patterns from natural language texts. This
pre-trained model is then fine-tuned on the AMR
3.0 training data to map English inputs to linearized
AMR graphs, which consist of a sequence of AMR
tokens. We show the linearization correspondence
of an AMR graph to its sequence of AMR tokens
in Figure 2.

Figure 3: The SPRING parser modeling diagram. A
transformer-based self-attention mechanism is used to
produce embeddings for the input expression. The de-
coder then uses cross attention to drive autoregressive
generation of a sequence of AMR output tokens.

A critical aspect of using sequence-to-sequence
models for structured prediction tasks, like parsing,
is transforming the task itself. In AMR parsing, the
AMR graph is converted into a sequence of tokens
through a linearization algorithm. Note that the
vocabulary of the decoder differs from that of the
encoder model, as the target sequence consists of
AMR-specific tokens such as the relations arg0

and arg1, and predicates like test-01. During
fine-tuning, we utilize the vocabulary derived from
the AMR 3.0 corpus, which ensures consistency
and accuracy in the parsing process. The parsing
problem is then to convert an input text sequence
into a valid sequence of AMR tokens that can be
deterministically transformed into a directed AMR
graph. The overall SPRING approach is depicted
in Figure 3. Given a high-performing SPRING
model, we adapt it to the THYME domain by fine-
tuning on the THYME-AMR training set (4,955
expressions). Here, fine-tuning involves continu-
ous gradient-based updates to the original model
parameters with a small learning rate (5 × 10−6)
with batch size to be 20, we keep the maximum
sequence length to be 1024..
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3.1 Evaluation

The standard metric to evaluate AMR parsing
performance is SMATCH, which decomposes an
AMR graph into triples that capture the edge list
representation of a graph structure. For instance,
the AMR for the sentence “He had never undergone
a screening colonoscopy.” can be decomposed into
its edge list representation as AMR1 and edge list
1 as follows:

AMR1:
(c / colonoscopy-01 :polarity -

:arg1 (h / he)
:arg2 (s2 / screen-01

:arg1 h))

AMR2:
(c1 / colonoscopy-01 :polarity -

:arg1 (s / she)
:arg2 (s2 / screen-01

:arg1 s))

Decomposed edge list1:
instance(c, colonoscopy-01)
instance(h, he)
instance(s2, screen-01)
polarity(c, -)
arg1(c, h)
arg2(c, s2)
arg1(s2, h)

Decomposed edge list2:
instance(c1, colonoscopy-01)
instance(s, she)
instance(s2, screen-01)
polarity(c1, -)
arg1(c1, s)
arg2(c1, s2)
arg1(s2, s)

We conjured another slightly altered AMR2
with the he node replaced with a she node, in-
dicating a potential mistake in the parser gener-
ated AMR. In the above decomposition of AMR
graphs, instance() represents the nodes in the
graph while the rest are the edges. Given the edge
lists for a hypothetical parse and its corresponding
gold-standard parse, the SMATCH metric produces
precision (p), recall (r), and F1-measure scores as
follows:

p =
Ncorrect

Npredicted
, r =

Ncorrect

Nreference
, F1 =

2pr

p+ r

A complication in computing these scores is that
we need to know which of the proposed AMR
nodes in the parse are supposed to correspond to
which ones in the correct set. In other words, the
graphs need to be matched before they can be
scored. This issue originates from the encoding

of AMR nodes with variables, through which dif-
ferent instantiations of a concept can be encoded.
The standard SMATCH scorer (Cai and Knight,
2013) employs a greedy heuristic method to pro-
vide the required alignment to avoid computing a
computationally expensive optimal alignment.

Finally, AMR representations are an amal-
gamation of semantic representations including
predicate-argument relations, named entities, and
coreference components. The SMATCH score rep-
resents an average over these component categories,
obscuring the model performance over the various
categories of information in AMR expressions, thus
making it difficult to assess the usability of the re-
sults in downstream applications. To address this, a
more fine-grained analysis tool1 provides precision,
recall and F1 measures across the various compo-
nent AMR tasks. We will discuss the fine-grained
categories in section 4.3.

4 Experiments

We present the domain adaption training experi-
ments in this section to show the characteristics of
the text from THYME corpus when it comes to
AMR parser developement.

4.1 Domain Adaptation

Table 2 provides the results of our primary do-
main adaptation experiments. The first column
presents the evaluation results of the off-the-shelf
SPRING AMR parser trained solely with the AMR
3.0 training data. The 83.0 SMATCH score for
the SPRING parser reaches near state-of-the-art
performance on the AMR 3.0 test set, whereas,
the performance on the THYME-AMR test set is
significantly lower at 51.7 SMATCH. The second
column shows the results of the same parser fine-
tuned using the THYME-AMR training data. Here,
we see that the fine-tuned parser achieves excellent
results on the THYME-AMR corpus test set with a
35.3 point absolute improvement over the original
model.

Test
Train

AMR 3.0 THYME-AMR
AMR 3.0

+ THYME-AMR
AMR 3.0 83.0 77.0 80.0

THYME-AMR 51.7 87.0 88.0

Table 2: SPRING THYME-AMR parser performance
with different training sources. All scores are Smatch
F1

1https://github.com/mdtux89/amr-evaluation
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4.2 Avoiding Forgetting

Catastrophic forgetting is a frequently observed
problem when fine-tuning large pre-trained mod-
els on domain specific data (Li and Hoiem, 2018;
Riemer et al., 2019; Scialom et al., 2022). While
fitting the model’s parameters to the new domain,
there is often a significant loss in terms of the
model’s performance on its original domain. To
assess the robustness and potential forgetting of
general domain AMR knowledge, we evaluated the
THYME-AMR fine-tuned parser on the AMR 3.0.
The results showed a decrease in performance from
83.8 to 77.0, indicating significant forgetting of the
general domain AMR.

Based on this observation, we deployed a joint
training approach to mitigate this forgetting phe-
nomenon. In this experiment, we fine-tuned the
parser on a mixture sampled from both the AMR
3.0 and THYME-AMR data. Considering the dif-
fering sizes of the two corpora, we sampled them in
a 12-to-1 ratio between THYME-AMR and AMR
3.0 sources. As can be seen from Table 2, this mod-
est infusion of general domain data allowed the
parser to attain high performance on the THYME-
AMR test set while also largely maintaining its
performance on the AMR 3.0 test set. This ob-
servation underscores the effectiveness of domain-
specific annotation in improving semantic parsing
in a joint fashion. This means that the understand-
ing of semantics improves collectively rather than
independently, thanks to domain-specific data. As
more representative data are collected, we expect
further improvements in the parser’s performance,
making it even more adept at comprehending the
semantics in the given domain.

4.3 Fine-Grained Performance

Table 3 presents detailed results of our best-
performing parser across the semantic components
that comprise AMR graphs. AMR representations
are an amalgamation of semantic representations
including predicate-argument relations, named
entities, and coreference components. The
SMATCH score represents an average over these
sub-categories. To leverage the in-depth analytical
power of these linguistic sub categories, a more
fine-grained analysis tool2 provides precision, re-
call and F1 measures across the various component
AMR tasks. We list the fine-grained performance
metric category definitions briefly as follows:

2https://github.com/mdtux89/amr-evaluation

• Unlabeled category assesses the parsing per-
formance on the AMR graph, disregarding the
edge labels.

• No WSD category evaluates the parsing per-
formance while ignoring the Propbank word
sense labels (e.g., see-09 becomes just see).

• Concepts category considers only the abstract
concept node matches.

• Named Entity category focuses on the matches
of named entity subgraphs.

• Negation category concerns the matches of the
negation attribute nodes(e.g. the :polarity

edges).

• Reentrancy category examines only the con-
cept re-entrancy subgraphs(usually a back ref-
erence node).

• Semantic Role Label (SRL) category pertains
to the performance of each predicate argument
structure generation.

We observe that the mixed data augmenta-
tion technique significantly improves performance
across the board, impacting almost every sub-
category of evaluation. Notably, the off-the-shelf
parser faced significant challenges in understand-
ing the semantics in the new domain. The perfor-
mance drop due to domain shifting was not uni-
form across different sub-categories. The most
significant drop in performance was seen in Named
Entity Recognition, which is expected due to the
abundance of medical-related terminology. On the
other hand, the data-augmented parser excelled in
Concept predication and Named Entity recognition
aspects of AMR parsing, while the performance
in the Negation and Reentrancy category was rela-
tively less impressive compared to the other cate-
gories.

4.4 Data Requirements for Successful
Adaptation

Manual annotation of AMR data is time consum-
ing and expensive. At the current time, the stan-
dard AMR 3.0 still consists of only 60k sentences,
nearly 10 years after the initial data release. The
results shown in Table 2 raise the question of how
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Sub-category Training Set Precision Recall F1

SMATCH
THYME-AMR + AMR 3.0 0.89 0.88 0.88

THYME-AMR 0.88 0.87 0.87
AMR 3.0 0.53 0.45 0.49

Unlabeled
THYME-AMR + AMR 3.0 0.90 0.90 0.90

THYME-AMR 0.90 0.88 0.89
AMR 3.0 0.60 0.51 0.55

No WSD
THYME-AMR + AMR 3.0 0.89 0.88 0.88

THYME-AMR 0.88 0.87 0.87
AMR 3.0 0.55 0.46 0.50

Concepts
THYME-AMR + AMR 3.0 0.93 0.92 0.93

THYME-AMR 0.93 0.91 0.92
AMR 3.0 0.52 0.46 0.49

Named Ent.
THYME-AMR + AMR 3.0 0.94 0.93 0.93

THYME-AMR 0.93 0.92 0.92
AMR 3.0 0.18 0.05 0.08

Negation
THYME-AMR + AMR 3.0 0.86 0.85 0.85

THYME-AMR 0.84 0.86 0.85
AMR 3.0 0.45 0.42 0.44

Reentrancies
THYME-AMR + AMR 3.0 0.78 0.79 0.78

THYME-AMR 0.78 0.76 0.77
AMR 3.0 0.48 0.37 0.41

SRL
THYME-AMR + AMR 3.0 0.88 0.87 0.87

THYME-AMR 0.87 0.85 0.86
AMR 3.0 0.55 0.47 0.51

Table 3: SPRING parser performance analytical breakdowns comparison among three models trained on different
combination of the fine-tuning data source. The evaluation is on the THYME-AMR test set.

much data is actually required to attain high lev-
els of parser accuracy through adaptation. To ad-
dress this question, we conducted a series of exper-
iments training models with progressively larger
snapshots of the available training data. Specifi-
cally, we gradually augmented the training set size
for each model by random sampling without re-
placement from the training data (resulting in train-
ing sets of size 500, 1,000, 2,000, 3,000, 4,000
and 4,955). The results in Figure 4 illustrate the
parser’s performance across these training sets.

As can be seen, performance rapidly rises from
the non-adapted baseline to 80 SMATCH with
1,000 training examples; the model trained on only
2,000 samples achieves 90% of the performance of
our best parser trained on all available training data.
This rapid improvement with domain specific data
is a positive indication of the effectiveness of con-
tinued training from a generic model and its ability
to rapidly generalize from the domain-specific data.

Figure 4: The performance curve with different sample
sizes of the THYME-AMR training set. The x axis is
the sample size of the training data; the y axis represents
the SMATCH F1 performance score(with the unit of per-
centage) of the parsers evaluated on the same withheld
test set (THYME-AMR test set)
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5 Discussion

Our results have highlighted the advantages of em-
ploying data augmentation techniques for domain
adaptation fine-tuning. This opens up the possibil-
ity for additional follow-up studies, including the
incorporation of data from domain-specific Prop-
bank roleset development. For instance, in the
case of THYME, leveraging example sentences for
newly added named-entity types like “anatomical-
site” could prove beneficial. Initializing the word
embedding vectors with such domain-specific con-
cepts would enable a better fit with the pre-trained
foundational models. Future investigations involv-
ing more sophisticated foundational models and
data augmentation approaches hold great promise
for enhancing AMR parsing in the medical domain
and other specialized domains. By harnessing the
capabilities of cutting-edge language models and
innovative data augmentation strategies, we can ex-
pect significant advancements in semantic parsing
tasks and domain adaptation techniques.

With these advances, AMR parses have wide
applicability to core information extraction tasks
from the clinical narrative such as entity recog-
nition, negation detection, uncertainty detection,
coreference, temporality and relation extraction.

6 Conclusion

In our investigation, we have presented substantial
evidence highlighting the critical role of domain-
specific AMR annotations in the context of domain
adaptation. Our findings illuminate how variances
in the distribution between original and target do-
mains can precipitate a marked decline in the per-
formance of AMR parsing. This phenomenon un-
derscores the challenge of catastrophic forgetting, a
significant hurdle in the training of neural network
models where new learning can disrupt previously
acquired knowledge.

To counteract this issue, we demonstrated the
critical role of data augmentation techniques.
Specifically, by integrating domain-specific exam-
ples into the training dataset, we significantly bol-
stered the model’s capability to acclimate to the
nuances of the new domain while preserving its
proficiency in the original domain. This strategic
approach of coupling domain-specific annotation
with thoughtful data augmentation has emerged as
a formidable solution, ensuring both the robust-
ness and accuracy of AMR parsing across different
domain adaptation scenarios.

Our study reaffirms the indispensability of
domain-specific annotation in achieving effective
domain adaptation and also supports data augmen-
tation as an essential tool in maintaining a delicate
balance between learning new domain character-
istics and retaining essential knowledge from the
original domain. This balanced approach provides
a promising avenue for future research and devel-
opment in the field of AMR parsing, potentially
paving the way for more nuanced and adaptable AI
systems capable of navigating other domains with
limited data yet maintain robustness.

7 Limitations and Future Work

Our study faced constraints primarily due to com-
putational limitations, which necessitated a focus
on a specific subset of model and data augmen-
tation strategies. A reasonable extension of this
research could involve the exploration of more ad-
vanced foundational models, including GPT-3.5,
GPT-4, and their publicly accessible counterparts
such as LLAMA. These platforms present oppor-
tunities for experimenting with zero- or few-shot
learning techniques. Importantly, our use of clin-
ical data mandates adherence to stringent privacy
standards; thus, it is imperative that any models em-
ployed can be locally installed and operated within
a secure, firewall-protected environment. This re-
quirement currently excludes the use of proprietary
models like those within the GPT family, which
are tailored for commercial applications and do not
meet the privacy criteria essential for our research
objectives.
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laborate with institutional review boards (IRB) to
ethically justify and secure consent approvals for
utilizing all data involved in our research.

We are acutely aware of the potential biases in
our analysis and interpretation of clinical narra-
tives. This awareness extends to biases that might
emerge from the data collection process, the selec-
tion of narratives for analysis, and our own precon-
ceptions. We are committed to making concerted
efforts to ensure that our analysis encompasses di-
verse perspectives, thereby avoiding the perpetua-
tion of stereotypes or inequalities.

We urge downstream users of our parser to con-
scientiously consider the potential impact of their
findings on the individuals depicted in the clini-
cal narratives, as well as on wider patient popula-
tions. This involves thoughtful reflection on how
the research could affect public perceptions, clini-
cal practice, and policy making. A crucial aspect
of our approach is to balance the dissemination of
research findings with the imperative to prevent
harm or distress.

Lastly, our pursuit of transparency in our method-
ology and findings is relentless. We advocate for
the use of Abstract Meaning Representation (AMR)
as a superior tool compared to opaque, “black-box”
models. AMR offers a fully transparent and ver-
ifiable representation of the semantics in clinical
narratives, which aligns with our commitment to
fostering trust and accountability.

Our approach is a testament to our dedication to

ethical research practices, emphasizing the protec-
tion of privacy, the mitigation of bias, the thought-
ful consideration of impacts, and the advancement
of transparency and accountability. These princi-
ples are the bedrock of our efforts to contribute
meaningful and ethically sound advancements in
the field of clinical notes analysis and automation
system design.
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