

Abstract

The global obesity epidemic is a significant

challenge to public health, necessitating

innovative and personalized solutions. This

paper presents Pondera, an innovative mobile

app revolutionizing weight management by

integrating Artificial Intelligence (AI) and

multidimensional goal fulfilment analytics.

Pondera distinguishes itself by supplying a

tailored approach to weight loss, combining

individual user data, including dietary

preferences, fitness levels, and specific

weight loss objectives, with advanced AI

algorithms to generate personalized weight

loss plans. Future development directions

include refining AI algorithms, enhancing

user experience, and validating effectiveness

through comprehensive studies, ensuring

Pondera becomes a pivotal tool in achieving

sustainable weight loss and health

improvement.

Keywords: AI; Weigh-Loss; Mobile

application.

1 Introduction

Healthcare chatbots have significantly

advanced medical technology by providing

personalized, accessible, and engaging solutions

in various domains such as mental health, chronic

disease management, and weight loss. These

chatbots deliver tailored dietary and exercise

recommendations, essential for effective weight

management. According to systematic reviews

and meta-analyses by Franz et al. (2007) and

Young et al. (2012, 2014), tailored interventions

are crucial for sustained weight loss, underscoring

the potential of chatbots in this area. By utilizing

user data, chatbots enhance engagement and

motivation through adaptive interactions and

constant availability, which is crucial for users

seeking weight loss support. The integration with

wearable technology further personalizes

feedback and recommendations, enhancing

intervention effectiveness.

Despite their potential, deploying healthcare

chatbots involves overcoming challenges related

to information accuracy, user trust, and behavioral

change. Ensuring the reliability of chatbot-

provided information is critical, given the

potential for negative health outcomes from

inaccuracies. This necessitates rigorous sourcing

and verification processes, ensuring information is

derived from reputable, evidence-based medical

sources (Franz et al., 2007). Furthermore,

maintaining algorithmic transparency and

mitigating bias are essential to ensure that

chatbots provide unbiased, medically sound

advice (Young et al., 2014).

Compliance with regulatory and ethical

guidelines is vital for user trust and data security.

In the U.S., the FDA regulates healthcare chatbots

that offer diagnostic or therapeutic advice,

detailing criteria for software oversight based on

intended use and potential patient risks. The

GDPR in the EU imposes strict data handling

requirements, impacting chatbots that process

personal health information. Similarly, the U.S.'s

HIPAA mandates the protection of sensitive

patient data, with additional international

standards from ISO ensuring the reliability and

safety of healthcare chatbots globally.

Healthcare chatbots are poised to revolutionize

weight management and broader health

interventions through their ability to provide

personalized, dynamic support. However,

realizing this potential requires continuous

improvement, adherence to regulatory standards,

and integration into comprehensive digital health

ecosystems. Future advancements in AI will

further enhance the personalization capabilities of

Pondera: A Personalized AI-Driven Weight Loss Mobile Companion with

Multidimensional Goal Fulfillment Analytics

George Pashev

University of Plovdiv “Paisii

Hilendarski”
georgepashev@uni-

plovdiv.bg

Silvia Gaftandzhieva

University of Plovdiv “Paisii

Hilendarski”
sissiy88@uni-

plovdiv.bg

264

healthcare chatbots, making them indispensable

tools in promoting healthier lifestyles and

managing weight effectively.

Pondera's multidimensional analytics engine

surpasses WeightMentor's (Holmes et al, 2019)

basic goal-setting by simultaneously analyzing

weight, diet, exercise, sleep, and stress. This

holistic approach enables nuanced insights and

personalized interventions. Our machine learning

algorithms identify correlations between lifestyle

factors, allowing for targeted goal adjustments. As

an adaptive system, Pondera incorporates

feedback loops and dynamic goal adjustment

mechanisms. It continuously refines user goals

and interventions based on real-time data,

dynamically adjusting recommendations and

support strategies. This adaptive architecture

ensures personalized, effective support throughout

the user's weight loss journey, optimizing

outcomes and engagement.

2. Pondera: design and development

1.1 Pondera functionalities and components

Overview of Pondera Development Goals

Pondera aims to lead in weight management by

effectively using AI and personalized analytics, as

outlined in these specific goals:

G1 - Comprehensive Personalization: Utilize

AI to analyze user data points to craft customized

weight loss plans that evolve based on feedback.

G2 - Interactive User Assessment: Improve

quizzes to understand users' weight loss goals and

challenges, including psychological factors.

G3 - Nutrition and Fitness Integration: Offer

diverse dietary and fitness options tailored to

individual preferences and needs.

G4 - Behavioral Change Support: Implement

habit formation, motivation, and progress tracking

tools to encourage lasting changes.

G5 - User Engagement and Community

Building: Develop features allowing users to share

experiences and motivate each other.

G6 - Data Privacy and Security: Ensure robust

data protection measures adhering to GDPR and

HIPAA regulations.

G7 - Adaptive Learning and Feedback Loops:

Continuously refine plans based on user feedback

and changing circumstances.

G8 - Comprehensive Health Integration: Track

and improve overall health metrics, promoting

holistic well-being.

G9 - Partnerships with Health Professionals:

Collaborate with experts to enhance credibility

and effectiveness.

G10 - Continuous Research and Innovation:

Stay at the forefront of AI, machine learning, and

nutrition/fitness developments.

These goals guide Pondera's development to

not only assist users in weight management but

also support broader health and well-being

objectives. By focusing on these goals, Pondera

can truly revolutionize weight management,

offering users a unique and effective tool to

achieve their weight loss and health objectives.

For the development of Pondera, a mobile

application designed for personalized weight

management and training plans, a comprehensive

software architecture involving multiple

technologies is required.

It contains 4 software components:

• User Interface (UI): This layer includes the

presentation and interaction layer of the

application, built with HTML, JavaScript,

and Bootstrap. It allows users to input their

goals, preferences, and other required

details (see Fig. 1).

• Front-End: The front-end is responsible for

sending requests to the back-end via AJAX

calls and updating the UI based on the data

received. It is built using JavaScript and

interacts with the Flask CORS back-end for

data processing.

• Back-End (API): The Flask application

serves as the back-end, handling API

requests from the front-end, processing

data, interacting with the SQLite3 database,

and communicating with external APIs like

GPT-3.5. It employs Cross-Origin

Resource Sharing (CORS) to enable secure

cross-origin requests and responses.

• Database (SQLite3): This database stores

all the static data required by Pondera,

including user information, goals, user

groups, available resources (meals, training

sets), and their associated parameters (Zone

diet blocks, calories, vegetarian index,

ketogenic index, HIIT index, etc.).

Proceedings of CLIB 2024

265

Figure 1. The data input form for Plan

Generation

1.2 Software prototype

This system provides personalized training and

eating plans tailored to user goals, dietary

preferences, and exercise intensity, developed

using Python Flask CORS, JavaScript, HTML,

Bootstrap, and SQLite3.

The Pondera database includes eight key

entities: Users, Goals, UserGroups, UserGoals,

Resources, Meals, Trainings, and UserPlans.

Users have attributes like UserID, Username, and

Weight; Goals include GoalID and

GoalDescription; Resources and Meals detail

items such as ResourceID and Calories; Trainings

and UserPlans track elements like VideoURL and

daily assignments.

Relationships within the database include One-

to-Many between Users and UserGoals, Many-to-

Many between Users and UserGroups, and One-

to-One between Resources and either Meals or

Training. UserPlans detail the many-to-many

relationships between Users, Meals, and Training,

organizing daily meal and training assignments.

The app integrates with the GPT-3.5 API to

update meal and training data dynamically,

ensuring complete information for generating

personalized plans.

Upon receiving user inputs (weight, desired

training intensity, dietary preferences, and goal),

the system utilizes a multidimensional vector

space model to match and recommend a diverse

yet personalized set of meals and training plans

that align with the user's inputs and the Zone diet

principles. Fig. 3 presents the process flow

diagram of Pondera.

This architecture supports the dynamic

generation of personalised weight management

plans, leveraging the power of AI for data

completion and offering users a tailored approach

to achieving their weight loss goals:

• User Interaction: Users interact with the

UI to enter their personal information,

goals, and preferences.

• Data Processing: The front-end sends this

data to the back-end via AJAX.

• API Logic: The Flask back-end processes

the request, queries the SQLite3 database

for matching resources, and communicates

with the GPT-3.5 API as needed to

complete missing data (see Fig. 4).

Figure 3. Process flow diagram of Pondera

from flask import Flask, request, jsonify

from your_plan_generator import generate_personalized_plan #

Placeholder for your actual function

app = Flask(__name__)

@app.route('/api/generate_plan', methods=['POST'])

def generate_plan():

 try:

 # Extracting user input from the request

 user_data = request.json

 weight = user_data.get('weight')

 training_intensity = user_data.get('training_intensity')

 daily_blocks = user_data.get('daily_blocks')

 desired_weight = user_data.get('desired_weight')

 # generate_personalized_plan returns a dict

 plan = generate_personalized_plan(weight,training_intensity,

daily_blocks,desired_weight)

 return jsonify(plan), 200

 except Exception as e:

 return jsonify({'error': str(e)}), 400

if __name__ == '__main__':

 app.run(debug=True)

Figure 4. Python Flask API method endpoint

for plan generation

Using algorithms, the back-end calculates the

best match of meals and training sets based on the

user's inputs and the multidimensional vector

space model.

The vectorization process for Pondera's data

involves converting the structured data from the

Proceedings of CLIB 2024

266

database into numerical vectors, which can be

processed by machine learning models for

generating personalized plans. This process

includes:

• Encoding Categorical Data: Attributes

like DietaryRestrictions, FitnessLevel, and

GoalType are categorical and can be

converted into numerical vectors using

techniques like one-hot encoding or label

encoding.

• Normalizing Numerical Data: Attributes

such as Age, Height, Weight, Calories,

Proteins, Carbs, and Fats should be

normalized to ensure they're on a similar

scale, typically between 0 and 1, to prevent

any one feature from dominating the

model's behaviour.

• Text Vectorization: For textual data, such

as Ingredients in meals, techniques like TF-

IDF (Term Frequency-Inverse Document

Frequency) can be used to convert text into

a meaningful vector of numbers.

• Aggregating Data: User profiles might

need to aggregate data from Goals,

Training Sets, and Meals based on user

activity. This aggregated data can then be

vectorized as a part of the user's profile

vector.

• Dimensionality Reduction: After

vectorization, dimensionality reduction

techniques such as PCA (Principal

Component Analysis) can be applied to

reduce the number of features, if necessary,

to simplify the model without losing

significant information.

import pandas as pd

from sklearn.preprocessing import OneHotEncoder, MinMaxScaler

def preprocess_data(user_profiles, goals, training_sets, meals):

 # Fill missing values

 user_profiles.fillna(user_profiles.mean(), inplace=True) # Numerical

columns

 user_profiles.fillna('unknown', inplace=True) # Categorical columns

 # Convert categorical data to numerical format

 encoder = OneHotEncoder(sparse=False)

 categorical_columns = cols # Example columns

 encoded_features =

encoder.fit_transform(user_profiles[categorical_columns])

 encoded_df = pd.DataFrame(encoded_features,

columns=encoder.get_feature_names(categorical_columns))

 user_profiles = pd.concat([user_profiles.drop(categorical_columns,

axis=1), encoded_df], axis=1)

 # Normalize numerical values

 scaler = MinMaxScaler()

 numerical_columns = ['Age', 'Weight'] # Example columns

 user_profiles[numerical_columns] =

scaler.fit_transform(user_profiles[numerical_columns])

 # Similar preprocessing would be done for goals, training_sets, and

meal data frames

 return user_profiles # This function would return all preprocessed

data frames in a real scenario

Figure 5. Data Preprocessing Process

This structured approach enables the creation of

a comprehensive vector space that represents the

multifaceted data involved in personalizing weight

loss plans. With the vectors ready, machine

learning algorithms can then be applied.

Moving forward to the Feature Extraction

step, we'll build upon the preprocessed data. The

goal of feature extraction is to convert the raw

data into a set of features that can be used for

creating machine learning models. This involves

identifying which attributes of the data are most

relevant to the problem you're trying to solve and

possibly creating new features from the existing

ones to better capture the underlying patterns in

the data. Feature extraction in Pondera involves:

• Selecting relevant nutritional information

from meals (e.g., calories, proteins, carbs,

fats) that aligns with dietary goals.

• Extracting key attributes from training sets

(e.g., difficulty level, duration, calories

burned).

• Incorporating user-specific goals and

progress metrics into the features.

Fig. 6 shows a part of the code for

implementing feature extraction in Python.

def extract_features(user_profiles, goals, training_sets, meals):

 # Example of extracting nutritional features from meals

 nutritional_features = meals[['Calories', 'Proteins', 'Carbs', 'Fats']]

 # Example of extracting training set features

 training_features = training_sets[['DifficultyLevel', 'Duration',

'CaloriesBurned']]

 user_goals_features = pd.merge(user_profiles, goals, on='UserID',

how='left')

 return nutritional_features, training_features, user_goals_features

Figure 6. Feature extraction

In the Feature Extraction step following data

preprocessing, we select key attributes from the

data for vectorization to help craft personalized

weight loss plans:

- User Profiles: Important features include age,

current weight, dietary restrictions, and fitness

level, which influence meal and workout

recommendations.

- Goals: Factors like goal type (weight loss,

muscle gain), target weight, and target date are

crucial for plan personalization and need precise

quantification.

Proceedings of CLIB 2024

267

- Training Sets: Attributes such as difficulty

level, duration, and calories burned are vital for

aligning workout plans with user goals and fitness

levels.

- Meals: Essential nutritional details include

calories, proteins, carbs, fats, and compatibility

with dietary restrictions, critical for meal plan

formulation.

The Vectorization Process requires three steps:

• Numerical Features: Numerical features

like age, weight, calories, proteins, carbs,

and fats are already in a suitable format for

most machine learning algorithms.

However, they might require normalization

to ensure all features are on the same scale.

• Categorical Features: Categorical

features, especially those that have been

one-hot encoded, are already in a

vectorized form. However, it's essential to

ensure that the vectorization is consistent

across the dataset to match the one-hot

encoding schema used during training.

• Combining Features: Once all features are

in a numerical format, we combine them

into a single vector for each user profile

and meal. This vector represents the input

to our machine-learning models.

Fig. 7 presents a simple vectorization process

for features implemented in Pondera where

user_features and meal_features are pandas

DataFrames containing our preprocessed and

extracted features.

import numpy as np

def vectorize_features(user_features, meal_features):

 user_vectors = user_features.to_numpy()

 meal_vectors = meal_features.to_numpy()

 return user_vectors, meal_vectors

Figure 7. Vectorization process

Normalization and dimensionality reduction are

essential for optimizing machine learning

algorithms. Normalization adjusts each feature to

scale uniformly, typically with a mean of 0 and

standard deviation of 1, or within a range like 0 to

1. This uniform scaling reduces bias from features

with larger scales, enhancing algorithm

performance and speeding up algorithms like

gradient descent.

Dimensionality reduction, often through

methods like Principal Component Analysis

(PCA), reduces the number of variables, retaining

the most critical information with minimal data

loss. This process simplifies models, decreases

overfitting, and reduces computational demands,

ultimately transforming the data into a lower-

dimensional space that captures significant

variance.

The use of tools like scikit-learn's

StandardScaler and PCA in Python exemplifies

these processes. StandardScaler normalizes

features, while PCA reduces dimensions,

preserving 95% of the data's variance to maintain

essential information for model effectiveness.

To optimize daily meal and exercise plans, we

employ a greedy algorithm that iteratively selects

the optimal combination to balance calorie intake

and expenditure while meeting nutritional goals.

This method focuses on minimizing the difference

between daily calorie consumption and burn,

ensuring all nutritional needs (proteins, carbs, fats)

are met within specified limits.

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

def normalize_and_reduce_dimensions(data):

 scaler = StandardScaler()

 normalized_data = scaler.fit_transform(data)

 pca = PCA(n_components=0.95) # retain 95% of the variance

 reduced_data = pca.fit_transform(normalized_data)

 return reduced_data

Figure 8. Normalization and dimensionality

reduction

The implementation of this algorithm involves:

- Sorting meals and exercises by their caloric and

nutritional values.

- Selecting meals that meet daily nutritional

requirements without exceeding caloric limits.

- Choosing exercises that address any caloric

surplus or help achieve calorie deficit goals.

This approach allows for practical daily

planning, making decisions that are sufficient for

day-to-day progress without needing to be

globally optimal. The greedy algorithm simplifies

decision-making by focusing on immediate

objectives, efficiently balancing the diet and

exercise routine to meet the user's health and

weight loss targets.

Optimal meals are chosen from a sorted list

based on their ability to meet daily nutritional

needs without surpassing caloric limits. This

selection is iterative, adding meals that enhance

the nutritional profile, and updating remaining

nutritional needs after each selection.

Exercises are selected to either match or exceed

remaining caloric needs after meal choices. They

aim to address any caloric surplus from meals or

Proceedings of CLIB 2024

268

create a deficit, selected for their high caloric burn

to efficiently meet targets.

Placeholder functions help sort and select meals

and exercises by calculating nutritional scores and

adjusting needs based on meals’ nutritional

content. These functions, crucial for the algorithm,

allow for informed decisions in the daily plan.

This algorithm iteratively selects meals and

exercises that balance caloric intake and

expenditure, aligning with nutritional

requirements, to effectively meet fitness goals and

cater to user preferences.

def optimize_daily_plan(selected_meals, selected_exercises,

daily_calorie_needs, daily_nutritional_needs):

 # Sort and select meals and exercises based on nutritional and

calorie needs

 sorted_meals = sorted(selected_meals, key=lambda x:

calculate_nutritional_score(x, daily_nutritional_needs))

 optimal_meals, remaining_needs = select_optimal_meals

(sorted_meals, daily_calorie_needs, daily_nutritional_needs)

 optimal_exercises = select_optimal_exercises(sorted(selected_exercises,

key=lambda x: x['calories_burned'], reverse=True),

remaining_needs['calories'])

 return optimal_meals, optimal_exercises

def select_optimal_meals(meals, calorie_needs, nutritional_needs):

 # Select meals that match nutritional and calorie requirements

 optimal_meals, remaining_needs = [], nutritional_needs.copy()

 for meal in meals:

 if meets_needs(meal, remaining_needs):

 optimal_meals.append(meal)

 update_remaining_needs(meal, remaining_needs)

 return optimal_meals, remaining_needs

def select_optimal_exercises(exercises, calorie_target):

 # Select exercises to fulfill or exceed remaining calorie needs

 optimal_exercises, calories_burned = [], 0

 for exercise in exercises:

 if calories_burned < calorie_target:

 optimal_exercises.append(exercise)

 calories_burned += exercise['calories_burned']

 return optimal_exercises

Assume implementation details for placeholder functions

def calculate_nutritional_score(meal, needs): pass # Calculate closeness

to nutritional needs

def meets_needs(meal, needs): pass # Check meal meets remaining

nutritional needs

def update_remaining_needs(meal, needs): pass # Update needs based

on meal

Figure 9. Part of the code for optimizing the

daily plan

As a response, the personalized plan is sent

back to the front-end, where it is displayed to the

user.

Figure 10. A view of an Item of a Generated

Plan

The User Interface (UI) for displaying a

generated plan in Pondera is designed to provide a

clear and concise overview of a user's

personalized training and eating plan. Utilizing

Bootstrap's grid system, the UI is responsive,

ensuring it looks good on various devices. Each

day of the plan is clearly labeled (e.g., "Day 1"),

with meals and workouts detailed under specific

subheadings like "Meals" and "Training." These

sections list meal names, their nutritional content

like Zone diet block count, and a brief description

of the day's exercise routine, including estimated

calories burned and links to workout videos.

This structured presentation aids users in

navigating their plan, enhancing readability and

interaction. The UI also includes visual cues like

icons or progress bars to provide feedback on the

user's progress. Overall, the UI is not just

informative but engaging, encouraging users to

actively participate in their health regimen by

following through with meals and workouts and

interacting dynamically with the plan through

features like marking activities as completed or

navigating between plan days. This interface acts

as a bridge between the complex backend

algorithms and the user, making the personalized

plans accessible, understandable, and actionable.

2 Experiment: Sample Request for

Menu Generation

Objective: To evaluate the effectiveness of

Pondera's AI-driven personalization algorithm in

generating a week-long tailored meal plan for a

user with specific dietary preferences and

nutritional goals.

Methodology: A request was submitted to the

Pondera system with the following user profile

inputs:

Proceedings of CLIB 2024

269

Dietary Preferences: Vegetarian, Allergies:

None, Nutritional Goals: Weight loss, with a focus

on high protein and low carbs, Physical Activity

Level: Moderate

Fig. 11 presents a generated menu.

Day 1
Breakfast: Scrambled tofu (150g) with spinach

(50g) and avocado (100g) on whole-grain toast (2
slices).

Lunch: Quinoa salad with chickpeas (100g),
cucumbers (50g), tomatoes (50g), and feta cheese
(30g).

Dinner: Lentil soup (250g) with a side of
roasted broccoli (75g) and carrots (75g).

Snacks: Almonds (30g) and Greek yogurt (150g).

Day 2
Breakfast: Greek yoghurt (150g) with mixed

berries (100g) and a sprinkle of chia seeds (15g).
Lunch: Whole grain pasta (100g cooked) with

pesto sauce (30g) and roasted vegetables (100g).
Dinner: Grilled portobello mushroom (100g)

with quinoa (100g) and steamed green beans (75g).
Snacks: Sliced apple (150g) with peanut butter

(15g).

Figure 11. Generated Menu Sample

Comments on the Generated Menu

Pros: Personalization: The menu adheres to

the user's dietary preferences and nutritional goals,

showcasing Pondera's ability to tailor

recommendations. Nutritional Balance: Meals are

well-balanced, providing a good mix of protein,

healthy fats, and complex carbohydrates, aligning

with the weight loss goal.

Cons: Repetition: The generated menu may

lack variety over a week, potentially leading to

diet fatigue. Including more diverse ingredients

and cuisines could improve user satisfaction.

Practicality: Some meals might require

significant preparation time, which could be a

barrier for users with busy schedules. Suggesting

quicker options or meal prep tips could enhance

usability.

The experiment indicates that while Pondera's

menu generation feature is effective in creating

personalized and nutritionally balanced meal

plans, further refinement is needed in diversifying

meal options and considering practicality for users

with varying lifestyles.

More experiments indicated that sometimes the

menu may contain incompatible food.

3 Conclusion

This paper highlights the development of

Pondera, a mobile app designed for personalized

weight management using AI and goal fulfillment

analytics. It outlines how AI algorithms, user

assessment, and the integration of nutrition and

fitness methodologies are utilized to create

tailored weight loss plans. The paper emphasizes

the importance of extensive AI testing, user

experience design, and validation studies to ensure

the app's effectiveness in real-world scenarios. It

also points to the need for scaling the app to serve

a diverse user base and integrating continuous

feedback mechanisms. Looking ahead, further

advancements in AI and digital health ecosystems

could significantly boost the effectiveness of

healthcare chatbots in managing weight and

promoting healthier lifestyles, making them vital

tools in combating obesity.

Acknowledgments

The paper is financed by the Scientific

Research Fund at the University of Plovdiv "Paisii

Hilendarski", project № MUPD23-FTF-019.

References

M. Franz, J. VanWormer, A. Crain, J. Boucher,

T. Histon, W. Caplan, ... & N. Pronk. 2007.

Weight-loss outcomes: A systematic review and

meta-analysis of weight-loss clinical trials with a

minimum 1-year follow-up. Journal of the

American Dietetic Association, 107(10): 1755-

1767.

M. Young, D. Lubans, C. Collins, R. Callister,

R. Plotnikoff, P. Morgan, ... & T. Burrows. 2014.

Behavioral interventions to reduce sedentary

behavior in children and adolescents: Systematic

review and meta-analyses. British Journal of

Sports Medicine, 48(3): 147-155.

M. Young, R. Plotnikoff, C. Collins, R.

Callister, P. Morgan. 2012. Social cognitive theory

and physical activity: A systematic review and

meta-analysis. Obesity Reviews, 13(12):, 1100-

1111.

FDA. Digital Health Guidance Documents,

https://www.fda.gov/medical-devices/digital-

health-center-excellence/guidances-digital-health-

content.

European Commission. 2016. General Data

Protection Regulation, https://eur-

lex.europa.eu/eli/reg/2016/679/oj.

U.S. Department of Health & Human Services.

2021. HIPAA for Professionals,

https://www.hhs.gov/hipaa/for-

professionals/index.html.

Proceedings of CLIB 2024

270

ISO. 2021. ISO/TS 22272:2021 Health

Informatics - Methodology for analysis of

business and information needs of health

enterprises to support standards based

architectures,

https://www.iso.org/standard/78905.html.

Y. Oh, J. Zhang, M. Fang, Y. Fokushida. 2021.

A systematic review of artificial intelligence

chatbots for promoting physical activity, healthy

diet, and weight loss. Int J Behav Nutr Phys Act,

18(160).

B. Sears. 2024. https://drsears.com/the-zone-

diet/.

A. Paoli. 2014. Ketogenic diet for obesity:

friend or foe?, Int. Journal of Environmental

Research and Public Health, 11(2): 2092-2107.

K. Varady. 2011. Intermittent versus daily

calorie restriction: Which diet regimen is more

effective for weight loss?, Obesity Reviews,

12(7): e593-e601.

R. Estruch, E. Ros, J. Salas-Salvadó, M. Covas,

D. Corella, F. Arós, ..., M. Martínez-González.

2018. Primary Prevention of Cardiovascular

Disease with a Mediterranean Diet Supplemented

with Extra-Virgin Olive Oil or Nuts. New England

Journal of Medicine, 378(25):e34.

M. McMacken, S. Shah. 2017. A plant-based

diet for the prevention and treatment of type 2

diabetes, Journal of Geriatric Cardiology,

14(5):342.

A. Rahmanti, H. Yang, B. Bintoro, A. Nursetyo,

M. Muhtar, S. Syed-Abdul, Y. Li. 2022. SlimMe a

Chatbot With Artificial Empathy for Personal

Weight Management: System Design and

Finding." Frontiers in Nutrition, 9:870775

S. Holmes, A. Moorhead, R. Bond, H. Zheng,

V. Coates, M. McTear. 2019. WeightMentor,

bespoke chatbot for weight loss maintenance:

Needs assessment & Development, 2019 IEEE

Int. Conference on BIBM, 2845-2851.

Proceedings of CLIB 2024

271

