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Abstract

Recent LLMs have demonstrated remarkable
performance in solving exam-like math word
problems. However, the degree to which
these numerical reasoning skills are effective
in real-world scenarios, particularly in expert
domains, is still largely unexplored. This
paper introduces DOCMATH-EVAL, a com-
prehensive benchmark specifically designed
to evaluate the numerical reasoning capabili-
ties of LLMs in the context of understanding
and analyzing specialized documents contain-
ing both text and tables. We conduct an ex-
tensive evaluation of 48 LLMs using Chain-
of-Thought and Program-of-Thought prompt-
ing techniques, aiming to comprehensively as-
sess the capabilities and limitations of existing
LLMs in DOCMATH-EVAL. We found that
even the current best-performing system (i.e.,
GPT-4o) still significantly lags behind human
experts in solving complex numerical reason-
ing problems grounded in long contexts. We
believe that DOCMATH-EVAL can serve as a
valuable benchmark for evaluating LLMs’ ca-
pabilities in solving challenging numerical rea-
soning problems within expert domains.

1 Introduction

Recent advancements in large language models
(LLMs) have attracted significant attention due
to their capabilities in solving a broad range of
tasks (OpenAI, 2023; AI@Meta, 2024), including
math word problems (MWPs) commonly found in
academic exams (Wang et al., 2017; Miao et al.,
2020; Amini et al., 2019; Cobbe et al., 2021;
Hendrycks et al., 2021; Cobbe et al., 2021; Lu
et al., 2023; Chen et al., 2023b). These MWPs vary
from basic arithmetic to advanced algebra, show-
casing LLMs’ proficiency in numerical reasoning
— a crucial skill for interpreting and manipulating
numerical data across various contexts. Despite

∗Equal Contributions.

First, we know from the table that  the values of debt in 2021 
and 2022 are xxx and xxx, respectively. We then calculate the 

(...abbreviate…) 
Therefore, the final answer is 17.3% 

Model Output with Chain-of-Thought Prompting:

def solution():
debt_2021 = 125

    debt_2022 = 278
 (…abbreviate)

 return answer

Model Output with Program-of-Thought Prompting:

….

What is the rate of increase in debt 
from 2021 to 2022? 

Figure 1: The overview of DOCMATH-EVAL and the
prompting methods explored. DOCMATH-EVAL eval-
uates the LLMs’ performance in the context of under-
standing and analyzing financial documents containing
both text and tables. The models are required to first
locate question-relevant data points within lengthy doc-
uments, and then apply numerical reasoning and spe-
cialized financial knowledge to answer the question.

this progress, there is still a significant gap in un-
derstanding the practicality of LLMs’ numerical
reasoning in real-world scenarios, particularly in
specialized fields such as finance, medicine, and
science. As illustrated in Figure 1, these expert
domains necessitate LLMs to interpret complex,
domain-specific documents, applying numerical

https://github.com/yale-nlp/DocMath-Eval
https://docmath-eval.github.io
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reasoning to complex problem-solving (Chen et al.,
2021; Zhu et al., 2021; Zhao et al., 2022; Li et al.,
2022b). Recognizing this gap, our research focuses
on the finance domain (Li et al., 2022a; Wu et al.,
2023a; Yang et al., 2023; Callanan et al., 2023; Xie
et al., 2024). The finance industry often deals with
lengthy and data-intensive documents that demand
advanced numerical reasoning skills for accurate
analysis and decision-making.

We introduce DOCMATH-EVAL, a comprehen-
sive and standardized benchmark that systemati-
cally evaluates the numerical reasoning capabilities
of LLMs in understanding and interpreting special-
ized documents containing both textual and tabular
data. DOCMATH-EVAL encompasses four eval-
uation sets, each with varying levels of difficulty
in numerical reasoning and document understand-
ing. Specifically, We construct a new evaluation
set, DMCompLong, from scratch, to examine the
LLM’s capabilities in performing complex numeri-
cal reasoning over extreme long documents contain-
ing multiple tables. We also adapt and re-annotate
four existing finance QA benchmarks to develop
three additional, less challenging evaluation sets: 1)
DMSimpShort based on TAT-QA (Zhu et al., 2021)
and FinQA (Chen et al., 2021), necessitates simple
numerical reasoning over short document with one
table; 2) DMSimpLong based on MultiHiertt (Zhao
et al., 2022), necessitates simple numerical rea-
soning over long document with multiple tables;
and 3) DMCompShort based on TAT-HQA (Li et al.,
2022b), necessitates complex numerical reasoning
over short document with one table.

We conduct an extensive evaluation on
DOCMATH-EVAL, covering a total of 48 propri-
etary and open-source LLMs from 17 organiza-
tions. Two prompting methods, Chain-of-Thought
(CoT) (Wei et al., 2022) and Program-of-Thought
(PoT) (Chen et al., 2023a), are applied for result
analysis. Our experimental results indicate that
while the existing best-performing LLM on aver-
age (i.e., GPT-4o) can achieve high performance
in simple settings (e.g., DMSimpShort), it still falls
short of human experts in more challenging ones,
i.e.,, DMCompLong. Moreover, Claude-3.5-Sonnet
outperforms other LLMs, achieving an accuracy
of 40.0% on the DMCompLong set when applying
CoT prompting. However, it still lags far behind
human expert performance, which stands at 76%.
This significant gap between LLMs and human
experts underscores the challenges presented by
DOCMATH-EVAL. It underscores the importance

of advancing LLMs’ numerical reasoning and doc-
ument understanding abilities to effectively apply
them in the real-world specialized domains.

We conclude our main contributions as follows:

• We introduce DOCMATH-EVAL, a comprehen-
sive benchmark designed to systematically eval-
uate LLMs’ numerical reasoning ability to un-
derstand and interpret long and specialized doc-
uments. This includes a newly developed, chal-
lenging evaluation set and three adapted evalua-
tion sets for varying difficulty levels.

• We conduct an extensive evaluation encompass-
ing a wide range of LLMs, including those spe-
cialized in math and coding. We also incorporate
different prompting methods (i.e., CoT and PoT)
to comprehensively assess the capabilities and
limitations of existing LLMs in our task.

• Our experimental results reveal a noticeable per-
formance gap compared to human experts in
more complex scenarios (i.e., problems requir-
ing complex numerical reasoning over long docu-
ments). This highlights the limitations of current
LLMs in complex real-world applications and
the need for continued advancements.

2 Related Work

Math Word Problems The research community
has shown significant interest in the vital role of
numerical reasoning skills in LLMs. These skills
are vital for models to effectively engage in com-
plex problem-solving. To this end, a wide variety
of MWP datasets have been proposed in recent
years (Hosseini et al., 2014; Koncel-Kedziorski
et al., 2016; Wang et al., 2017; Ling et al., 2017;
Cobbe et al., 2021). More challenging datasets
have recently been introduced to enhance diver-
sity (Miao et al., 2020), difficulty (Chen et al.,
2023b; Hendrycks et al., 2021), and adversarial
robustness (Patel et al., 2021). However, existing
MWP datasets predominantly focus on problems
akin to academic exams, with a limited emphasis
on real-world scenarios. Addressing this gap, our
paper introduces a novel and comprehensive bench-
mark designed to evaluate LLMs’ abilities in un-
derstanding and interpreting long and specialized
documents through numerical reasoning.

Numerical Reasoning over Documents Numer-
ical reasoning over documents requires models to
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Property (Median/Avg) DMSimpShort DMSimpLong DMCompShort DMCompLong (new)

Data Source
TAT-QA (Zhu et al., 2021) MultiHiertt TAT-HQA expert annotated
FinQA (Chen et al., 2021) (Zhao et al., 2022) (Li et al., 2022b) from scratch

Question Length 19 / 20.0 21 / 21.6 29 / 30.1 34 / 37.7

# Sentences in Text 14 / 16.9 64 / 66.9 6 / 7.8 535 / 752.3
# Words in Text 504 / 506.6 2,216 / 2,334.0 251 / 314.2 25,149 / 34,589.0

# Table 1 / 1.0 4 / 3.9 1 / 1.0 46 / 72.5
# Rows per Table 6 / 7.0 9 / 11.6 7 / 8.2 3 / 7.5
# Columns per Table 5 / 4.7 4 / 4.5 5 / 5.0 3 / 3.1

# Text Evidence 0 / 0.4 1 / 0.9 0 / 0.4 1 / 1.0
# Table Evidence 1 / 0.9 1 / 1.1 1 / 1.0 1 / 1.0
% Questions w. Table Evidence 92.9% 86.4% 97.8% 76.3%

# Math Operations in Python Solution 2 / 2.1 2 / 2.3 2 / 2.3 4 / 4.9
# Code Lines in Python Solution 5 / 5.3 6 / 5.9 5 / 5.3 8 / 8.2
# Comment Lines in Python Solution 2 / 2.0 2 / 2.0 2 / 2.0 2 / 3.4

Development set 200 100 200 300
Test set 800 400 800 1,200
Total Size 1,000 500 1,000 1,500

Table 1: Basic statistics of DOCMATH-EVAL dataset. Our newly constructed evaluation set, DMCompLong, poses
unique challenges in both numerical reasoning and financial document understanding.

have a deep understanding of context and the abil-
ity to derive answers through numerical reason-
ing (Dua et al., 2019). Applying these models in the
finance domain (Xie et al., 2023; Wu et al., 2023a;
Yang et al., 2023) presents additional challenges in
terms of interpreting hybrid data (Zhu et al., 2021)
and utilizing domain-specific expertise (Chen et al.,
2021; Zhao et al., 2024). Numerous datasets fo-
cusing on numerical reasoning over specialized
documents have been proposed recently. Two no-
table benchmarks are TAT-QA (Zhu et al., 2021)
and FinQA (Chen et al., 2021), which represent
pioneering efforts in studying numerical reasoning
in finance, particularly requiring the fusion of tab-
ular and textual content. Building upon TAT-QA,
a more challenging dataset named TAT-HQA (Li
et al., 2022b) was developed, focusing on counter-
factual questions in relation to the provided context.
Additionally, MultiHiertt (Zhao et al., 2022) fo-
cuses on numerical reasoning over longer financial
documents containing multiple tables. However,
as illustrated in Table 1, these four datasets focus
on less challenging scenarios, where either simple
numerical reasoning (e.g., calculating the increas-
ing rate or average value) is sufficient, or the input
context is short. Furthermore, there is a lack of a
standardized benchmark for systematically evaluat-
ing models’ performance across varying difficulty
levels in terms of numerical reasoning and docu-
ment understanding.

3 DOCMATH-EVAL

In this section, we first offer a formal definition
of the DOCMATH-EVAL task. We then explain
the rationale and methodology for adopting Python
program as the standardized solution format for
DOCMATH-EVAL. Subsequently, we detail the
data annotation process used to construct the chal-
lenging DMCompLong evaluation set, as well as the
data re-annotation process for compiling the other
three evaluation sets. Table 7 in the Appendix
presents the profiles of the seven annotators in-
volved. Finally, we present human-level perfor-
mance on each evaluation set in DOCMATH-EVAL.

3.1 Task Formulation
We formally define the task of DOCMATH-EVAL in
the context of LLMs as follows: Presented with a
numerical reasoning question q and a financial doc-
ument consisting of textual contents E and struc-
tured tables T , the task is to generate the numeric-
value answer a:

â = argmax
a

PLM(a | q, E, T ) (1)

To obtain the best candidate answer â, we use
greedy decoding in all our LLM evaluations.

3.2 Solution Format Standardization
We observe that existing finance QA datasets fea-
ture solutions in various formats. Specifically, TAT-
QA (Zhu et al., 2021) and TAT-HQA (Li et al.,
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2022b) utilize text, while MultiHiertt (Zhao et al.,
2022) employs mathematical expressions, such as
100/3, and FinQA (Chen et al., 2021) uses math
programs, such as divide(100,3), for solution
annotations. This diversity in annotation formats
hinders the development of a unified evaluation
framework to assess LLM performance across dif-
ferent benchmarks. Additionally, text-based solu-
tions often fall short in precision and clarity, mak-
ing them less suitable for computational problem-
solving; and the solutions presented as mathemati-
cal equations or programs can be less descriptive,
with the intended semantic meaning of the equa-
tions sometimes being unclear.

To overcome the aforementioned limitations, in
DOCMATH-EVAL, we represent solutions using
Python programs (Zhao et al., 2024). Such a uni-
fied Python program format supports a standard-
ized and effective evaluation framework for LLM
assessment. Specifically, annotators are instructed
to initially define variables at the start of the Python
function, beginning with “def solution():”.
These variables should align with the primary el-
ements or quantities referenced in the question or
relevant content in the documents. They then write
a Python program that methodically address the
problem, solving it step by step. Additionally, an-
notators receive a bonus for writing detailed com-
ments, thereby enhancing the code’s readability
and understandability. To verify the correctness
and performance of the solutions, our annotation
interface automatically runs the Python function.
This process checks that the output is either a float
or int and ensures that the execution finishes with-
out any errors.

3.3 Data Re-Annotation From Public Datasets

We re-annotate four existing datasets and incor-
porate them into DOCMATH-EVAL. Specifically,
we re-annotate TAT-QA (Zhu et al., 2021) and
FinQA (Chen et al., 2021) for DMSimpShort, Mul-
tiHiertt (Zhao et al., 2022) for DMSimpLong, and
TAT-HQA (Li et al., 2022b) for DMCompShort.

Question Validation and Re-annotation We in-
struct the annotators to identify and remove ques-
tions with incorrect annotations or those whose
answers are not numerical. Annotators are then
asked to enhance each question by adding a scale
descriptor to ensure clarity and specificity. For ex-
ample, "Question: What is the average payment
volume per transaction for American Express? (in

billions)". They were also asked to correct any
identified errors in the original questions.

Solution Validation and Re-annotation As out-
lined in Section 3.2, we require annotators to
rewrite the original solutions into a unified Python
format, standardizing variable names and adding
comments to enhance the readability of the solu-
tions. Regarding the supporting evidence anno-
tation, we initially convert the original evidence
annotations to our format. We then highlight these
evidences in the annotation interface, and direct
annotators to verify their correctness.

3.4 Data Annotation From Scratch

In real-world scenarios, financial professionals typ-
ically need to handle documents spanning tens of
pages, along with problems that require more com-
plex numerical reasoning combined with financial
knowledge. However, as previously discussed, ex-
isting benchmarks (Zhu et al., 2021; Chen et al.,
2021; Zhao et al., 2022; Li et al., 2022b) focus on
less challenging scenarios, where either simple nu-
merical reasoning is sufficient, or the input context
is short. To bridge this gap, we have developed
a new, challenging evaluation set, DMCompLong,
from scratch. This set focuses on settings that more
closely align with real-world scenarios, where mod-
els are required to perform complex numerical rea-
soning over long financial documents for problem
solving. The annotation process is as follows:

Source Document Collection Following previ-
ous work (Zhu et al., 2021; Chen et al., 2021; Zhao
et al., 2022), we use the quarterly (i.e., Form 10-Q)
and annual reports (i.e., Form 10-K) of companies
as our source documents, which are publicly avail-
able at the open-source database1 of U.S. Securi-
ties and Exchange Commission. After collecting
all the source documents, we utilize a commercial
API2 to extract their textual and tabular content.
Subsequently, we apply a heuristic-based method
to preprocess these two formats of content. The
preprocessed documents are then passed to expert
annotators for question annotation.

Data Annotation Given a financial document,
annotators are first required to briefly read its con-
tent and determine the data points to be used in
the question. They must then compose the ques-
tion and highlight the selected paragraphs or ta-

1https://www.sec.gov/edgar/search/
2https://sec-api.io/

https://www.sec.gov/edgar/search/
https://sec-api.io/


16107

bles as evidence supporting it. Finally, the annota-
tors are required to write down the solution to the
question in Python program format, as discussed
in Section 3.2. We set up a bonus payment sys-
tem for complex annotations that involve difficult
document comprehension and numerical reasoning.
Specifically, to increase the difficulty of document
understanding, we award bonuses to annotators
for questions that necessitate information from: 1)
multiple tables, 2) multiple sections, or 3) a com-
bination of tables and textual content. To enhance
the challenge in numerical reasoning, we provide
bonuses for questions requiring financial expertise
or involving complex mathematical operations. If
such annotations are validated during the quality
validation stage, a bonus payment will be added.

Quality Validation We implement a compre-
hensive quality validation protocol to ensure that
each annotated example meets the required stan-
dards. For every question annotation, we as-
sign it to another annotator, recognized for their
high performance in annotation, to verify its ac-
curacy. This process involves manually locating
the question-relevant evidence in the documents
using our retrieval-based search toolkits. They then
compare this evidence with the original annota-
tions and correct any errors found. Additionally,
validators are tasked with confirming the accuracy
of the annotated solutions. We offer bonus pay-
ments to annotators for identifying erroneous anno-
tations. Ultimately, 232 of the annotated questions
are flagged as erroneous and are subsequently re-
vised. Table 6 in the Appendix presents the human
evaluation scores and inter-evaluator agreements
for a subset of 200 sampled examples. DOCMATH-
EVAL exhibits superior annotation quality and a
high degree of inter-annotator agreement.

3.5 Expert-level Performance Evaluation

To give a general yet insightful estimate of the per-
formance on each of the DOCMATH-EVAL sets,
we enlisted two professionals who hold Chartered
Financial Analyst licenses to conduct the evalu-
ation. Regarding human expert performance on
DMSimpShort and DMSimpLong, we report the same
results as those in the original papers, with accuracy
of 91% and 87%, respectively. For DMCompShort
and DMCompLong, We randomly sample 25 exam-
ples from each set, asking the expert evaluators
to answer the questions individually within a four-
hour period. They achieve accuracy of 88% and

Figure 2: Example of zero-shot CoT prompt used.

80% on DMCompShort (average 84%); and accuracy
of 72% and 80% on DMCompLong (average 76%).

3.6 Dataset Release

Table 1 presents the data statistics of four developed
evaluation sets. DOCMATH-EVAL contains a total
of 4,000 questions with high-quality annotations,
featuring varying difficulty levels in numerical rea-
soning and document understanding. We randomly
partitioned the dataset into two subsets: testmini
and test. The testmini subset includes 800 examples
and is intended for model development and vali-
dation. The test subset consists of the remaining
3,200 examples, which are reserved for standard
evaluation. To avoid data contamination (Deng
et al., 2024), the features directly related to the
ground truth for the test set are kept private. In-
stead, we have developed and manage an online
evaluation platform, where researchers can assess
models and participate in a leaderboard.

4 Experiment Setup

This section discusses the experiment setup, includ-
ing the evaluated LLMs, prompting methods, and
our implementation details.

4.1 Evaluated Large Language Models

Our goal is to investigate the capabilities of current
state-of-the-art LLMs on DOCMATH-EVAL to bet-
ter understand their strengths and limitations. To
this end, we evaluate a wide range of models, in-
cluding 32 general-purpose LLMs, 4 math-specific
LLMs, 6 code-based LLMs, and 7 mixture of ex-
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perts (MoE) models. The specific details of each
evaluated LLM, including the exact version used,
can be found in Table 8 in the Appendix.

4.2 Prompting Methods

Following recent works on LLM reasoning bench-
marks (Lu et al., 2024; Chen et al., 2023b), we
evaluate two commonly used prompting methods
for math reasoning:

Chain-of-Thought The CoT method (Wei et al.,
2022) instructs the LLMs to explicitly outline their
reasoning process step by step before arriving at
the final answer. Figure 2 presents the CoT prompt
used in our experiment.

Program-of-Thought The PoT method (Chen
et al., 2023a) separates computation from the rea-
soning process by instructing the LLMs to produce
a structured program that encapsulates the reason-
ing steps. The final answer is obtained by execut-
ing the generated program. Figure 3 in Appendix
presents the PoT prompt we used.

4.3 Implementation Details

LLM Experiment The experiments involving
open-sourced LLMs were conducted using the
vLLM framework (Kwon et al., 2023). In all the
experiments, we used a temperature setting of 1.0
and maximum output length of 512. Given the
extensive context length of input document, the
main evaluation of DOCMATH-EVAL is conducted
under a zero-shot setting, aiming to assess LLMs’
capabilities to generate accurate answers without
few-shot demonstrations or additional training.

Input Tabular Data Serialization Building on
previous work that evaluated LLMs on table-
relevant tasks (Chen, 2023; Zhao et al., 2023a,b),
we present our method for processing tabular data
in documents. Specifically, we separate headers or
cells in different columns using a vertical bar (|),
and rows using a newline. This approach allows
for the direct feeding of flattened table input into
LLMs. In our preliminary study, we found that
most LLMs can comprehend these table formats
well. Nevertheless, we believe that future research
could explore more effective methods for encoding
tabular data (Fang et al., 2024).

RAG-based Setting for DMCompLong For the
DMCompLong subset, the input document length is
extremely long and exceeds the context length limit

of evaluated LLMs. Therefore, in our main experi-
ments with DMCompLong, we evaluate models using
the retrieval-augmented generation (RAG) setting.
In this setting, external retrievers are employed to
extract the top-n most relevant textual and tabular
evidence from the source document. We maintain
the original relative order of the evidence and input
it into the LLMs to answer the given question. We
experiment with commonly-used sparse retriever,
i.e., BM25 (Robertson et al., 1995), and three dense
retrievers, including OpenAI Embedding 3 small
& large versions (Neelakantan et al., 2022) and
Contriever (Izacard et al., 2022).

Final Answer Extraction For LLMs using CoT
prompting, we adopt the answer extraction process
from Chen et al. (2023b) and Lu et al. (2024) to ex-
tract the final answer from the model’s output. For
LLMs employing PoT prompting, we first develop
a heuristic method to extract the generated python
solution from the model response. We then execute
it to obtain the final answer.

5 Results and Analysis

We next discuss our main findings from the experi-
ments and our analysis of the DMCompLong subset.

5.1 Main Results

Table 2 and Table 9 in the Appendix present the
LLM performance on the DOCMATH-EVAL test-
mini and test sets, respectively.

While the current best-performing LLM, GPT-
4o, achieves performance comparable to human ex-
perts in simple problem settings (i.e., DMSimpShort
and DMCompShort), we find significant perfor-
mance gaps in more challenging settings. Specif-
ically, GPT-4o achieves an accuracy of 41.0% on
DMCompLong with PoT, which is far behind the hu-
man expert performance of 76.0%. This under-
scores the need for ongoing LLM development, par-
ticularly in complex problem-solving over long and
specialized documents. Most open-source LLMs
still lag behind the proprietary LLMs. However, the
two DeepSeek-V2-* models come close to match-
ing the performance of the leading proprietary mod-
els. The DeepSeek-V2 even outperforms GPT-4o
on the DMCompLong subset. This suggests that open-
source LLMs have the potential to bridge the per-
formance gap with the leading proprietary models
in the near future.

The code-specific and proprietary LLMs gener-
ally perform as well as or better with PoT prompt-
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Model Size Notes DMSimpShort DMCompShort DMSimpLong DMCompLong Avg. Acc

PoT CoT PoT CoT PoT CoT PoT CoT PoT CoT

Human Expert 91.0 87.0 84.0 76.0

Proprietary LLMs
GPT-4o 84.0 86.0 69.5 76.5 56.0 64.0 41.0 36.7 60.8 62.4
GPT-4-Turbo 85.5 82.5 80.0 81.0 56.0 53.0 38.7 38.3 62.9 61.9
Claude-3-Opus 80.5 79.5 73.5 77.5 51.0 61.0 42.0 39.7 60.6 61.8
Claude-3.5-Sonnet 78.0 77.0 76.0 69.5 54.0 61.0 44.0 40.0 61.8 59.2
Claude-3-Sonnet 82.5 80.0 80.5 73.0 55.0 56.0 40.3 35.3 62.7 58.5
Gemini-1.5-Flash 85.0 78.0 78.5 69.5 55.0 46.0 40.0 31.7 62.8 54.5
Gemini-1.5-Pro 85.5 80.5 80.0 58.0 58.0 55.0 40.3 30.0 63.7 52.8
Claude-3-Haiku 74.5 79.0 71.5 58.5 55.0 50.0 36.7 31.7 57.1 52.5
GPT-4o-Mini 88.5 69.5 77.0 69.5 53.0 56.0 38.7 28.0 62.5 52.2
GPT-3.5-Turbo 71.0 60.5 52.5 39.0 41.0 28.0 28.7 15.0 46.8 34.0

Open-source LLMs
DeepSeek-V2 236B MoE 87.0 82.0 75.5 69.5 61.0 56.0 43.0 39.7 64.4 59.8
Mistral-Large 123B 85.0 83.5 76.5 81.0 56.0 55.0 41.0 31.3 62.8 59.7
DeepSeek-Coder-V2 236B Code, MoE 85.0 79.0 78.0 66.5 56.0 54.0 41.0 37.7 63.1 57.3
Llama-3.1 70B 74.5 76.5 68.0 71.0 53.0 50.0 34.7 29.3 55.3 54.1
Qwen2 72B 26.5 74.0 24.5 72.5 8.0 45.0 7.0 27.0 16.4 52.4
Llama-3 70B 84.5 73.5 64.0 63.5 52.0 42.0 41.0 28.3 59.0 50.1
Mixtral-8x22B 141B MoE 30.0 74.0 21.5 57.0 25.0 47.0 14.7 24.0 21.5 47.6
Gemma-2 9B 79.0 66.5 65.0 54.5 50.0 39.0 24.3 17.7 51.4 41.8
DeepSeek-Coder-V2-Lite 16B Code 66.0 67.5 51.0 53.5 27.0 30.0 22.0 20.3 40.9 41.6
WizardLM-2 141B MoE 62.5 60.5 56.5 55.5 25.0 34.0 17.7 18.0 39.5 40.0
C4AI Command R+ 104B 35.5 65.5 39.0 51.0 19.0 31.0 8.7 18.3 24.3 39.9
Yi-1.5 9B 18.0 68.5 24.5 56.0 2.0 14.0 4.0 14.0 12.4 38.1
Yi-1.5 34B 0.5 64.5 1.0 53.0 0.0 14.0 0.0 15.3 0.4 36.9
Mistral-Nemo 12B 52.5 59.5 37.5 44.0 28.0 37.0 15.3 16.7 31.7 36.8
Llama-3.1 8B 62.0 60.0 44.0 42.5 32.0 33.0 19.0 14.3 37.6 35.1
DBRX 132B MoE 41.0 57.0 29.5 43.0 32.0 30.0 12.0 16.3 26.1 34.9
Codestral 22B Code 39.0 51.5 38.5 41.5 18.0 23.0 17.3 13.0 28.1 31.0
Llama-3 8B 49.5 56.5 21.5 31.0 24.0 29.0 10.0 12.3 24.5 30.1
Qwen2 7B 13.0 56.0 9.5 33.0 4.0 31.0 2.3 10.0 7.0 29.9
Mathstral 7B Math 43.5 55.0 32.5 35.0 10.0 23.0 11.3 11.7 24.5 29.8
GLM-4 9B 69.5 44.0 53.5 34.0 33.0 20.0 17.7 8.7 41.5 25.3
Aya-23 35B 1.5 44.0 1.0 25.5 0.0 20.0 0.0 11.7 0.6 24.3
DeepSeek-V2-Lite 16B MoE 7.0 45.5 3.5 18.0 1.0 17.0 1.0 10.3 3.1 21.9
Mixtral-8x7B-v0.1 46B MoE 0.5 39.0 2.0 17.0 0.0 25.0 0.0 12.7 0.6 21.9
DeepSeek-Math 7B Math 2.0 46.0 1.0 27.0 1.0 4.0 0.3 8.0 1.0 21.8
Llama-2 70B 32.5 43.5 16.5 25.0 1.0 8.0 2.0 7.0 13.1 20.8
WizardLM-2 7B 47.0 42.0 30.5 28.5 5.0 6.0 7.3 5.7 22.7 20.5
Mistral-v0.3 7B 49.5 40.0 40.5 28.0 25.0 9.0 11.3 5.7 29.9 20.3
WizardMath 7B Math 22.5 32.0 12.0 22.5 6.0 7.0 3.7 3.3 10.8 15.7
InternLM2-Math-Plus 7B Math 28.5 27.5 15.0 14.0 7.0 9.0 4.7 4.0 13.5 13.0
StarCoder2 15B Code 47.5 21.0 34.0 15.5 11.0 6.0 8.3 4.3 24.9 11.5
InternLM2 7B 18.0 20.0 4.5 11.0 9.0 10.0 2.7 2.3 7.8 9.9
Gemma-1 7B 1.0 20.0 0.0 7.5 0.0 7.0 0.0 3.3 0.2 9.0
Llama-2 7B 4.0 17.0 4.0 11.5 0.0 2.0 1.3 2.7 2.5 8.4
DeepSeek-Coder-V1 33B Code 19.0 18.5 8.5 8.5 2.0 2.0 3.7 1.7 8.5 7.6
WizardCoder 33B Code 32.5 16.0 17.5 8.0 5.0 2.0 5.0 1.0 15.0 6.6
Aya-23 8B 1.0 13.0 0.0 9.0 0.0 2.0 0.3 2.3 0.4 6.6
Gemma-1 2B 4.0 8.0 1.5 7.5 0.0 2.0 0.0 0.0 1.4 4.1

Table 2: LLM performance on the testmini set of DOCMATH-EVAL. We utilize the average accuracy achieved
through CoT prompting as the metric for ranking model performance. For DMCompLong, we use the OpenAI
Embedding 3 Large retriever to retrieve top-10 evidence as input document. Numbers underlined indicate that
models using PoT prompting outperform those using CoT prompting.

ing compared to CoT prompting. This is likely
because LLMs are prone to making errors during
complex mathematical computations, as revealed
in concurrent work (Zhao et al., 2024). Addition-
ally, for math-specific LLMs, InternLM2-Math-
Plus outperforms its base model in CoT perfor-
mance, with average accuracy rising from 9.9% to
13.0%. This highlights the impact of instruction-
tuning in improving math reasoning abilities.

5.2 Analysis on DMCompLong Set

We next conduct a detailed analysis of the RAG set-
ting, long-context LLMs, and model failure cases.

RAG Analysis We analyze the impact of re-
triever performance on the final accuracy of RAG-
based LLM systems by selecting the Llama-3-70B
and GPT-4o models for our study. As demonstrated
in Table 3, the OpenAI Embedding-3 significantly
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top-n Retriever R@n Llama-3 GPT-4o

3

Contriever 22.3 13.7 16.0
BM25 29.5 13.7 15.7
Embedding-3-Small 44.7 19.0 24.0
Embedding-3-Large 48.2 22.0 27.0

5

Contriever 32.0 15.3 22.0
BM25 38.0 15.3 20.7
Embedding-3-Small 57.1 21.0 29.0
Embedding-3-Large 62.0 24.0 32.7

10

Contriever 45.3 18.3 25.7
BM25 47.9 20.3 23.0
Embedding-3-Small 71.2 25.3 31.7
Embedding-3-Large 75.8 26.3 36.7

– Oracle 35.3 42.0

Table 3: Results of the Llama-3-70B and GPT-4o with
CoT prompting approaches under various retrieval set-
tings on the DMCompLong testmini set. A correlation is
observed between LLM performance and the question-
relevance of the retrieved evidence.

Model RAG Long Context

GPT-4o 36.7 40.3
Gemini-1.5-Pro 30.0 37.3
Claude-3-Sonnet 35.3 34.7
Gemini-1.5-Flash 31.7 34.3
Claude-3-Haiku 31.7 31.0

DeepSeek-V2 39.7 38.7
DeepSeek-Coder-V2 37.7 36.0
Llama-3.1-70B 29.3 26.3
Llama-3.1-8B 14.3 9.0
Mistral-Nemo 16.7 4.7
Phi-3-Medium 12.7 13.0
GLM-4-9B 8.7 9.7

Table 4: Results of the CoT prompting approach under
various retrieval settings on DMCompLong testmini set.

outperforms Contriever and BM25. Additionally,
improved retriever performance consistently boosts
the final accuracy of the models in our task. These
results highlight the need for future work to develop
more advanced information retrieval techniques for
enhancing complex problem-solving over long and
specialized documents.

Long-Context LLM Analysis In addition to
using RAG for analyzing long specialized doc-
uments, recent advancements have extended the
input length of LLMs to handle lengthy docu-
ments (Su et al., 2023). We compare models with
a context length limit of over 100K under both
the RAG (as used in the main results) and Long-
Context settings, where the entire document is in-
put. As illustrated in Table 4, the evaluated models

Error Type Explanation

Inaccurate Evi-
dence Retrieval
(39 / 100)

The challenge lies in finding accu-
rate evidence, especially in situa-
tions where the values needed for
intermediate reasoning steps are
not explicitly stated. This makes it
difficult for the retriever to identify
the correct evidence.

Calculation Error
(28 / 100)

The reasoning process is accurate,
but there are errors in the interme-
diate or final computations.

Table Misunder-
standing
(16 / 100)

The model faces challenges in
comprehending and parsing cell
values, particularly in complex ta-
bles.

Exceeding Context
Length (8 / 100)

The input document exceeds the
context length limit.

Others

Table 5: Error types and explanations of GPT-3.5-turbo
failure cases on the DMCompLong testmini set.

generally achieve close performance under RAG
and long-context settings. This indicates that mod-
els with extended context lengths can effectively
process lengthy inputs without a significant drop in
performance compared to the RAG setting.

Error Analysis To better understand the
strengths and weaknesses of LLMs, we conduct
an extensive error analysis. This analysis focuses
on 100 randomly selected examples from the
DMCompLong testmini set where GPT-3.5-turbo
failed. We identify four common types of errors
in current LLMs: inaccurate evidence retrieval,
calculation errors, table misunderstandings, and
exceeding context length. A detailed explanation
for each type is provided in Table 5.

6 Conclusion

This paper introduces DOCMATH-EVAL, a compre-
hensive benchmark designed to evaluate the capa-
bilities of LLMs in numerical reasoning over long
and specialized documents. Our experiments show
that even the best-performing current models still
fall short of human expert performance on prob-
lems requiring complex reasoning over extended
contexts. This highlights the need for future re-
search to improve LLMs’ proficiency in complex
numerical reasoning tasks within expert domains.
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Limitations

There are some limitations in our study that we
believe can be addressed in future work. First,
our approach to extracting the final answer from
the model’s output is not yet flawless. In certain
instances, this method fails to accurately identify
the answer, causing the reported accuracy to be an
approximate lower limit. Additionally, we suggest
that future research could investigate training large
language models (LLMs) on finance-specific data
to improve their performance on the DOCMATH-
EVAL benchmark (Wu et al., 2023b; Luukkonen
et al., 2023; Xie et al., 2023).
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A Appendix

Annotation Quality %S ≥ 4

Question Fluency 97.4
Question Correctness 96.0

Evidence Relevance 88.5
Evidence Completeness 91.3

Final Answer Correctness 97.9
Python Solution Correctness 97.6
Variable Value Correctness 98.5
Python Solution Conciseness 89.1
Variable Name Meaningfulness 95.4

Table 6: Human evaluation was conducted on 200 sam-
ples from DOCMATH-EVAL, with three internal review-
ers asked to rate each sample on a scale from 1 to 5.
We present the percentage of samples that received an
average score of 4 or higher, as an indicator of the anno-
tation quality of DOCMATH-EVAL.

Figure 3: Example of zero-shot PoT prompt used.
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Annotator ID Finance Industry Experience Annotation Sets

1 1 working and 1 internship at US New subset, Annotation validation
2 >= 2 internship at US New subset, Annotation validation
3 1 working at Singapore and 2 internship at US New subset
4 2 working and >= 1 internship at US New subset
5 1 internship at US, 2 internship at China Re-annotation on three subsets, Annotation validation
6 Graduate student majored in computer science Re-annotation on three subsets, Annotation validation
7 Graduate student majored in statistics Re-annotation on three subsets

Table 7: Details of annotators involved in dataset construction.

Organization Model Size Notes Source

OpenAI
GPT-4-Turbo – gpt-4o-2024-05-13

GPT-4o – gpt-4-turbo-2024-04-09

GPT-3.5-Turbo – gpt-3.5-turbo-0125

Anthropic

Claude-3.5-Sonnet – claude-3-5-sonnet-20240620

Claude-3-Opus – claude-3-opus-20240229

Claude-3-Sonnet – claude-3-sonnet-20240229

Claude-3-Haiku – claude-3-haiku-20240307

Google
Gemini-1.5-Pro – gemini-1.5-pro

Gemini-1.5-Flash – gemini-1.5-flash

Alibaba Qwen2 7 & 72B Qwen/Qwen2-*B-Instruct

Meta
Llama-2 7 & 70B meta-llama/Llama-2-*b-chat-hf

Llama-3 8 & 70B meta-llama/Meta-Llama-3-*B-Instruct

Llama-3.1 8 & 70B & 405B meta-llama/Meta-Llama-3.1-*B-Instruct

Google
Gemma-1 2 & 7B google/gemma-b-it

Gemma-2 9B google/gemma-2-9b-it

Mistral AI

Mistral-v0.3 7B mistralai/Mistral-7B-Instruct-v0.3

Mistral-Nemo 12B mistralai/Mistral-Nemo-Instruct-2407

Mistral-Large 123B mistralai/Mistral-Large-Instruct-2407

Mathstral 7B Math-Specific mistralai/Mathstral-7B-v0.1

Mixtral 46 & 141B MoE mistralai/Mixtral-Instruct-v0.1

Codestral 22B Code-Specific mistralai/Codestral-22B-v0.1

DeepSeek

DeepSeek-Math 7B Math-Specific deepseek-ai/deepseek-math-7b-instruct

DeepSeek-Coder-V1 33B Code-Specific deepseek-ai/deepseek-coder-33b-instruct

DeepSeek-V2 16 & 236B MoE deepseek-ai/DeepSeek-V2-*-Chat

DeepSeek-Coder-V2 16 & 236B Code-Specific, MoE deepseek-ai/DeepSeek-Coder-V2-*-Instruct

01 AI Yi-1.5 9 & 34B 01-ai/Yi-1.5-34B-Chat

Microsoft
Phi-3-Medium 14B microsoft/Phi-3-medium-4k-instruct

Phi-3-Mini 3B microsoft/Phi-3-mini-4k-instruct

THUDM GLM-4 9B THUDM/glm-4-9b-chat

Databricks DBRX 132B MoE databricks/dbrx-instruct

Cohere C4AI Command R+ 104B CohereForAI/c4ai-command-r-plus

Aya-23 8 & 35B CohereForAI/aya-23-*B

InternLM
InternLM2 7B internlm/internlm2-chat-7b

InternLM2-Math-Plus 7B Math-Specific internlm/internlm2-math-plus-7b

WizardLM Team

WizardLM-2 7B lucyknada/microsoft_WizardLM-2-7B

WizardMath 7B Math-Specific WizardLMTeam/WizardMath-7B-V1.1

WizardCoder 33B Code-Specific WizardLMTeam/WizardCoder-33B-V1.1

WizardLM-2 (MoE) 141B MoE alpindale/WizardLM-2-8x22B

BigCode StarCoder2 15B Code-Specific bigcode/starcoder2-15b-instruct-v0.1

Table 8: Details of the LLMs evaluated in this study.
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Model Size Notes DMSimpShort DMCompShort DMSimpLong DMCompLong Avg. Acc

PoT CoT PoT CoT PoT CoT PoT CoT PoT CoT

Human Expert 91.0 87.0 84.0 76.0

Proprietary LLMs
GPT-4-Turbo 88.9 86.2 78.6 77.8 31.5 61.2 20.2 35.6 53.4 62.0
GPT-4o 87.0 86.4 69.6 75.9 62.2 66.2 41.5 31.7 62.5 60.7
Claude-3.5-Sonnet 87.2 81.8 71.0 70.0 65.0 61.5 40.8 31.5 63.0 57.4
GPT-4o-Mini 88.8 76.0 77.2 72.4 56.8 50.2 36.9 29.2 62.4 54.3
Gemini-1.5-Pro 87.9 82.5 80.4 58.4 63.0 58.0 41.8 31.2 65.6 54.2
Claude-3-Haiku 77.8 82.2 72.4 61.5 55.0 53.2 34.6 30.8 57.4 54.2
Gemini-1.5-Flash 87.9 80.5 79.9 67.0 60.5 53.8 38.9 28.1 64.1 54.1
GPT-3.5-Turbo 75.6 64.0 47.6 34.2 46.2 38.8 23.2 13.2 45.3 34.3

Open-source LLMs
Mistral-Large 123B 87.9 85.0 74.4 79.8 58.8 58.8 37.2 30.6 61.8 60.0
DeepSeek-V2 236B MoE 88.9 86.1 76.9 66.6 58.2 57.2 40.2 32.0 63.8 57.3
DeepSeek-Coder-V2 236B Code, MoE 88.2 80.9 74.9 67.2 56.8 54.8 37.5 31.5 61.9 55.7
Llama-3.1 70B 81.0 80.1 65.8 70.8 49.2 53.8 32.1 26.6 54.9 54.4
Qwen2 72B 27.8 77.5 25.0 70.1 16.8 49.0 5.7 25.1 17.4 52.4
Llama-3 70B 86.2 80.9 64.8 62.0 51.5 45.0 35.0 26.3 57.3 51.2
Mixtral-8x22B 141B MoE 27.4 74.9 23.1 59.4 21.5 46.8 14.8 22.3 20.9 47.8
DeepSeek-Coder-V2-Lite 16B Code 68.8 71.4 52.2 44.9 28.8 35.0 18.0 19.8 40.6 40.9
Gemma-2 9B 82.0 70.1 62.4 49.2 45.5 33.2 24.4 17.7 50.9 40.6
Yi-1.5 34B 1.0 71.2 0.9 58.2 0.2 17.8 0.2 13.7 0.6 39.7
C4AI Command R+ 104B 37.6 67.5 36.5 50.6 19.2 35.0 7.6 15.1 23.8 39.6
WizardLM-2 141B MoE 62.1 59.4 49.5 47.6 31.2 36.0 19.0 16.1 38.9 37.3
DBRX 132B MoE 46.8 64.0 33.1 41.5 26.5 29.8 10.7 18.4 27.3 37.0
Mistral-Nemo 12B 51.1 66.0 32.1 40.5 29.0 37.0 15.7 15.0 30.3 36.9
Yi-1.5 9B 23.2 69.5 17.4 45.0 1.2 15.0 2.2 11.9 11.1 35.0
Llama-3.1 8B 66.5 63.0 41.9 34.1 35.5 35.5 14.7 13.8 37.0 33.9
Codestral 22B Code 43.1 58.0 36.8 37.2 25.0 29.5 14.2 14.0 28.4 32.8
Llama-3 8B 51.6 57.8 22.8 31.2 22.5 25.0 9.3 11.5 24.9 29.7
Mathstral 7B Math 45.8 54.4 31.1 34.0 11.0 24.0 9.1 11.7 24.0 29.5
Qwen2 7B 15.4 52.6 6.6 33.2 4.2 29.0 2.6 11.4 7.0 29.4
GLM-4 9B 68.0 48.8 46.5 32.1 32.5 22.8 18.2 11.1 39.5 27.2
Aya-23 35B 0.9 46.9 0.5 26.5 0.0 19.5 0.5 10.1 0.5 24.6
Mixtral-8x7B-v0.1 46B MoE 1.1 42.5 0.4 19.6 0.2 24.2 0.2 13.0 0.5 23.4
DeepSeek-Math 7B Math 1.4 47.1 0.4 28.0 1.2 12.5 0.5 7.9 0.8 23.3
Mistral-v0.3 7B 48.6 40.8 28.5 24.8 19.5 18.0 12.8 7.6 26.5 21.5
DeepSeek-V2-Lite 16B MoE 7.6 49.1 4.6 16.9 2.5 15.2 1.0 8.3 3.7 21.5
Llama-2 70B 27.1 45.1 16.8 26.0 2.0 8.0 1.1 6.9 11.6 21.4
WizardLM-2 7B 47.0 42.6 31.2 31.2 9.2 8.5 7.2 4.8 23.4 21.3
WizardMath 7B Math 22.1 34.2 14.4 24.8 5.8 6.2 3.4 4.6 11.1 17.2
InternLM2-Math-Plus 7B Math 30.0 30.2 15.0 16.2 10.8 11.2 4.2 3.3 14.2 14.3
StarCoder2 15B Code 51.0 29.8 32.0 16.8 9.5 5.2 8.4 3.0 25.1 13.4
InternLM2 7B 17.4 24.5 9.4 11.8 9.0 6.8 2.9 4.3 8.9 11.5
Gemma-1 7B 0.5 23.2 0.2 6.0 0.0 7.8 0.2 3.2 0.3 9.5
Llama-2 7B 5.6 20.4 2.4 11.8 1.0 3.2 0.4 2.2 2.3 9.3
WizardCoder 33B Code 38.4 19.9 17.5 8.4 7.2 3.2 6.1 1.8 17.2 8.2
Aya-23 8B 0.5 14.2 0.1 8.5 0.0 2.8 0.0 2.2 0.2 6.8
DeepSeek-Coder-V1 33B Code 19.4 16.2 8.5 6.6 3.2 2.2 3.6 1.2 8.7 6.4
Gemma-1 2B 5.9 9.1 2.5 6.0 0.8 2.8 0.2 1.0 2.3 4.5

Table 9: Results of Chain-of-Thought and Program-of-Thought prompting on the test set of DOCMATH-EVAL. We
use average Accuracy using CoT prompting as the ranking indicator of model performance. For DMCompLong, we
use the OpenAI Embedding 3 Large retriever to retrieve top-10 evidence as input document. Numbers underscored
indicate that models with PoT prompting achieves better results than with CoT prompting.
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