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Abstract

Words of Estimative Probability (WEP) are
phrases used to express the plausibility of a
statement. Examples include terms like proba-
bly, maybe, likely, doubt, unlikely, and impossi-
ble. Surveys have shown that human evaluators
tend to agree when assigning numerical prob-
ability levels to these WEPs. For instance, the
term highly likely equates to a median proba-
bility of 0.90±0.08 according to a survey by
Fagen-Ulmschneider (2015). In this study, our
focus is to gauge the competency of neural lan-
guage processing models in accurately captur-
ing the consensual probability level associated
with each WEP. Our first approach is utilizing
the UNLI dataset (Chen et al., 2020), which
links premises and hypotheses with their per-
ceived joint probability p. From this, we craft
prompts in the form: "[PREMISE]. [WEP],
[HYPOTHESIS]." This allows us to evaluate
whether language models can predict if the
consensual probability level of a WEP aligns
closely with p. In our second approach, we
develop a dataset based on WEP-focused prob-
abilistic reasoning to assess if language mod-
els can logically process WEP compositions.
For example, given the prompt "[EVENTA]
is likely. [EVENTB] is impossible.", a well-
functioning language model should not con-
clude that [EVENTA&B] is likely. Through
our study, we observe that both tasks present
challenges to out-of-the-box English language
models. However, we also demonstrate that
fine-tuning these models can lead to significant
and transferable improvements.

1 Introduction

Expression of uncertainty is an important part of
communication. Formal statistics are the rigorous
way to quantify uncertainty but do not fit all com-
munication styles. Words of estimative probability
(WEP) such as maybe and believe are adverbs or
verbs that are informal alternatives. Kent (1964)
noted the importance of clarifying WEP meaning

for intelligence analysis in the Central Intelligence
Agency, and provided guidelines for mapping WEP
to numerical probabilities. Several studies then
measured the human perceptions of probability
words and discovered some agreement with Kent
(1964)’s guidelines. In this work, we use the scale
derived from a survey (Fagen-Ulmschneider, 2015),
which is the largest and most recent WEP percep-
tion survey available. 123 participants were asked
to label WEP with numerical probabilities. We use
the median of the participant answers to assign a
consensual value to each WEP. Associated prob-
abilities for the 19 WEP we use are available in
Appendix A, table 2.

Here, we assess whether neural language mod-
els learn the consensual probability judgment of
WEP from language modeling pretraining. We
develop datasets and a methodology to probe neu-
ral language model understanding of WEP. The
first dataset leverages previously annotated proba-
bility scores between a premise and a hypothesis,
in order to measure a language model’s ability to
capture the agreement between numerical proba-
bilities and WEP-expressed probabilities. The sec-
ond dataset is based on compositions of facts with
WEP-expressed probabilities, and measures verbal
probabilistic reasoning in language models.

Our contributions are as follows: (i) two datasets
and methods to measure understanding of WEP;
and (ii) evaluation of the ability of neural language
models (GPT2, RoBERTa-trained on MNLI) to
tackle WEP-related problems, showing that off-
the-shelf models are very little influenced by them,
even though fine-tuning on our constructed datasets
quickly leads to high accuracies. The code and
generated datasets are publicly available1

1/hf.co/.../probability_words_nli
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2 Related work

Our work probes a particular aspect of language
understanding. We do not analyze the inside of
the models (Rogers et al., 2020). We focus on the
models’ ability to perform controlled tasks (Naik
et al., 2018; Richardson et al., 2020) involving
WEP. WEP were studied in the context of intel-
ligence analysis and linguistics, our work is the
first to look at them through natural language pro-
cessing (NLP) models. Our study also pertains to
NLP analyses of logical reasoning and probability
problems, and to uncertainty in natural language
inference tasks.

Linguistics study of WEP Kent (1964)’s semi-
nal work was the first to link WEP and numerical
probability estimates, with intelligence analysis
motivations (Dhami and Mandel, 2021) and a pre-
scriptivist approach. This inspired further quantifi-
cations of human perceptions of WEP, in the con-
text of medical reports (O’Brien, 1989; Ott, 2021)
and weather reports (Lenhardt et al., 2020). Fagen-
Ulmschneider (2015) proposed the largest survey
up to date with 123 participants about general-
domain WEP perception.

Logical and probabilistic reasoning Another
strand of work probes NLP text encoders capa-
bilities, notably reasoning abilities. Weston et al.
(2015) probed understanding of specific problems
like negation, spatial and temporal reasoning with
the bAbI dataset. Richardson et al. (2020) probe
understanding of first-order logic reasoning, Sileo
and Lernould (2023) probe epistemic logic reason-
ing. Our work is the first to address probabilistic
logic, alongside Dries et al. (2017); Suster et al.
(2021) who construct a dataset of natural language
probability problems, e.g., "A bag has 4 white and
8 blue marbles. You pull out one marble and it is
blue. You pull out another marble, what is the prob-
ability of it being white?". They also rely on the
ProbLog solver (De Raedt et al., 2007), but focus
on numeric probability problems. By contrast, our
work targets WEP, and textual probabilistic logical
reasoning.

Natural language inference, uncertainty, modal-
ity, evidentiality Uncertainty was also studied
in the context of natural language inference tasks.
Zhou et al. (2022) study the disagreement across
annotators when labeling entailment relationships.
Zhang et al. (2017) annotate graded entailment with
5 probability levels, and the UNLI dataset (Chen

et al., 2020) go further by annotating numerical
probabilities. Our work also pertains to the study
of modality (Palmer, 1992; Saurí et al., 2006) and
more particularly evidentiality (Su et al., 2010), but
where previous work focused on WEP.

3 Probing WEP understanding

3.1 Verbalization and distractor generation

Our goal is to measure the understanding of WEP.
One requirement of WEP understanding is captur-
ing the consensual probability level. To test that,
we use contexts (PREMISE) paired with a conclu-
sions (HYPOTHESIS). The likelihood of a conclu-
sion, p, depends on the associated context. One
example from UNLI (Chen et al., 2020), which
annotates that, is (A man in a white shirt taking a
picture , A man takes a picture , 1.0).

We convert a triplet (PREMISE, HYPOTHESIS,
p) to the following verbalization:

PREMISE. Tp(HYPOTHESIS). (1)

where Tp is a text template assigned to the prob-
ability p. To select a template, we find the WEP
whose associated median probability (see table 2) is
the closest to p. We then use handcrafted templates
to construct a modal sentence from the selected
WEP and the hypothesis, e.g., "It is certain that
a man takes a picture". Table 3 in appendix B
displays the templates that we associate with each
WEP.

We also generate an invalid verbalization by ran-
domly selecting an incorrect WEP (a WEP whose
consensual probability differs from p by at least
40%)2, e.g., It is unlikely that a man takes a picture.
We hypothesize that language models and entail-
ment recognition models should give a higher score
(respectively likelihood and entailment probability)
to the correct valid verbalization than to the invalid
verbalization of p.

3.2 WEP-UNLI: probability/WEP matching

The UNLI dataset annotates (PREMISE, HYPOTH-
ESIS) pairs from the SNLI dataset (Bowman et al.,
2015) with joint probability scores p, totaling
55k training examples, 3k/3k validation/test ex-
amples. We use these examples to generate WEP-
understanding dataset with verbalization validity
prediction as shown in the previous subsection.

2This threshold ensures sufficient distance, while also en-
suring that each WEP has at least one possible distractor.
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% Round 1 template Sampled round 1 (premise)
p1::factA. There is a very good chance that Bernhard is a swan.
p2::factB. It is almost certain that Greg is gray.
p3::factC. There is a better than even chance that Sandra left the apple.

% Round 2 template Sampled round 2 (premise, continued)
p4::factX:-op1(fact1, fact2). Chances are slight that if Bernhard is a swan, or Sandra left the apple, then sheep are afraid of mice.
p5::factY:-op2(fact3, fact4). It is improbable that if Greg is gray, and Bernhard is a swan, then Lily is a rhino.
p6::factZ:-op3(fact5, fact6). There is a very good chance that if Greg is gray, and Sandra left the apple, then Sumit is thirsty.

% Round 3 template Sampled hypothesis
hypothesis:-op4(fact7, fact8). Either Bernhard is a swan or sheep are afraid of mice.
query(hypothesis).

ProbLog
Reasoner

p=0.7235
T
p’
(hyp.):

 
It is likely that either Bernhard is a swan or sheep are afraid of mice. 1

T
p’
(hyp.):

 
It is unlikely that either Bernhard is a swan or sheep are afraid of mice. 0

Reasoning
template

premise
hyp.

p

Sample bAbI 
facts A,B,C,X,Y,Z

Sample facts 1...8 from facts 
A,B,C,X,Y,Z in previous rounds

Sample op 1…4 from {and, or, xor}Sample chances 
p1…p6

distractor

Compute 
hypothesis 
likelihood, 

relevant 
WEP

factA

Generated label y:
p verbalization validity

T
p1

Probability 
verbalization

premise
T
p’
(hyp.)

yp’ ≈ p

hypothesis 
likelihood

Generated input: premise, T
p’
(hyp.)

Figure 1: WEP-reasoning task constructions, with 2 hops. We sample randomly concrete facts facti and probabilities
pi then build modal sentences with verbalization templates. We randomly sample logical operators to compose the
modal sentences from the previous rounds to construct a premise, then a hypothesis, and we use a probabilistic soft
logic solver to compute the hypothesis probability. We then correctly and incorrectly verbalize this probability. This
process generates data for the task of probability verbalization validity. 1 hop reasoning skips the second round:
fact7 and fact8 are sampled from {factA,factB,factC}

3.3 WEP-Reasoning: WEP compositions

Here, our goal is to assess models’ ability to rea-
son over combinations of probabilistic statements.
We construct synthetic (PREMISE, HYPOTHESIS,
p) examples from random factoids extracted from
the bAbI dataset (Weston et al., 2015). Figure 1
illustrates the construction of WEP-reasoning ex-
amples:

We randomly sample initial facts and associ-
ated probability levels, and we verbalize them with
the previously mentioned templates from Table 3
(Round 1). We further compose them with ran-
domly sampled logical operators (and, or, xor). We
then generate a hypothesis with logical combina-
tions of the previous round. Finally, we feed the
constructed premise and hypothesis to a probabilis-
tic soft reasoning engine in order to derive the like-
lihood of the hypothesis given the premise. We rely
on the ProbLog (De Raedt et al., 2007) reasoner
which implements Dantsin (1992) semantics.

To evaluate different complexities of reasoning,
we propose two variants: 2-hop reasoning, where
facts in Round 2 combine facts from Round 1, and
the final hypothesis combines facts from Round 2.
and 1-hop reasoning where facts from the hypoth-
esis combine Round 1 facts (Round 2 is skipped).

Since we want to sample more than two facts and
we cannot a priori use text from the UNLI dataset,

because UNLI only provides entailment likelihood
for specific pairs. Combining several sentences
could cause unaccounted interference. Therefore,
we sample subject/verb/object factoids from the
bAbI (Weston et al., 2015) datasets instead, which
is built with handwritten arbitrary factoids such
as John went to the kitchen. To sample multiple
factoids, we prevent any overlap of concepts (verb,
subject, object) between any pair of facts to make
the facts independent of one another.

We sample probability levels from the list of me-
dians of all WEP to prevent sampling the levels that
too distant from a known WEP. When we assign a
WEP to a probability level, we assume that the cor-
rect semantics is the consensual one, but humans
differs slightly from this consensus. Still, when
adding random perturbations of 20% to sampled
p1...6, the hypothesis probability is perturbed by
less than 40% for 98% of examples.

We generate 5k examples using the template
depicted in Figure 1, and use 10%/10% of the data
for the validation/test splits. Appendix C shows the
distribution of correct WEP for each dataset.

4 Experiments

We conduct verbalization validity prediction (bi-
nary classification task of WEP correctness detec-
tion between two candidates) under two settings.
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WEP-Reasoning (1 hop) WEP-Reasoning (2 hops) WEP-UNLI

Chance 50.0 50.0 50.0
Human baseline 97.0±1.0 93.5±1.5 89.5±2.5

GPT2 likelihood zero-shot 50.1±0.0 50.0±0.0 45.6±0.0
RoBERTa likelihood zero-shot 63.4±0.0 63.2±0.0 53.2±0.0
RoBERTa-MNLI zero-shot 49.2±5.4 41.7±4.2 54.6±3.7

RoBERTa+WEP-Reasoning (1 hop) fine-tuning 97.8±0.4 81.6±1.3 61.2±0.4
RoBERTa+WEP-Reasoning (2 hops) fine-tuning 85.0±1.6 91.1±0.1 62.3±1.7
RoBERTa+WEP-UNLI fine-tuning 62.4±0.4 64.3±0.1 84.4±0.5

Table 1: Test accuracy percentage of different models over the 3 WEP-understanding tasks. The last three rows
display the accuracy when fine-tuning on each task, and transferability of the fine-tuned model outside the diagonal.

4.1 Zero-shot models
We use off-the-shelf language models to assign
likelihood scores to a context and its conclusion.
We evaluate the rate at which valid verbalization
is scored higher than invalid verbalization. We
refine the scores by also considering the average
likelihood per token (Brown et al., 2020; Schick
and Schütze, 2021) and calibrated scores (Brown
et al., 2020; Zhao et al., 2021) where we divide
the score of a PREMISE. Tp(HYPOTHESIS). by the
score of Tp(HYPOTHESIS). We evaluate the nor-
malized, length-normalized, and calibrated like-
lihood on the validation sets of each dataset and
select the most accurate method for each dataset
and model.

We also consider a pretrained natural language
inference model, which is trained to predict entail-
ment scores between a context and a conclusion.

GPT2 We use the pretrained GPT2 base ver-
sion with 127M parameters (Radford et al., 2019),
which is a causal language model trained to esti-
mate text likelihood. We concatenate the premise
and hypothesis and compute their likelihood as a
plausibility score.

RoBERTa We also use the pretrained RoBERTa
base model with 123M parameters (Liu et al., 2019)
to score the masked language modeling likelihood
of the premise/hypothesis pair.

RoBERTa-MNLI We fine-tune RoBERTa on the
MNLI entailment detection dataset (Williams et al.,
2018) with standard hyperparameters (see the fol-
lowing subsection).

Human baseline To establish human baseline
performance on the constructed dataset, we had
two NLP researchers annotate 100 examples ran-
domly sampled from the test set of each dataset,
with a multiple-choice question answering setting.

Overall inter-annotator agreement is relatively high,
with a Fleiss’s κ of 0.70/0.68/0.71 for WEP Rea-
soning 1 hop, 2 hops and WEP-UNLI respectively.

4.2 Fine-tuning and transfer across probes

We fine-tune RoBERTa-base models on our
datasets, using standard (Mosbach et al., 2021) hy-
perparameters3 (3 epochs, sequence length of 256,
learning rate of 2.10−5 batch size of 16. We use
length-normalization with GPT2 likelihood and cal-
ibration with RoBERTa likelihood as they worked
best on the validation sets.). We use a multiple-
choice-question answering setup (we predict logit
scores for the valid and invalid verbalization, com-
bine their score with a softmax, then optimize the
likelihood of the valid verbalization). The same for-
mat is applied to all tasks, so we can also study the
transfer of capacities acquired during fine-tuning
of each probe, for instance, between probability
matching and compositional reasoning.

4.3 Results and discussion

Table 1 shows the results of our experiments. The
very low accuracy of causal and masked language
models (first two rows) demonstrates how challeng-
ing the WEP-understanding tasks are.

RoBERTa fine-tuned on MNLI dataset performs
better than chance for WEP-UNLI. MNLI contains
814 instances of probably in the MNLI dataset, but
we found little to no evidence of WEP composi-
tions among them, which can explain the results.

Finally, fine-tuning on the dataset of a particular
probe leads to high test accuracy on the associ-
ated test set. More surprisingly, fine-tuning on one
dataset also causes substantial accuracy gain on
other probes. This suggests that our datasets can

3Deviation from these hyperparameters did not yield sig-
nificant improvement on the validation sets.
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be incorporated in text encoder training in order to
improve WEP handling.

5 Conclusion

We investigated WEP understanding in neural lan-
guage models with new datasets and experiments,
showing that WEP processing is challenging but
helped by supervision which leads to transferable
improvement. Future work could extract WEP
probability scales from the UNLI dataset as an
alternative to human perception surveys, but our
work suggests that this requires language modeling
progress.
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A Associated probabilities

WEP Median probability judgment

certain 100†

almost certain 95.0± 10.9
highly likely 90.0± 8.4
very good chance 80.0± 10.8
we believe 75.0± 15.0
likely 70.0± 11.3
probably 70.0± 12.9
probable 70.0± 14.7
better than even 60.0± 9.1
about even 50.0± 4.9
probably not 25.0± 14.4
we doubt 20.0± 16.9
unlikely 20.0± 15.0
little chance 10.0± 12.2
chances are slight 10.0± 10.9
improbable 10.0± 17.5
highly unlikely 5.0± 17.3
almost no chance 2.0± 17.0
impossible 0†

Table 2: Median probability percentage associated to words of estimative probability according to (Fagen-
Ulmschneider, 2015). First and last words (†) are taken from (Kent, 1964).

B WEP verbalization template

WEP Verbalization template

about even chances are about even that [FACT]
almost certain it is almost certain that [FACT]
almost no chance there is almost no chance that [FACT]
better than even there is a better than even chance that [FACT]
certain it is certain that [FACT]
chances are slight chances are slight that [FACT]
highly likely it is highly likely that [FACT]
highly unlikely it is highly unlikely that [FACT]
impossible it is impossible that [FACT]
improbable it is improbable that [FACT]
likely it is likely that [FACT]
little chance there is little chance that [FACT]
probable it is probable that [FACT]
probably it is probably the case that [FACT]
probably not it is probably not the case that [FACT]
unlikely it is unlikely that [FACT]
very good chance there is a very good chance that [FACT]
we believe we believe that [FACT]
we doubt we doubt that [FACT]

Table 3: Templates used to convert a fact and a WEP expressed uncertainty into a modal sentence.
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C WEP frequencies on the generated datasets

WEP-reasoning (1 hop) WEP-Reasoning (2 hops) WEP-USNLI

WEP frequency WEP frequency WEP frequency

about even 11.1 impossible 13.2 impossible 25.6
probably not 9.7 about even 10.8 better than even 10.7
better than even 7.7 probably not 9.0 certain 7.2
we believe 7.1 highly unlikely 8.2 about even 6.9
highly likely 6.4 almost no chance 8.0 almost certain 6.7
certain 6.0 better than even 6.6 highly likely 6.0
highly unlikely 5.9 we believe 4.3 very good chance 5.9
almost no chance 5.8 highly likely 4.0 almost no chance 5.0
impossible 5.3 very good chance 4.0 we believe 4.1
almost certain 5.1 we doubt 4.0 highly unlikely 4.1
very good chance 4.7 improbable 3.9 probably not 3.4
chances are slight 3.6 chances are slight 3.9 likely 2.5
little chance 3.5 unlikely 3.6 probable 2.4
probable 3.2 little chance 3.5 probably 2.4
unlikely 3.1 almost certain 2.9 unlikely 1.5
likely 3.1 certain 2.7 little chance 1.5
probably 3.0 likely 2.5 chances are slight 1.5
we doubt 2.9 probable 2.4 improbable 1.4
improbable 2.9 probably 2.2 we doubt 1.4

Table 4: Validation set frequency of WEP in the correct answer of each dataset (percentages).
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