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Abstract

State-of-the-art sign language generation
frameworks lack expressivity and naturalness
which is the result of only focusing on man-
ual signs, neglecting the affective, grammatical,
and semantic functions of facial expressions.
The purpose of this work is to augment se-
mantic representation of sign language through
grounding facial expressions. We study the
effect of modeling the relationship between
text, gloss, and facial expressions on the per-
formance of the sign generation systems. In
particular, we propose a Dual Encoder Trans-
former able to generate manual signs as well as
facial expressions by capturing the similarities
and differences found in the text and sign gloss
annotation. We take into consideration the role
of facial muscle activity to express intensities
of manual signs by being the first to employ
facial action units in sign language generation.
We perform a series of experiments showing
that our proposed model improves the quality
of automatically generated sign language.

1 Introduction

Communication between the Deaf and Hard of
Hearing (DHH) people and hearing non-signing
people may be facilitated by emerging language
technologies. DHH individuals are medically un-
derserved worldwide (McKee et al., 2020; Masuku
et al., 2021) due to the lack of doctors who can
understand and use sign language. Also, educa-
tional resources that are available in sign language
are limited especially in STEM fields (Boyce et al.,
2021; Lynn et al., 2020). Although the Americans
with Disabilities Act (United States Department of
Justice, 2010) requires government services, pub-
lic accommodations, and commercial facilities to
communicate effectively with DHH individuals,
the reality is far from ideal. Sign language inter-
preters are not always available, and communicat-
ing through text is not always feasible as written

languages are completely different from signed lan-
guages.

In contrast to Sign Language Recognition (SLR)
which has been studied for several decades (Rast-
goo et al., 2021) in the computer vision commu-
nity (Yin et al., 2021), Sign Language Generation
(SLG) is a more recent and less explored research
topic (Quandt et al., 2021; Cox et al., 2002; Glauert
et al., 2006).

Missing a rich, grounded semantic representa-
tion, the existing SLG frameworks are far from gen-
erating understandable and natural sign language.
Sign languages use spatiotemporal modalities and
encode semantic information in manual signs and
facial expressions. A major focus in SLG has been
put on manual signs, neglecting the affective, gram-
matical, and semantic roles of facial expressions.
In this work, we bring insights from computational
linguistics to study the role of and include facial
expressions in automated SLG. Apart from using
facial landmarks encoding the contours of the face,
eyes, nose, and mouth, we are the first to explore
using facial Action Units (AUs) to learn semantic
spaces or representations for sign language genera-
tion.

In addition, with insights from multimodal Trans-
former architecture design, we present a novel ap-
plication of the Dual Encoder Transformer model
for SLG, which takes as input spoken text and
glosses, computes the correlation between both
inputs and generates skeleton poses with facial
landmarks and facial AUs. Previous work used
either gloss or text to generate sign language or
used text-to-gloss (T2G) prediction as an interme-
diary step (Saunders et al., 2020). Our model ar-
chitecture, on the other hand, allows us to capture
information otherwise lost when using gloss only
and captures differences between text and gloss,
which is especially useful for highlighting adjec-
tives otherwise lost in gloss annotation. We per-
form several experiments using the PHOENIX14-T
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Figure 1: Sign Language uses multiple modalities, such as hands, body, and facial expressions to convey semantic
information. Although gloss annotation is often used to transcribe sign language, the above examples show that
meaning encoded through facial expressions are not captured. In addition, the translation from text (blue) to gloss
(red) is lossy even though sign languages have the capability to express the complete meaning from text. The lower
example shows lowered brows and a wrinkled nose to add the meaning of kräftiger(heavy) (present in text) to
the RAIN sign.

weather forecast dataset and show that our model
performs better than baseline models using only
gloss or text.

In summary, our main contributions are the fol-
lowing:

• Novel Dual Encoder Transformer for SLG
captures information from text and gloss, as
well as their relationship to generate continu-
ous 3D sign pose sequences, facial landmarks,
and facial action units.

• Use of facial action units to ground semantic
representation in sign language.

2 Background and Related Work

More than 70 million Deaf and Hard of Hearing
worldwide use one of 300 existing sign languages
as their primary language (Kozik, 2020). In this
section, we explain the linguistic characteristics
of sign languages, the importance of facial expres-
sions to convey meaning, and elaborate on prior
work in SLG.

2.1 Sign Language Linguistics

Sign languages are spatiotemporal and are artic-
ulated using the hands, face, and other parts of
the body, which need to be visible. In contrast to
spoken languages, which are oral-aural, sign lan-
guages are articulated in front of the top half of the
body and around the head. No universal method,
such as the International Phonetic Alphabet (IPA),
exists to capture the complexity of signs. Gloss
annotation is often used to represent the meaning
of signs in written form. Glosses do not provide
any information about the execution of the sign,
only about its meaning. Even more, as glosses use
written language rather than sign language, they
are a mere approximation of the sign’s meaning,
representing only one possible transcription. For
that reason, glosses do not always represent the full
meaning of signs, as shown in Figure 1.

Every sign can be broken into four manual char-
acteristics: shape, location, movement, and orien-
tation. Non-manual components such as mouth
movements (mouthing), facial expressions, and
body movements are other aspects of sign lan-
guage phonology. In contrast to spoken languages,
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NOUN VERB ADV ADJ

gloss 20927 6407 17718 648

TEXT 25952 7638 24755 5628

Table 1: Occurrence of different Part-of-Speech (POS)
in the sign gloss annotation and the German transcripts
computed with Spacy (Honnibal and Montani, 2017).
Although gloss annotations show fewer samples for all
POS, the difference in the occurrence of adjectives is
statistically significant with p < 0.05.

signing occurs simultaneously, while vowels and
consonants occur sequentially. Although the vo-
cabulary size of ASL in dictionaries is around
15,000 (Spread the Sign, 2017) compared to ap-
proximately 170,000 in spoken English, the simul-
taneity of phonological components allows for a
wide range of signs to describe slight differences
of the same gloss.

While in English various words describe large-
ness (big, large, huge, humongous, etc.), in ASL,
there is one main sign for “large”: BIG. How-
ever, through modifications of facial expressions,
mouthing, and the size of the sign, different lev-
els of largeness can be expressed just as in a
spoken language (Grushkin, 2017). To commu-
nicate spoken concepts without a corresponding
fingerspelling—a manual alphabet—is sometimes
used. (Baker et al., 2016)

2.2 Grammatical Facial Expressions
Facial expressions are grammatical components
of sign languages that encode semantic represen-
tations, which, when excluded leads to loss of
meaning. Facial expressions in particular have
an important role in distinguishing different types
of sentences such as WH-questions, Yes/No ques-
tions, doubt, negations, affirmatives, conditional
clauses, focus and relative clauses (da Silva et al.,
2020). The following example shows how the same
gloss order can present a question or an affirma-
tion (Baker et al., 2016):

Example 1
Indopakistani Sign Language
a) FATHER CAR EXIST.
“(My) father has a car.”

b) FATHER CAR EXIST?
“Does (your/his) father have a car.”

In this example, what makes sentence b) a ques-

tion are raised eyebrows and a forward and/or
downward movement of the head/chin in parallel
to the manual signs.

Figure 2: Examples from different facial Action Units
(AUs) (Friesen and Ekman, 1978) from the lower face
relevant to the generation of mouthings in sign lan-
guages. AUs can occur with different intensity values
between 0 and 5. AUs have been used in psychology
and in affective computing to understand emotions ex-
pressed through facial expressions. Image from (De la
Torre and Cohn, 2011).

In addition, facial expressions can differentiate
the meaning of a sign assuming the role of a de-
terminer. Figure 1 shows different signs for the
same gloss, REGEN (rain). We can observe from
the text transcript (in blue) that the news anchor
says “rain” in the upper example but “heavy rain”
in the lower. This example shows how gloss an-
notations are not perfect transcriptions of sign lan-
guages as they only convey the meaning of manual
aspect of the signs. Information conveyed through
facial expressions to show intensities are not rep-
resented in gloss annotation. To view the loss of
information that occurs in gloss annotation we used
Spacy (Honnibal and Montani, 2017) to compute
the Part-of-Speech (POS) annotation for text and
gloss. In Table 1 the occurrence of nouns, verbs,
adverbs, and adjectives are shown for text and gloss
over the entire dataset. We can see that although
gloss annotations have lower occurrence for all
POS, the difference is statistically significant for
adjectives with p < 0.05. To calculate this signifi-
cance, we performed hypothesis testing with two
proportions by computing the Z score. We used
t-tests to determine statistical significance of our
model’s performance.

2.3 Sign Language Generation

Several advances in generating sign poses from text
have been recently achieved in SLG, however there
is limited work that considers the loss of semantic
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Figure 3: Our proposed model architecture, the Dual Encoder Transformer for Sign Language Generation. Our
architecture is characterized by using two encoders, one for text and one for gloss annotation. The use of two
encoders allows to multiply the outputs of both emphasizing the differences and similarities. In addition we to using
skeleton poses and facial landmarks, we include facial action units (Friesen and Ekman, 1978).

information when using gloss to generate poses
and aligned facial expressions. Previous work has
generated poses by translating text-to-gloss (T2G)
and then gloss-to-pose (G2S) or by using either text
or gloss as input (Stoll et al., 2020; Saunders et al.,
2020). We propose a Dual Encoder Transformer
for SLG which trains individual encoders for text
and gloss, and combines the encoder’s output to
capture similarities and differences.

In addition, the majority of previous work on
SLG has focused mainly on manual signs (Stoll
et al., 2020; Saunders et al., 2020; Zelinka and Ka-
nis, 2020; Saunders et al., 2021b). (Saunders et al.,
2021a) are the first to generate facial expressions
and mouthing together with hand poses. The repre-
sentation used for the non-manual channels is the
same as for the hand gestures, namely coordinates
of facial landmarks. In this work we explore the
use of facial Action Units (AUs) (see Figure 2)
which represent intensities of facial muscle move-
ments (Friesen and Ekman, 1978). Although AUs
have been primarily used in tasks related to emotion
recognition (Viegas et al., 2018), recent works have
shown that AUs help detect WH-questions, Y/N
questions, and other types of sentences in Brazilian
Sign Language (da Silva et al., 2020).

3 Sign Language Dataset

In this work, we use the publicly available
PHOENIX14T dataset (Camgoz et al., 2018), fre-

quently used as a benchmark dataset for SLR and
SLG tasks. The dataset comprises a collection of
weather forecast videos in German Sign Language
(DGS), segmented into sentences and accompanied
by German transcripts from the news anchor and
sign-gloss annotations. PHOENIX14T contains
videos of 9 different signers with 1066 different
sign glosses and 2887 different German words. The
video resolution is 210 by 260 pixels per frame and
30 frames per second. The dataset is partitioned
into training, validation, and test sets with respec-
tively 7,096, 519, and 642 sentences.

4 Methods: Dual Encoder Transformer
for Sign Language Generation

In this section, we present our proposed model,
the Dual Encoder Transformer for Sign Language
Generation. Given the loss of information that
occurs when translating from text-to-gloss, our
novel architecture takes into account the informa-
tion from text and gloss as well as their similari-
ties and differences to generate sign language in
the form of skeleton poses and facial landmarks
shown in Figure 3. For that purpose, we learn the
conditional probability p = (Y |X,Z) of produc-
ing a sequence of signs Y = (y1, . . . , yT ) with T
frames, given the text of a spoken language sen-
tence XT = (x1, . . . , xN ) with N words and the
corresponding glosses Z = (z1, . . . , zU ) with U
glosses.
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Our work is inspired by the Progressive Trans-
former (Saunders et al., 2020), which allows trans-
lation from a symbolic representation (words or
glosses) to a continuous domain (joint and face
landmark coordinates) by employing positional en-
coding to permit the processing of inputs with var-
ied lengths. In contrast to the Progressive Trans-
former, which uses one encoder to use either text
or glosses to generate skeleton poses, we employ
two encoders, one for text and one for glosses, to
capture information from both sources and create a
combined representation from the encoder outputs
to represent correlations between text and glosses.
In the following, we will describe the different
components of the dual-encoder transformer.

4.1 Embeddings
As our input sources are words, we must convert
them into numerical representations. Similar to
transformers used for text-to-text translations, we
use word embeddings based on the vocabulary in
the training set. As we are using two encoders to
represent similarities and differences between text
and glosses, we use one word embedding based
on the vocabulary of the text and one using the
vocabulary of the glosses. We also experiment
by using text word embedding for both encoders.
Given that our target is a sequence of skeleton joint
coordinates, facial landmark coordinates, and con-
tinuous values of facial AUs with varying lengths
we use counter encoding (Saunders et al., 2020).
The counter c varies between [0,1] with intervals
proportional to the sequence length. It allows the
generation of frames without an end token. The
target joints are then defined as:

mt = [yt, ct] with

yt = [yhands+body, yface, yfacialAUs]

The target joints mt are then passed to a contin-
uous embedding which is a linear layer.

4.2 Dual Encoders
We use two encoders, one for text and one for
gloss annotations. Both encoders have the same
architecture. They are composed of L layers, each
with one Multi-head Attention (MHA) and a feed-
forward layer. Residual connections (He et al.,
2016) around each of the two sublayers with subse-
quent layer normalization (Ba et al., 2016). MHA
uses multiple projections of scaled dot-products

which permits the model to associate each word of
the input with each other. The scaled dot-product
attention outputs a vector of values, V , which is
weighted by queries, Q, keys, K, and dimensional-
ity, dk:

Attention(Q,K, V ) = softmax(
QKT

√
dk

) (1)

Different self-attention heads are used in MHA,
allowing parallel mappings of the Q, V , and K
with different learned parameters.

The outputs of MHA are then fed into a non-
linear feed-forward projection. In our case, where
we employ two different encoders, their outputs
can be formulated as follows:

Hn = Etext(ŵn, ŵ1:N )

Hu = Egloss(ŵu, ŵ1:U )
(2)

with hn being the contextual representation of the
source sequence, N being the number of words,
and U being the number of glosses in the source
sequence.

As we want to use not only the information en-
coded in text and gloss but also their relationship,
we combine the output of both encoders with a
Hadamard multiplication. As the N ̸= U , we stack
hn vertically for U times and stack hu vertically
for N times to have two matrices with the same
dimensions. Then we multiply both matrices with
the Hadamard multiplication. Hadamard multipli-
cation is a concatenation of every element in two
matrices, where ai,j and bi,j are multiplied together
to get ai,jbi,j . This represents concatenating the
output vectors from the text encoder with the output
of the vectors from the gloss encoder.

Htext,gloss =




Hn0

Hn1
...

HnU


⊙




Hu0

Hu1
...

HuN


 (3)

4.3 Decoder
Our decoder is based on the progressive trans-
former decoder (DPT), an auto-regressive model
that produces continuous sequences of sign pose
and the previously described counter value (Saun-
ders et al., 2020). In addition to producing sign
poses and facial landmarks, our decoder also pro-
duces 17 facial AUs. The counter-concatenated
joint embeddings, which include manual and facial
features (facial landmarks and AUs), ĵu , are used

5



to represent the sign pose of each frame. Firstly,
an initial MHA sub-layer is applied to the joint em-
beddings, similar to the encoder but with an extra
masking operation. The masking of future frames
is necessary to prevent the model from attending
to future time steps. A further MHA mechanism
is then used to map the symbolic representations
from the encoder to the continuous domain of the
decoder. A final feed-forward sub-layer follows,
with each sub-layer followed by a residual connec-
tion and layer normalization as in the encoder. The
output of the progressive decoder can be formu-
lated as:

[ŷu, ĉu] = D(ĵ1:u−1, h1:T ) (4)

where ŷu corresponds to the 3D joint positions,
facial landmarks, and AUs, representing the pro-
duced sign pose of frame u, and ĉu is the respective
counter value. The decoder learns to generate one
frame at a time until the predicted counter value,
ĉu, reaches 1. The model is trained using the mean
squared error (MSE) loss between the predicted
sequence, ŷ1:U , and the ground truth, y∗1:U :

LMSE =
1

U
(y∗1:U − ŷ1:U )

2 (5)

5 Computational Experiments

5.1 Features

We extract three different types of features from the
PHOENIX14T dataset: skeleton joint coordinates,
facial landmark coordinates, and facial action unit
intensities. We use OpenPose (Cao et al., 2019) to
extract skeleton poses from each frame and use for
our experiments the coordinates of 50 joints which
represent the upper body, arms, and hands, which
we will start referring to as “manual features”. We
also use OpenFace (Baltrusaitis et al., 2018) to
extract 68 facial landmarks as well as 17 facial
action units (AUs) shown in Figure 2 to describe
“facial features”.

5.2 Baseline Models

We will compare the performance of our proposed
model (TG2S) with two Progressive Transform-
ers (Saunders et al., 2020), one using gloss only to
produce sign poses (G2S), and one that uses text
only (T2S). We train each model only with manual
features and also with the combination of manual
and facial features through concatenation.

5.3 Evaluation Methods
In order to automatically evaluate the performance
of our model and the baseline models, we use back
translation suggested by (Saunders et al., 2020).
For that purpose, we use the Sign Language Trans-
former (SLT) (Camgoz et al., 2020) which trans-
lates sign poses into text and computes BLEU and
ROUGE scores between the translated text and the
original text. As the original SLT was designed
to receive video frames as input, we modified the
architecture by removing the convolutional layers
that were used for image feature extraction, and
then we replaced skeletal pose and facial features
as input.

6 Results

6.1 Quantitative Results
Table 2 shows how well the SLT model performs
the translation from ground truth sign poses to text
when trained and evaluated with the PHOENIX14T
dataset. The results show the highest BLEU scores
are achieved when training the SLT model only
with skeleton joints from the hands and upper body,
presenting a BLEU-4 score of 11.32 for the test
set. When facial AUs are added to the hands, body,
and face features, the difference from using manual
data only is slightly lower, being BLEU-4 of 10.61.

In Table 3, the results of using hands and body
joint skeleton as sole input to the baseline models
and our proposed model are shown. We can see
that our proposed model TG2S shows the highest
BLEU-4 scores of 8.19 in the test set, compared to
7.84 for G2S and 7.56 for T2S.

Table 4 presents the results of including facial
landmarks as well as facial AUs with body and
hands skeleton joints as input. Also, here we can
see that our proposed model outperforms the base-
line models showing a BLEU-4 score of 5.76 in the
test set. G2S obtained a BLUE-4 score of 6.37 and
T2S 5.53.

We see in Tables 3 and 4 that G2S obtained
higher scores than T2S. Given that gloss anno-
tations fail to encode the richness of meaning in
signs, it appears the smaller vocabulary helps the
model achieve higher scores by neglecting informa-
tion otherwise described in the text. Our proposed
model is able to obtain better results than G2S by
making a compromise of using information from
gloss, text, and their similarities and differences.
We also can see in both tables that the inclusion of
facial information reduces the overall scores. We
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Components Dev Set Test Set
Bleu1 Bleu2 Bleu3 Bleu4 ROUGE Bleu1 Bleu2 Bleu3 Bleu4 ROUGE

Manual 30.15 20.58 15.41 12.22 30.41 27.76 18.86 14.11 11.32 27.44
Manual and Facial 29.46 20.30 15.31 12.10 29.25 26.75 17.88 13.29 10.61 26.54

Table 2: Translation results of the SLT model (Camgoz et al., 2020) used for backtranslation when trained and
evaluated with ground truth hand and body skeleton joints (manual) and facial landmarks and AUs (facial).

Model Dev Set Test Set
Bleu1 Bleu2 Bleu3 Bleu4 ROUGE Bleu1 Bleu2 Bleu3 Bleu4 ROUGE

G2S 24.51 15.71 11.19 8.70 24.84 23.26 14.54 10.21 7.84 22.89
T2S 22.90 14.55 10.42 8.14 23.42 22.14 13.88 9.85 7.56 22.50

TG2S (Ours) 24.60 16.20 11.68 8.97 24.82 22.97 14.71 10.59 8.19 23.45

Table 3: Back translation results obtained from the generative models when using only manual features. Our
proposed model has the highest scores in almost all metrics compared to the models using only gloss or text.

Model Dev Set Test Set
Bleu1 Bleu2 Bleu3 Bleu4 ROUGE Bleu1 Bleu2 Bleu3 Bleu4 ROUGE

G2S 16.11 8.77 5.97 4.49 16.19 16.29 9.20 6.37 4.93 16.73
T2S 15.65 8.35 5.76 4.44 15.65 14.12 7.76 5.53 4.39 14.82

TG2S 17.25 10.17 7.04 5.32 17.85 17.18 10.39 7.39 5.76 17.64

Table 4: Back translation results obtained from the generative models when using manual features and facial
landmarks and AUs. Our proposed model has the highest scores in all metrics compared to the models using only
gloss or text.

believe that this might be the case due to the diverse
range of facial expressions possible. We cannot di-
rectly compare the results of Table 3, and 4 as two
SLT models pretrained on different domains were
used to compute the BLEU scores.

6.2 Qualitative Results

Figure 4 shows the visual quality of our model’s
prediction when using manual and facial informa-
tion. Both examples show that the predictions cap-
tured the hand shape, orientation, and movement
from the ground truth. In the bottom example for
RAIN, the predictions were even able to capture the
repetitive hand movement symbolizing falling rain.
What can also be noted is that the ground truth
is not perfect. In both examples unnatural finger
and head postures can be seen. In addition, ground
truth is not displaying movements of the eyebrows
and mouth in the expected intensities.

Figure 5 shows situations in which the predic-
tions failed to represent the correct phonology of
signs. In the first example, we see that hand shape,
orientation, and position are incorrect. The predic-
tions of our models also fail to capture pointing
hand shapes as shown in example 2.

7 Discussion and Conclusion

In this work, for the first time, we attempt to aug-
ment contextual embeddings for sign language by
learning a joint meaning representation that in-
cludes fine-grained facial expressions. Our results
show that the proposed semantic representation is
richer and linguistically grounded.

Although our proposed model helped bridge the
loss of information by taking into account text,
gloss, and their similarities and differences, there
are still several challenges to be tackled by a multi-
disciplinary scientific community.

Complex hand shapes with pointing fingers are
very challenging to generate. The first step to im-
proving the generation of the fingers is in improv-
ing methods to recognize finger movements more
accurately. Similarly, we need tools that are more
robust in detecting facial expressions even in situa-
tions of occlusion. We also realize that SLG models
are overfitting specific sign languages instead of
learning generalized representations of signs.

We chose to work with a German sign language
since that is the only dataset with gloss annota-
tion that could help us study our hypotheses. The
How2Sign dataset (Duarte et al., 2021) is a feasible
dataset for ASL, but it does not allow any model
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Figure 4: Comparison of the ground truth and the generated poses with our proposed dual encoder model for the
gloss annotations CLOUD and RAIN. The upper example shows that the predictions captured the correct hand shape,
orientation, and movement of the sign CLOUD. In the lower example, it is visible that the predictions captured the
repeating hand movement meaning RAIN. Although at first glance the hand orientation seems not correct, it is a
slight variation which still is correct.
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Figure 5: Examples in which our model failed to gener-
ate the correct phonology of signs. Example 1 depicts
inaccuracies in hand shape, orientation, and movement.
Example 2 shows the difficulty of the model to capture
pointing hand shapes.

to extract facial landmarks, facial action units, or
facial expressions from the original video frames
since the faces are blurred. In the future, we hope
to see new datasets with better and more diverse
annotations for different sign languages that would
allow the design of a natural and usable sign lan-
guage generation system.
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