Abstract
In this paper, we present our team’s involvement in Task 6: LegalEval: Understanding Legal Texts. The task comprised three subtasks, and we focus on subtask A: Rhetorical Roles prediction. Our approach included experimenting with pre-trained embeddings and refining them with statistical and neural classifiers. We provide a thorough examination ofour experiments, solutions, and analysis, culminating in our best-performing model and current progress. We achieved a micro F1 score of 0.6133 on the test data using fine-tuned LegalBERT embeddings.- Anthology ID:
- 2023.semeval-1.116
- Volume:
- Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
- Month:
- July
- Year:
- 2023
- Address:
- Toronto, Canada
- Editors:
- Atul Kr. Ojha, A. Seza Doğruöz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, Elisa Sartori
- Venue:
- SemEval
- SIG:
- SIGLEX
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 841–846
- Language:
- URL:
- https://aclanthology.org/2023.semeval-1.116
- DOI:
- 10.18653/v1/2023.semeval-1.116
- Cite (ACL):
- Pavan Baswani, Hiranmai Sri Adibhatla, and Manish Shrivastava. 2023. LTRC at SemEval-2023 Task 6: Experiments with Ensemble Embeddings. In Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 841–846, Toronto, Canada. Association for Computational Linguistics.
- Cite (Informal):
- LTRC at SemEval-2023 Task 6: Experiments with Ensemble Embeddings (Baswani et al., SemEval 2023)
- PDF:
- https://preview.aclanthology.org/add_acl24_videos/2023.semeval-1.116.pdf