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Abstract

Most multilingual vision-and-language (V&L)
research aims to accomplish multilingual and
multimodal capabilities within one model.
However, the scarcity of multilingual captions
for images has hindered the development. To
overcome this obstacle, we propose ICU1, Im-
age Caption Understanding, which divides a
V&L task into two stages: a V&L model per-
forms image captioning in English, and a mul-
tilingual language model (mLM), in turn, takes
the caption as the alt text and performs cross-
lingual language understanding. The burden
of multilingual processing is lifted off V&L
model and placed on mLM. Since the multilin-
gual text data is relatively of higher abundance
and quality, ICU can facilitate the conquering
of language barriers for V&L models. In ex-
periments on two tasks across 9 languages in
the IGLUE benchmark, we show that ICU can
achieve new state-of-the-art results for five lan-
guages, and comparable results for the rest.

1 Introduction

In recent times, there has been a growing interest
in extending the success of vision-and-language
(V&L) models beyond English to encompass non-
English languages. However, the scarcity of train-
ing data has posed challenges in the development
of multilingual models. To address this issue,
various code-switch strategies (Ni et al., 2021;
Nooralahzadeh and Sennrich, 2022) have been
proposed to encourage models to learn the rela-
tionships between corresponding words in differ-
ent languages. Additionally, machine translation
(MT) techniques have been employed to augment
existing English-only datasets (Qiu et al., 2022;
Zhou et al., 2021). Although some improvements
have been achieved using MT-enhanced translated
data, the quality of translations varies across lan-
guages. Furthermore, fine-tuning strategies (Liu

1Code to reproduce our results is available at https://
github.com/gjwubyron/ICU

Figure 1: We employ XVNLI as a case study to exem-
plify the partitioning of the original task into two stages.
The original task comprises an image premise and text
hypothesis, which we display at the top. Below it, we
present the two stages: image captioning (IC) and cross-
lingual natural language inference (XNLI). The English
translations of the text are provided within the brackets.

et al., 2023; Nooralahzadeh and Sennrich, 2022)
have been explored to enhance cross-lingual gen-
eralization. However, there still exists a significant
performance gap between English and other lan-
guages, highlighting the challenge of scarcity.

To address these challenges, this paper intro-
duces ICU (Image Caption Understanding), which
approaches V&L tasks by dividing them into two
stages: image captioning (IC) and cross-lingual
language understanding (XLU). As depicted in Fig-
ure 1, we use the Cross-lingual Visual Natural Lan-
guage Inference (XVNLI) task as an example. Ini-
tially, we employ a V&L model to perform IC and
generate an English caption for the image. This
caption is then treated as the alt text for the im-
age, enabling cross-lingual natural language infer-
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Frame Template

0 {left_caption} {right_caption}
1 < {left_caption} > < {right_caption} >
2 Left: {left_caption}. Right: {right_caption}.
3 Left: < {left_caption} >. Right: < {right_caption} >.
4 There are {left_caption} in the left image and {right_caption} in the right image.
5 The left image shows {left_caption} while the right image shows {right_caption}.

Table 1: Hand-crafted templates. We use direct caption concatenation in Frame0. For clarity, we enclose each
caption in angle brackets in Frame1 and Frame3 as alt text. We also indicate their positions in Frame2 and Frame3.
Moreover, we seamlessly integrate these captions into detailed descriptions in Frame4 and Frame5.

ence (XNLI) using a multilingual language model
(mLM). ICU leverages the strengths of both the
V&L model and the mLM. Given that multilingual
text data are relatively more abundant and of higher
quality, ICU helps alleviate the scarcity problem.

In this study, we assess our approach using two
tasks from IGLUE: XVNLI and MaRVL(Liu et al.,
2021), a Multicultural Reasoning over Vision and
Language dataset. Our findings indicate that ICU,
even in zero-shot scenarios, achieves remarkable
performance on both tasks. Additionally, we ob-
serve that employing few-shot learning techniques
for XVNLI further enhances the model’s perfor-
mance. Moreover, we explore frame engineering
techniques, wherein we assign captions to differ-
ent frames (refer to Table 1 for more details), and
demonstrate that the model exhibits sensitivity to
different frames when applied to MaRVL.

Our contributions are summarized as follows:

• We introduce ICU, an innovative divide-and-
conquer approach designed to address the
challenges posed by multilingual vision-and-
language tasks.

• We achieve state-of-the-art results in two tasks
from IGLUE benchmark, outperforming the
existing multilingual methods in several lan-
guages.

• We conduct experiments and analysis to ex-
plore efficient and computationally cheap
ways to further boost performance.

2 ICU: Image Caption Understanding

In this section, we will discuss the challenges posed
by the implementation of ICU. Firstly, a crucial
task is to adapt the second stage (XLU) to a suit-
able NLP task. For XVNLI, this can be easily
addressed since NLI has already been extensively

studied. However, for MaRVL, the model needs to
determine whether a textual description is true or
false about a pair of images. In this case, the adap-
tation is achieved by assigning the two captions
to different frames, as illustrated in Table 1. We
then treat the task as zero-shot text classification
(Yin et al., 2019). Another challenge encountered
in ICU is the mLM’s handling of code-switching,
such as when the premise is in English while the
hypothesis is in other languages. Remarkably, we
demonstrate that the mLM already achieves good
performance in zero-shot scenarios, and the perfor-
mance can be further improved through few-shot
learning.

3 Experiments

In this section, we will provide a comprehensive
description of the models employed in ICU, along
with the experimental settings and evaluations con-
ducted.

3.1 Models for ICU

We use two pre-existing models for utilization in
the ICU setting. For the cross-modal part, we
employ OFA (Wang et al., 2022b), a sequence-to-
sequence vision-and-language framework. Specifi-
cally, we select OFALarge, which has undergone
fine-tuning on COCO (Lin et al., 2015), a substan-
tial dataset for image captioning. For decoding,
OFALarge employs beam search with a beam size
of five, while incorporating a constraint of main-
taining n-gram diversity within a context window
of three. For the cross-lingual part, we use mDe-
BERTaV3 Base (He et al., 2021), which achieves
a new state-of-the-art on XNLI (Conneau et al.,
2018) across 15 languages after fine-tuning. As the
model is fine-tuned in a monolingual fashion (Lau-
rer et al., 2023), meaning both the premises and
hypotheses are in the same language, we continue
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Model XVNLI MaRVL

ARB SPA FRA RUS avg IND SWA TAM TUR CMN avg

mUNITER 46.73 56.96 59.36 51.72 53.69 54.79 51.17 52.66 54.66 55.34 53.72
xUNITER 51.98 58.94 63.32 59.71 58.49 55.14 55.51 53.06 56.19 53.06 54.59

UC2 56.19 57.47 69.67 64.86 62.05 56.74 52.62 60.47 56.70 59.88 57.28
M3P 55.24 58.85 56.36 62.54 58.25 56.47 55.69 56.04 56.78 55.04 56.00

ICU 58.00 61.04 63.21 61.39 60.91 56.91 55.60 57.89 58.31 56.92 57.13

Table 2: Zero-shot accuracy on XVNLI and MaRVL. The results of the four models in the middle row are directly
copied from IGLUE to enable comparison. The best performance is denoted by highlighting it in bold. (Since frame
engineering is also zero-shot, we choose the best one among the frames)

to categorize it as a zero-shot application within
our approach.

3.2 Few-shot Learning Setup

As the IGLUE benchmark does not offer com-
prehensive few-shot data for MaRVL, our few-
shot learning efforts are solely focused on XVNLI.
When conducting few-shot learning, we freeze the
V&L model and exclusively adjust the parameters
of the mLM. The process of freezing the V&L
model can make it more efficient by enabling the
reuse of captions and leveraging the significantly
smaller mLM compared to the standard V&L mod-
els. Given the scarcity of few-shot data, we re-
frain from engaging in hyperparameter optimiza-
tion, which, while potentially arbitrary, serves the
purpose of safeguarding the model from overfit-
ting on such a limited dataset. We choose to use a
smaller batch size of 8, increase the learning rate
to 1e-4, and limit the training to just 3 epochs. The
rest hyperparameters remain the same to the fine-
tuning configurations of mDeBERTaV3 (He et al.,
2021). Few-shot learning is performed separately
for each language.

3.3 Baseline Models

The models in the baseline are all initialized from
mLMs, and further trained with multiple objec-
tives to learn multimodal representations. mU-
NITER and xUNITER (Liu et al., 2021) expand
the UNITER (Chen et al., 2020) architecture to en-
compass multiple languages. M3P (Ni et al., 2021)
additionally introduces training tasks that involve
code-switching in a multimodal context, where En-
glish caption words are randomly substituted with
translations using a specific probability. UC2 (Zhou
et al., 2021) acquires data in five different lan-

guages with machine translation, thereby enhanc-
ing its multilingual capabilities. xUNITER, M3P,
and UC2 all have their initializations derived from
XLM-R (Conneau et al., 2020), while mUNITER
is initialized from mBERT (Devlin et al., 2019).
These models also differ in size, with mUNITER
at 185M, xUNITER at 284M, UC2 at 282M, and
M3P at 377M. In contrast, the mDeBERTaV3 Base
used in our approach is of a smaller size at 86M.

3.4 Tasks

We assess our method through two tasks. The first
task, XVNLI, involves conducting inference in a
multi-lingual scenario based on the image premise
and text hypothesis. It comprises 357 images and
1.1k samples across 4 languages. On the other hand,
MaRVL focuses on determining the truthfulness of
grounded statements regarding pairs of images. It
encompasses 4.9k images and 5.7k samples across
5 languages.

4 Results and Analysis

In this section, we present the results of ICU in
comparison to existing works within the IGLUE
benchmark. Additionally, we analyze the impact
of few-shot learning and frame engineering tech-
niques on the performance of ICU.

4.1 Overall Results

The zero-shot results for XVNLI and MaRVL are
displayed in Table 2. Among the nine languages,
ICU achieves the state-of-the-art (SOTA) perfor-
mance in four languages, while maintaining com-
parable performance in the remaining languages.
However, on average, it slightly lags behind the
current SOTA in the IGLUE benchmark.
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Figure 2: ICU performance across different shots
on XVNLI. In our evaluation, we define one image as
one shot, although typically an image may be utilized
in multiple samples. On average, each shot comprises
three samples.

Model ARB SPA FRA RUS avg

mUNITER 46.91 57.73 59.36 51.80 53.95
xUNITER 54.04 60.22 64.52 63.40 60.55
UC2 56.87 62.80 69.76 65.29 63.68
M3P 56.01 60.40 58.59 62.46 59.37

ICU 60.70 64.61 62.61 65.57 63.37

Table 3: Max-shot XVNLI results. This evaluation is
conducted under the max-shot setting, encompassing a
total of 48 shots.

4.2 Few-shot Learning

Figure 2 illustrates the performance variations in
XVNLI as the number of shots increases. Overall,
a consistent upward trend can be observed, indi-
cating an improvement in performance. Nonethe-
less, we observe that when the number of shots
is fewer than ten, the model’s performance is in-
ferior to that of zero-shot. We hypothesize that
in situations with a limited number of shots, the
tuning process may result in a model with reduced
generality. It’s only with an adequate number of
shots that the model can truly achieve noteworthy
performance enhancements. Furthermore, Table 3
provides a comparison of the maximum shot perfor-
mance, where ICU demonstrates a slight advantage
over the previous SOTA approach in an additional
language and successfully closes the performance
gap on average.

4.3 Frame Engineering

Figure 3 depicts the performance across different
frames in MaRVL. Our findings indicate that em-
ploying a simple and concise frame generally yields
better results. Conversely, incorporating lengthy
texts around the captions does not lead to improved
performance.

5 Related Work

Image-to-text Transformation in Vision-and-
language Modeling TRiG (Gao et al., 2022) and
PICa (Yang et al., 2022) are two prior studies that
engage in image-to-text transformation as a solu-
tion for addressing multimodal challenges in the
context of visual question answering tasks. TRiG
utilizes three types of transformations, encompass-
ing image captioning, dense labeling, and optical
character recognition. On the other hand, PICa
employs a variety of image captioning models and
tagging models to perform image transformations.
Nevertheless, their efforts are concentrated exclu-
sively on the English language.

Vision-and-language Models Large-scale pre-
training has become the cornerstone of vision-and-
language (V&L) research. Recent advancements
have seen the development of big foundation mod-
els like SimVLM, Flamingo, and GIT (Wang et al.,
2022c, Alayrac et al., 2022, Wang et al., 2022a).
These models rely on training with sufficiently
large datasets, typically constructed using image-
text pairs obtained from web crawling, such as
the 400 million pairs used in CLIP (Radford et al.,
2021). However, due to the predominance of En-
glish in the training data, these models face chal-
lenges in effectively handling non-English inputs.

Multilingual Language Models The success
of models like mBERT (Devlin et al., 2019) and
XLM (Conneau and Lample, 2019) has demon-
strated that large-scale pretraining of Transform-
ers across multiple languages can yield impres-
sive results in cross-lingual language understanding
(XLU). With the addition of more languages and
increased training data, XLM-R (Conneau et al.,
2020) has surpassed mBERT’s performance on var-
ious XLU benchmarks. Notably, mDeBERTaV3
(He et al., 2021) has recently achieved state-of-the-
art results on XNLI, attaining a zero-shot cross-
lingual accuracy of 79.8%. However, it is crucial
to note that these models are primarily trained for
NLP tasks and may not possess the capability to
handle multimodal tasks involving both vision and
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Figure 3: ICU performance across different frames on MaRVL. We conduct evaluation using all the frames
listed in Table 1.

language.
Multilingual Vision-and-language Models To

facilitate the learning of universal representations
across different modalities and multilingual texts,
the M3P framework (Ni et al., 2021) was intro-
duced as the first pre-training framework that op-
timizes multiple pre-training objectives. Another
unified framework, UC2 (Zhou et al., 2021), pro-
poses a novel architecture and introduces new pre-
training tasks. Both M3P and UC2 have demon-
strated improved performance on various multi-
lingual V&L tasks. However, there still exist no-
ticeable performance gaps between English and
non-English languages.

Evaluation The recently introduced IGLUE
benchmark presents a new challenge for multilin-
gual V&L models. This benchmark encompasses
five tasks spanning 20 languages, thereby expand-
ing the evaluation scope beyond previous image-
text retrieval tasks such as Multi30k (Elliott et al.,
2016) and MSCOCO (Lin et al., 2015).

6 Conclusion

In this paper, we introduce ICU, a divide-and-
conquer approach designed to address the chal-
lenges of multilingual vision-and-language (V&L)
tasks. ICU leverages the strengths of both V&L
models and multilingual language models (mLM)
to tackle the inherent difficulties in these tasks. By
dividing the original tasks into two stages, we trans-
fer the burden of multilingual processing from the
V&L model to the mLM, making it a more feasible
objective. This approach not only helps alleviate
the scarcity problem to some extent but also proves
to be more efficient.

We provide valuable insights into adapting V&L
tasks to be compatible with mLMs. Furthermore,
we explore the benefits of few-shot learning and

frame engineering techniques in enhancing perfor-
mance. Our experimental results demonstrate the
efficacy of recycling existing models, achieving
state-of-the-art performance. Overall, ICU presents
a promising solution for multilingual V&L tasks
and opens up avenues for future research.

Limitations

While our study focuses on exploring adaptations
for two specific V&L tasks, it is important to ac-
knowledge that the adaptation process can be chal-
lenging for other tasks. Take xGQA (Pfeiffer et al.,
2022) as an example, it can not be easily converted
to a Question Answering task, since the caption
are usually too short to include the whole context
of the image. The scarcity problem, particularly
prevalent in low-resource languages like Tamil in
the MaRVL dataset, continues to persist.
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