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Abstract
Adapters are widely popular parameter-
efficient transfer learning approaches in nat-
ural language processing that insert trainable
modules in between layers of a pre-trained lan-
guage model. Apart from several heuristics,
however, there has been a lack of studies analyz-
ing the optimal number of adapter parameters
needed for downstream applications. In this
paper, we propose an adapter pruning approach
by studying the tropical characteristics of train-
able modules. We cast it as an optimization
problem that aims to prune parameters from the
adapter layers without changing the orientation
of underlying tropical hypersurfaces. Our ex-
periments on five NLP datasets show that trop-
ical geometry tends to identify more relevant
parameters to prune when compared with the
magnitude-based baseline, while a combined
approach works best across the tasks.

1 Introduction

With the increase in network sizes, we are observ-
ing an ever-increasing space and computational
demand for models needed to solve a given task.
To tackle this, model compression (Cheng et al.,
2017) techniques are becoming continuously popu-
lar which retain the most important learning from
the full model while reducing the size of the net-
work either by pruning or distillation.

Transfer learning approaches, such as adapters
(Houlsby et al., 2019), are a parameter-efficient al-
ternative to full model fine-tuning which obviates
the need to maintain a task-specific copy of the
base language model (LM). Adapters insert simple
modules in between layers of an LM to adapt the
pre-trained representation for a given downstream
NLP task. However, there is a lack of research in
pruning adapter modules to further enhance their
parameter efficiency. We hypothesize that adapter
weights can be pruned significantly by not compro-
mising the performance observed with unpruned
states, this motivates the proposed approach.

In this work, we propose a novel approach to
pruning adapter layers without any iterative fine-
tuning of the model parameters on downstream
tasks. Using tropical algebra, we study the (duals
of) hypersurfaces generated by adapter modules in
the high-dimensional space. As a pruning objec-
tive, we aim to minimize the magnitude of adapter
weights while constraining the change in hypersur-
face geometry to be small.

Related works include adapters pruning using
lottery ticket hypothesis (Wu et al., 2022; Frankle
and Carbin, 2018) that performs iterative pruning—
a few gradient steps, prune, and reset the parame-
ters to initial weights. Rücklé et al. (2020) drops
adapter from lower transformer layers. While these
works are interesting, we provide a more concrete
angle to prune adapter layers—prune by preserving
the hypersurface geometry. We extend an insightful
analysis of tropical geometry of neural networks
(Zhang et al., 2018; Alfarra et al., 2022) to adapters.

2 Background

Adapter Operations. We use the adapter setup
proposed by Pfeiffer et al. (2020) that inserts small
modules after FFN add and layer norm sub-layer.

h← h+ f(hWd)Wu (1)

It consists of down-projection Wd ∈ Rd×r, up-
projection Wu ∈ Rr×d, a ReLU activation func-
tion f(·), where typically r < d.

Tropical Arithmetic. Tropical algebra is a vari-
ant of classical algebra where basic arithmetic op-
erations are redefined. The tropical sum ⊕ of two
numbers represents their maximum and the tropical
product ⊙ represents a classical addition1. Thus,

x⊕ y = max {x, y}
x⊙ y = x+ y

1The tropical addition can be defined as a ⊕ b =
min{a, b} or max{a, b}, we focus on the latter as we ana-
lyze a ReLU-based adapter network.
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For e.g., 2 ⊕ 5 = 5 and 2 ⊙ 5 = 7. Axioms and
order of arithmetic operations in tropical algebra
follow the classical, thus addition is commutative
and multiplication is distributive over addition. We
relegate detailed discussions about tropical algebra,
polynomials, and hypersurfaces to the Appendix A.

Notations used: Henceforth, we denote
Wd, Wu, h by A, B, and x, respectively;
B+:=max{B,0}; B−:=max{−B,0}; bi
denotes ith row of B; bi+:=max{bi,0},
bi−:=max{−bi,0}; Diag[u] arranges u in a
diagonal matrix; ||G||1,1:=Σd

k=1||G(i, :)||1; || · ||F
denotes Frobenius Norm.

3 Tropical Adapter Pruning

Given a frozen language model adapted to a spe-
cific task using adapter layers, we divide our ap-
proach into two steps: 1) Finding adapter weights
PT that are crucial to preserving the tropical
adapter hypersurface by solving a simple optimiza-
tion problem; 2) Pruning of adapter weights with
least magnitudes that do not lie in PT . Next, we de-
scribe step-1 which is core to the pruning method:

A bottleneck adapter block can be expressed
by f(x) = Bmax{Ax,0}. Since f(x) in it-
self is not a tropical polynomial and thus does not
form a tropical surface, we rewrite it in terms of
the difference between two tropical polynomials
f(x) = H(x)−Q(x), following the analysis of
tropical rational function by Alfarra et al. (2022).
Thus we focus on a relatively lenient problem i.e.
identifying weights that preserve tropical hyper-
surfaces defined by H(x) and Q(x). Let H(x)
and Q(x) be the respective hypersurfaces, one can
choose a sparse set of Â, B̂ that belongs to the
set of matrices obtained by solving the following
optimization problem

min
Â,B̂

d(H(x), Ĥ(x)) + d(Q(x), Q̂(x))

Where d(·) defines the distance between two geo-
metric objects; Ĥ and Q̂ are hypersurfaces obtained
by substituting A and B with Â and B̂ in f(x).
In place of preserving the orientation ofH(x) and
Q(x), we aim to preserve the orientation of their
respective dual objects denoted by δ(H(x)) and
δ(Q(x)). Thus,

min
Â,B̂

d
(
δ(H(x)), δ(Ĥ(x))

)
+d

(
δ(Q(x)), δ(Q̂(x))

)

Without the loss of generality, we assume down-
projection is bias-free2, δ(·) can be expressed in
terms of generator matrices G of zonotopes ob-
tained from A and B. To find sparse Â, B̂, we
introduce sparse regularization terms in the opti-
mization function. Thus, finding adapter weights
that preserve the hypersurface geometry can be cast
as the following optimization problem:

min
Â,B̂

1

2

∣∣∣
∣∣∣Ĝ1 −G1

∣∣∣
∣∣∣
2

F
+

1

2
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+ λ2
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∣∣∣Ĝ2

∣∣∣
∣∣∣
1,1

(2)

where G1 = Diag[bi+]A;G2 = Diag[bi−]A,

Ĝ1 = Diag[b̂i+]Â; Ĝ2 = Diag[b̂i−]Â,

We provide a derivation of the above function in
Appendix B. It is important to note that in the prun-
ing phase, we do not iteratively fine-tune adapter
or LM parameters on the downstream task.

Algorithm 1: Tropical Adapter Pruning

Initialize: T , η λ1, λ2;
Return: Â, B̂;
B̂+ ← B+, B̂− ← B−;
for t in 1,. . . , T do

for i in 1,. . . , r do
if t is even then

Ĝi
1 = Diag[b̂i+]Â;

loss1 = ||Ĝi
1 −Gi

1||2F ;
loss2 = ||Ĝ1||1,1;
ℓ = 0.5 ∗ loss1 + λ1 ∗ loss2;

else
Ĝi

2 = Diag[b̂i−]Â;
loss1 = ||Ĝi

2 −Gi
2||2F ;

loss2 = ||Ĝ2||1,1;
ℓ = 0.5 ∗ loss1 + λ2 ∗ loss2;

end
< check convergence of combined loss >
Â← Â− η ∗ ∂

∂(Â)
ℓ;

B̂← B̂− η ∗ ∂
∂(B̂)

ℓ.

end
end

2We merge bias term b with the down-projection matrix,
thus x← [x, 1] and A← [A;b].
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Task-1 (MELD)
1.4% 2.9% 5.7% 8.6% 11.5% 14.5% 17.4% 20.3% 23.3% FM

Standard 33.56 35.00 41.02* 39.65 43.72 49.38 50.18 55.05 57.06
60.71Tropical 34.06* 37.37* 36.79 49.59* 52.46* 52.28* 56.34* 58.04* 58.09*

Combined 33.56 37.37 41.02 49.59 52.46 52.28 56.34 58.04 58.09

Task-2 (SNLI)
1.4% 2.9% 4.3% 11.5% 13.0% 14.5% 26.0% 32.8% 39.4% FM

Standard 40.31 34.41 34.74 77.91* 79.96* 82.06* 85.77 86.01 85.77
86.45Tropical 41.08* 46.33* 46.94* 75.82 77.93 78.17 85.96* 86.17* 85.96*

Combined 41.08 46.33 46.94 77.91 79.96 82.06 85.96 86.01 85.96

Task-3 (RT)
1.4% 2.7% 4.2% 5.8% 7.3% 8.9% 11.1% 12.1% 15.0% FM

Standard 77.49 74.67 69.23 82.65 83.86 86.49 83.02 85.18 87.80*

87.99Tropical 79.17* 82.55* 83.68* 84.05* 86.12* 87.05* 87.24* 88.37* 87.71
Combined 79.17 82.55 83.68 84.05 86.12 86.49 87.24 88.37 87.71

Task-4 (IMDB)
1.4% 2.9% 5.7% 8.5% 11.5% 14.4% 17.4% 20.3% 26.3% FM

Standard 74.55 71.70 69.82 59.46 77.04* 80.85 80.32 83.75 84.22
87.61Tropical 75.37* 79.14* 82.22* 75.89* 75.11 83.79* 83.78* 85.41* 85.15*

Combined 74.55 79.14 82.22 75.89 77.04 83.79 83.78 85.41 85.15
Task-5 (TREC)

Method 1.4% 3.0% 5.0% 11.5% 14.5% 16.1% 25.9% 30.4% 44.5% FM

Standard 24.0 42.2 56.0 63.0 64.6 70.2 96.6∗ 96.8∗ 97.4∗

97.2Tropical 30.8* 45.8* 64.6* 71.8* 75.8* 73.0* 96.4 96.4 97.2
Combined 30.8 45.8 64.6 71.8 75.8 73.0 96.6 96.8 97.4

Table 1: Percentage of retained parameters (100 − p̂)% vs Test Accuracy/F1. FM refers to the full model, i.e.,
unpruned adapter states. Superscript ‘*’ refers to better performing setting out of Standard and Tropical.

Given an adapter module, Algorithm1 finds
the minimizers Â and B̂ by performing gradient
descent-based updates3 over two loss terms ex-
pressed in terms of generators G1 and G2. T , r
denote the maximum gradient steps and the num-
ber of rows in A and columns in B. η ∈ R+ is
step size and λ1, λ2 ∈ R+ indicate the importance
of pruning over the shift in generators. We em-
ploy layer-wise pruning of the network without
any iterative fine-tuning on downstream tasks. We
find p% parameters with the smallest magnitude
in {A,B} and {Â, B̂} separately, denoted by PS

and PT . We denote tropical adapter pruning by
Tropical that prunes only those parameters in PT

which are also present in the set PS . The final
percentage of pruned parameters decreases to p̂%.
We compare the approach with the baseline that
prunes p̂% of the smallest magnitude parameters
from the layer. We denote this setting by Standard.
Combined chooses one of Tropical or Standard
whichever gives better results on the development
set. We omit the comparison with AdapterDrop

3Not to confuse with gradient descent used to learn model
parameters. Here, it is used to solve the optimization problem
in Equation (2).

method as even at 50% pruning, the method shows
a significant drop in the performance. Standard
inherently tests the validity of magnitude-based
pruning via lottery ticket hypothesis (Wu et al.,
2022) but without iterative retraining of adapter
parameters. We do not iteratively fine-tune adapter
parameters on the downstream task. The proposed
method is agnostic to downstream tasks, models,
and the learning algorithm used to train it. Thus,
the framework is related to but not directly com-
parable to model L0 sparsification (Louizos et al.,
2017) and low-rank compression (Idelbayev and
Carreira-Perpinán, 2020).

4 Experiments

We set up a RoBERTa-base (Liu et al., 2019) with
one adapter module inserted in each layer after add
and layer norm sub-layer. We follow the adapter
configuration from Pfeiffer et al. (2020). For prun-
ing analysis, we consider three tasks—Emotion
Recognition in Conversations (ERC), Natural Lan-
guage Inference (NLI), and Text Classification
(TC). For ERC, we use MELD, the task is to classify
the emotion of an utterance given past utterances.
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Figure 1: Value of pruning function (loss) with itera-
tions.

Keeping the current utterance first, we append the
past seven utterances in reverse order (Bhardwaj
et al., 2022b). For NLI, we use SNLI dataset (Bow-
man et al., 2015). We append the premise and
hypothesis separated by the special token <s>. For
TC task, we use three datasets: IMDB (Maas et al.,
2011), Rotten Tomatoes RT (Pang and Lee, 2005),
and TREC (Li and Roth, 2002). Separately, we pre-
train adapters on downstream tasks with batch size
32, LR of 0.001, and 1000 steps with evaluation at
every 100 steps using a development set. The eval-
uation metric for ERC is macro F1 and accuracy
for all the other tasks. We set pruning percentage
p ∈ {98%, 96%, . . . , 2%}. Table 1 shows the test
performance of networks with the percentage of
adapter parameters retained, i.e., (100− p̂)%, this
is represented in black-bold fonts. We observe that
both Standard and Tropical can be effective in
pruning more than 60% of the adapter parameters
with a small drop in performance with respect to
the full module performance (FM). Moreover, we
notice Tropical outperforms Standard in eight
out of nine pruned model states on MELD, six out
of nine on SNLI, eight out of nine pruned adapter
states on RT and IMDB, and six out of nine states
on Trec. Across the 45 combinations of tasks and
pruning fractions, except for two settings, we ob-
serve tropical geometry-based combined approach
outperforms the other two, denoted in red font.

Next, we study tropical pruning in different
scenarios—class-bind, class-uniform, and node-
wise (See et al., 2016). In class-blind (CB), all the
parameters of adapters are considered for pruning
p% of the smallest magnitude weights and biases.
In class-uniform (CU), we prune p% of the smallest
magnitude parameters of each adapter layer sepa-
rately. We also refer to it as layer-wise pruning. In
node-wise pruning, we prune p% of the node-wise

1.4% 2.7% 5.8% 8.9% 12.0% 15.0%
S-CN 71.76 68.48 65.29 84.52 85.55 86.96
T-CN 76.27 79.55 78.42 80.11 86.49 87.24
S-CU 77.49 74.67 82.65 86.49 85.18 87.80
T-CU 79.17 82.55 84.05 87.05 88.37 87.71
S-CB 69.89 74.39 58.82 76.17 85.74 87.90
T-CB 73.73 50.00 66.79 84.05 86.87 86.68

Table 2: Accuracy scores on RT task. Comparing node-
wise (CN), layer-wise (CU), and pruning all modules to-
gether (CB). S and T denote Standard and Tropical,
respectively.

parameters (considering both weights and biases).
As shown in Table 2, in the Standard settings

S-CN/ S-CU/ S-CB, we observe layer-wise S-CU
pruning works best in four out of six different
fractions of parameters retained. In the Tropical
pruning settings T-CN/ T-CU/ T-CB, layer-wise prun-
ing T-CU performs best amongst all the considered
pruning fractions. Moreover, T-CU works best un-
der each pruning fraction category.

Figure 1 shows the Objective function in Equa-
tion (2) quickly converges to the minimum. This
observation corroborates the claim of convexity by
(Alfarra et al., 2022). The plot in Figure 2 shows
the change in zonotope structure before and after
optimization on SNLI. The black polytope is ob-
tained from generators A, B and the red polytope
shows the polytope obtained after optimization,
i.e., zonotope obtained from Â. B̂. We observe the
optimization preserves the geometry of zonotopes
while enforcing the rows of the down-projection
matrices to be as much sparse as possible, i.e.,
many points in the zonotope come close to zero,
keeping necessary boundary points to preserve the
geometry. These zonotopes are dual to adapter hy-
persurfaces, thus preserving one structure enforces
the other’s orientation to remain preserved. Hence,
one can prune adapters yet maintain their charac-
teristic properties.

5 Conclusion

We proposed a novel approach for adapter prun-
ing by studying their tropical characteristics. We
formulated it as an optimization problem that aims
to identify row-sparse projection matrices while
minimizing the distance between tropical hypersur-
faces before and after pruning. We demonstrated
the advantages of tropical characterization on five
NLP datasets reformulated as classification.
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Figure 2: Zonotope defined by adapters before (red) and
after the pruning (blue) via Algorithm 1.

6 Limitations

As our focus is on adapter-based architectures, the
proposed approach can not be directly adapted to
other parameter-efficient approaches such as soft
prompt tuning (Lester et al., 2021; Bhardwaj et al.,
2022a) which do not have explicit dense connec-
tions and activation. Another limitation comes
from ReLU activation function. Since it fits in
min-max (Tropical) algebra, we could reformulate
the problem in terms of tropical polynomials. How-
ever, for other non-linear activation functions such
as Tanh, one has to reformulate and likely resort to
approximations as there is no straightforward way
to cast them in a tropical algebraic expression.
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A Tropical Algebra and Geometry

To motivate our approach we first provide back-
ground on tropical algebra and geometry.

Tropical Arithmetic. Tropical algebra is a vari-
ant of classical algebra where basic arithmetic op-
erations are redefined. The tropical sum ⊕ of two
numbers represents their maximum and the tropical
product ⊙ represents a classical addition4. Thus,

x⊕ y = max {x, y}
x⊙ y = x+ y

For instance, 2 ⊕ 5 = 5 and 2 ⊙ 5 = 7.
Axioms and order of arithmetic operations in trop-
ical algebra follows the classical, thus addition is
commutative and multiplication is distributive over
addition:

x⊕ y = y ⊕ z (commutative)

x⊙ (y ⊕ z) = x⊙ y ⊕ x⊙ z (distributive)

From these properties, it can be inferred that −∞
is the additive identity as −∞ ⊕ x = x and 0 is
multiplicative identity 0⊙ x = x. Elements under
the tropical arithmetic in the space of real numbers
(with −∞) are said to form a semiring T denoted
by a triplet (R ∪ {−∞},⊕,⊙).
Tropical Power and Monomial. For any vari-
able x ∈ T, the tropical power can be defined as
x⊙a = a.x, where a ∈ N (a natural number). For
simplicity of notations, we will write xa in place of
x⊙a. A tropical monomial is expressed in the form

c xα := c⊙ xa11 ⊙ xa22 ⊙ . . .⊙ xadn

where c ∈ R∪{−∞} and ai ∈ N. For convenience,
we will write tropical monomial by c xα where
x=(x1, . . . , xd) ∈ Td and α=(a1, . . . , ad) ∈ Nd.

Tropical Polynomial. A d-variable tropical poly-
nomial f(x) can be represented by a finite sum of
tropical monomials

f(x) = c1x
α1 ⊕ c2x

α2 ⊕ . . .⊕ cnx
αn

where the ai ̸= aj when i ̸= j, coefficients ci ∈
R ∪ {−∞}, αi = (ai1, ai2, . . . , aid) ∈ Nd and
exponents ai are integers. Ignoring−∞ for ease, it
is important to note that p has a mapping Rd → R,
both x and α are d-dimensional vectors.

4The tropical addition can be defined as a ⊕ b =
min{a, b} or max{a, b}, we focus on the latter as we ana-
lyze a ReLU-based adapter network.

Figure 3: Tropical curve F(p) (orange) and dual sub-
division of Newton polytope δ(p) (black) of f(x) =
1⊙ x2

1 ⊕ 1⊙ x2
2 ⊕ 2⊙ x1x2 ⊕ 2⊙ x1 ⊕ 2⊙ x2 ⊕ 2.

Tropical powers, monomials and polynomials
are basic building blocks of the algorithm we pro-
pose for adapter pruning.

A.1 Tropical Hypersurfaces.

Tropical hypersurfaces are analogues to classical
algebraic surfaces and key objects for us to study
for adapter pruning. Given a tropical polynomial
f(x) = c1x

α1 ⊕ . . .⊕ cnx
αn , its tropical hypersur-

face is a set of points where p is attained by two or
more constituting monomials, thus

F(p) := {x ∈ Rd : cix
αi = cjx

αj ,

for some αi ̸= αj}.

Here we mention a few provable facts—F divides
the domain of p into convex regions (or cells). Poly-
nomial p is non-linear at x if and only if x lies onF .
Similar to algebraic polynomials, we can identify
Newton polytopes associated to tropical polynomi-
als.

Newton Polytopes. For a given polynomial
f(x) = c1x

α1 ⊕ . . . ⊕ cnx
αn , its newton poly-

tope is defined by the convex hull of the exponents
αi ∈ Nd. The points αi and polytope lies in a
d-dimensional plane (Rd). Thus

∆(p) := ConvHull({αi ∈ Rd : ci ̸= −∞}ni=1)

The tropical polynomial p determines the dual
subdivision δ(p) of newton polytope. The tropical
hypersurface F(p) is dual graph to this δ(p), i.e.,
vertices of F(p) are regions of δ(p) and edges rep-
resent two adjacent regions in δ(p)5. Each vertex
in δ(p) corresponds to one "cell" in Rb where p

5Reader can read more about dual graphs in (Deo, 2017)
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is linear. Since δ(p) is in one-to-one correspon-
dence with the tropical hypersurface, we study the
adapter characteristics—underlying hypersurfaces
F(p))—by studying the orientation of the primal
graph δ(p). To determine δ(p), we use the fact that
when the model is bias-free, δ(p) = ∆(p) (Zhang
et al., 2018; Alfarra et al., 2022). Figure 3 provides
an illustration of F(p) adn δ(p) for a specific p.

Zonotopes. The zonotope formed by
v1, . . . ,vm ∈ Rn is defined as Z(v1, . . . ,vm) :=
{∑m

i=1 λivi, 0 ≤ λi ≤ 1}.
Minkowski sum. Given two sets P1 and P2 in
Rd, the Minkowski is defined as

P1+̃P2 := {v1 + v2 : v1 ∈ P1,v2 ∈ P2}

Property-1. The Minkowski sum of two poly-
topes is the convex hull of their vertex sets. Let,
V(P ) be the vertex sets of a polytope P , then

P1+̃P2 = ConvHull
(
V(P1)+̃V(P2)

)

Under bias-free assumption,

Property-2. Let p1 and p2 be the tropical poly-
nomials, then

δ(p1 ⊙ p2) = δ(p1)+̃δ(p2)

B Pruning Objective

B.1 Notations Used
We denote Wd, Wu, h by A, B, and x, respec-
tively; B+:=max{B,0}; B−:=max{−B,0};
bi denotes ith row of B; bi+:=max{bi,0},
bi−:=max{−bi,0}; Diag[u] arranges u in a di-
agonal matrix; ||G||1,1:=Σd

k=1||G(i, :)||1; || · ||F
denotes Frobenius Norm.

B.2 Derivation of Pruning Objective
Let f(x) = Bmax{Ax, 0}, then

f(x) = (B+ −B−)
(
max{A+x,A−x} −A−x

)

=
[
B+max{A+x,A−x}+B−A−x

]

−
[
B−max{A+x,A−x}+B+A−x

]

Thus we define H(x) and Q(x) as

H(x) :=
[
B+max{A+x,A−x}+B−A−x

]

Q(x) :=
[
B−max{A+x,A−x}+B+A−x

]

Thus, f(x) = H(x) − Q(x). Let f i denote the
first output from adapter block, bi = B[i, :] (i.e.
ith row of B). We useH and Q to denote tropical
hypersurfaces of H and Q at node i.

H =

[
p⊙

j=1

(
xa+j ⊕ xa−j

)bi+j

]
⊙
[

p⊙

j=1

(
xa−j

)bi−j

]

Computing dual subdivision

δ(H) =
[
+̃

p
j=1

(
bi+ConvHull(a+j , a

−
j )

)]

+̃
[
+̃

p
j=1

(
bi−j a−j

)]
(P-1)

=
[
+̃

p
j=1

(
bi+ConvHull(a+j − a−j , 0)

)]

+̃
[
+̃

p
j=1

(
bi−j a−j

)]
+ shift (P-2)

=
[
+̃

p
j=1

(
bi+ConvHull(aj , 0)

)]
+ shift

Similarly, we compute dual subdivision of qi

δ(Q) =
[
+̃

p
j=1

(
bi−ConvHull(aj , 0)

)]
+ shift

Note that convex hull of aj and 0 is a line seg-
ment. Thus, δ(hi) defines a Minkowski sum over
line segments which is a zonotope. Following Al-
farra et al. (2022), and ognoting the shifts, one can
straightaway obtain zonotope generators G1 and
G2 for δ(H) and δ(Q), respectibely.
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