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Abstract

Recent studies have shown remarkable suc-
cess in cross-domain named entity recognition
(cross-domain NER). Despite the promising
results, existing methods mainly utilize pre-
training language models like BERT to rep-
resent words. As such, the original chaotic rep-
resentations may challenge them to distinguish
entity types of entities, leading to entity type
misclassification. To this end, we attempt to
utilize contrastive learning to refine the original
representations and propose a model-agnostic
framework named MoCL for cross-domain
NER. Additionally, we respectively combine
MoCL with two distinctive cross-domain NER
methods and two pre-training language models
to explore its generalization ability. Empirical
results on six domains show the effectiveness
and good generalization ability of MoCL.

1 Introduction

Given a sentence, named entity recognition (NER)
aims to extract entities and classify them into pre-
defined entity types (Zhu and Li, 2022; Wang et al.,
2020). As shown in Table 1, given the sentence
S1, a NER model needs to extract the entity “Nova”
and classify it into the entity type person. Most
existing NER models rely on massive annotated
data, making it hard to directly apply them to data-
limited domains. To this end, many researchers
started to explore cross-domain named entity recog-
nition (cross-domain NER) methods (Yang et al.,
2022; Chen et al., 2022). This paper focuses on
the supervised setting, which generalizes effective
representations learned from the source domain to
the target domain with small annotated samples of
the target domain (DAUME III, 2007).

According to the tagging scheme, previously
supervised cross-domain NER approaches can be

†Corresponding author.
‡The results are predicted by a state-of-the-art model

(Zhang et al., 2022a).

Input Sentence Ground Truth Prediction‡

S1: Nova was
selected as
the official
voice of the

2013 Central
American

Games

Nova:
person

2013 Central
American

Games: event

Nova:
musicalartist
2013 Central

American
Games: event

Table 1: An example of entity type misclassification
from the CrossNER music dataset (Liu et al., 2021).
Entities are shown in Bold. The entity types shown in
blue are correct while the red one is wrong.

grouped into two types: (1) compositional labeling-
based methods that utilize the monolithic tags to
train models, where each token is labeled by a
composition tag (e.g., B-person) (Liu et al., 2021;
Zheng et al., 2022); (2) modular learning-based ap-
proaches that decompose the composition tag into
two tags, where each token is labeled by an entity
boundary tag (e.g., B) and an entity type tag (e.g.,
person) (Zhang et al., 2022a).

Figure 1: The t-SNE visualization of the representations
of entities from the CrossNER music dataset under the
compositional labeling-based framework in the BERT
embedding space (Kenton and Toutanova, 2019).

Despite the promising results, both types of ap-
proaches mainly leverage pre-training language
models like BERT to represent words. As such,
the original chaotic representations (Li et al., 2020)
may bring challenges for models to distinguish en-
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tities with different entity types of corresponding
domains, leading to entity type misclassification.
Let us consider S1 again. Through visualization
shown in Figure 1, we observe that the representa-
tions of entities with entity types “person” of the
source domain and “musicalartist” of the target
domain are mixed. As such, as shown in Table
1, even the state-of-the-art method may struggle
to successfully distinguish entities belonging to
the entity types “person” and “musicalartist”, and
hence wrongly classify the entity “Nova” into the
incorrect entity type “musicalartist” rather than the
correct entity type “person”. Recently, contrastive
learning has achieved remarkable success in com-
puter vision, which could generate discriminative
representations based on queries and keys (He et al.,
2020; Chen et al., 2020). Motivated by this, we at-
tempt to utilize contrastive learning to solve entity-
type misclassification faced by the above two kinds
of methods by refining the original chaotic repre-
sentations.

(a) orignial representations (b) refined representations

               pull
              push

musical
artist

labels under the 
modular learning

framework

labels under the 
sequence labeling

framework

person
B-person

Source

Target

domain shared

B-musicalartist

Figure 2: The illustration of our proposed framework
MoCL. Different shapes and colors (e.g., red, blue, and
purple) represent the entity types and domains of en-
tities, respectively. The tags adopted by the existing
two types of mainstream models (i.e., compositional-
labeling (Liu et al., 2021) and modular learning-based)
are colored in yellow and green, respectively. For sim-
plicity, we only draw the labels of entity type classifi-
cation in the modular learning-based approach (Zhang
et al., 2022a). Left: the original representation of enti-
ties, where the entities of the different entity types from
the source domain and the target domain are mixed.
Right: the refined representations after applying MoCL,
where entities of the different entity types from the
source domain and target domain are separated.

In this paper, we propose a momentum
contrastive learning-based model-agnostic frame-
work named MoCL for cross-domain NER. To
guide the learning processing of momentum con-
trastive learning, we first design two approaches
to generate keys‡ required by contrastive learning

‡Here we denote keys are refined sentences of the origi-
nally given sentence.

and name them Entity Bridge (EB) and Label
Bridge (LB) since they work as bridges to enable
knowledge transfer from the data-resource source
domain to the data-limited target domain. Then
based on the generated keys, as shown in Figure
2 (a), MoCL would explicitly pull closer entity
representations belonging to the same entity type.
Besides, it would simultaneously push away en-
tity representations belonging to different entity
types. Thus, as shown in Figure 2 (b), the distances
between entities of different entity types become
larger while the distances between entities of the
same entity type are reduced, resulting in discrimi-
native representations. To summarize, we make the
following contributions:

• To the best of our knowledge, we are the first
to utilize contrastive learning to refine the orig-
inal chaotic representations in cross-domain
NER. A model-agnostic framework MoCL
is proposed and we respectively combine it
with two distinct models and two different
pre-training language models to explore its
generalization ability.

• In order to guide the process of contrastive
learning, we explore two methods to generate
keys, namely Entity Bridge (EB) and Label
Bridge (LB). With the combination of both
bridges, MoCL could capture the relations
of entities at different granularities, which
have been shown effective for NER (Ma et al.,
2022a; Chen et al., 2021a).

• Experimental results show the effectiveness
of MoCL and the visualization analysis shows
it could provide better separation among dif-
ferent entity types in the embedding space.

2 Model

This paper proposes a contrastive learning-based
framework MoCL for cross-domain NER, which
facilitates the ability to discriminate entities with
different entity types. MoCL mainly consists of
two modules: the Base Cross-NER model and the
Contrastive Learning framework. We first intro-
duce the Base cross-domain NER Model (Section
2.1) and then describe the Contrastive Learning
Framework (Section 2.2). Finally, we present the
training procedure (Section 2.3). The whole archi-
tecture of MoCL is shown in Figure 3.
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2.1 Base cross-domain NER Model
The Base cross-domain NER model involves a
Base cross-domain NER Encoder (Section 2.1.1)
and an Output Layer (Section 2.1.2), is con-
structed to perform the task of cross-domain NER.
The base cross-domain NER Model can be im-
plemented by different existing cross-NER ap-
proaches (Liu et al., 2021; Zhang et al., 2022a).

Figure 3: The architecture of MoCL. The rectan-
gles with colors indicate representations of different
sentences (red: hS

iCLS of Si, blue: hT
iCLS of Ti,

green: hS
i+CLS of posSi , hT

i+CLS of posTi , and or-
ange: hS

i1−CLS of negSi1, hS
i2−CLS of negSi2, hT

i1−CLS
of negTi1, ht

i2−CLS of negti2). MoCL decreases the em-
bedding distance between sentences and their positive
keys (shown in the direction of green full lines and ar-
rows outside the sentence embeddings) while pushing
away negative keys (shown in the direction of red full
blue lines and arrows outside the sentence embeddings).
2.1.1 Base cross-domain NER Encoder
For the cross-domain NER, there are a large set
of annotated sentences S = (S1, S2, . . . , SNs)
from a source domain and a set of limited sen-
tences T = (T1, T2, . . . , TNt) from a target do-
main, where Di denotes the ith sentence of the
domain D, and the lengths of the number of sen-
tences are Ns and Nt respectively. Given two
sentences Si = (wS

i1, w
S
i2, . . . , w

S
im) and Ti =

(wT
i1, w

T
i2, . . . , w

T
in), one from each domain side,

here l (m for source domain and n for the target
domain, respectively) denote the sentence length
(i.e., the total number of words). Each sentence
can be constructed as “[CLS]Di[SEP ]”, where
[CLS] and [SEP] denote two special symbols (Ken-
ton and Toutanova, 2019). Then, we feed them into
the Base cross-domain NER Encoder, which can be
implemented by a pre-trained model like BERT to
respectively obtain their hidden representations, de-

noted as zSi = (hSiCLS , h
S
i1, h

S
i2, . . . , h

S
im, hSiSEP )

and zTi = (hTiCLS , h
T
i1, h

T
i2, . . . , h

T
in, h

T
iSEP ).

2.1.2 Output Layer
Sequentially,(hSi1, h

S
i2, . . . , h

S
im) and

(hSi1, h
S
i2, . . . , h

S
in) are delivered to an output

layer to obtain the types of entities. Then the
probability that the jth word in ith sentence of
domain D be categorized to the kth entity type
typek, denoted by p(typek|hDij ), can be computed
by Softmax function:

p(typek|wD
ij ) =

exp{wD
k hDij + bDk }∑cD

g=1 exp{wD
g hDij + bDg }

. (1)

where cD, wD
g and bDg denotes the number of entity

types, the weight and bias parameters in the domain
D (source or target), respectively. We then utilize
cross-entropy loss to train on the corresponding
sentence (S or T ) as follows:

LDtask = −
ND∑

i=1

1

|Di|
l∑

j=1

cD∑

k=1

yj,klog(p(typek|wD
ij )

(2)

where yj,k denotes the kth element in yi, which is
an one-hot label indicating the entity type of wD

ij .
In terms of the source domain, the training loss is
LS
task. When it comes to the target domain, the

training loss is LT
task.

2.2 The Contrastive Learning Framework
The Contrastive Learning Framework mainly
contains three components: 1) the Keys Genera-
tors (Section 2.2.1); 2) the Keys Encoder (Section
2.2.2), and 3) a Contrastive Learning Module
(Section 2.2.3). The Keys Generators (i.e., Positive
Keys Generator and Negative Keys Generator) can
be implemented by our proposed three bridges.
The Contrastive Learning module is designed to
allow the model to distinguish entities with respect
to their entity types based on the output from the
two encoders (i.e., the Base cross-domain NER
Encoder, the Key Encoder).

2.2.1 Keys Generator
Motivated by the power of contrastive learning to
learn discriminative representations in computer vi-
sion, we consider applying it in cross-domain NER.
In computer vision, the typical ways to construct
keys and queries are such that the query is an orig-
inal image, and its positive keys are obtained by
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Figure 4: Comparative illustration of three key generation strategies. Plus and minus refer to positive and negative
examples. Original entities and their replacements are shown in green and red, respectively. (a) Entity Bridge (b)
Label Bridge (c) The combination of (a) and (b).

applying operations like revolving or cutting the
same image. In contrast, negative keys are other
images (He et al., 2020). However, vanilla momen-
tum contrastive learning is not directly applicable
in cross-domain NER. If directly taking the typical
data augmentation in cross-NER, some information
may be closed in the immediate keys. For instance,
given the sentence “He worked in Consortium”,
the generated positive key may be “The workplace
of him is Consortium” while the generated neg-
ative key may be “The workplace of him is not
Consortium”. In this way, the model mainly learns
“Consortium is a location” instead of “Consortium”
belongs to the entity type ORG. In fact, the typi-
cal way to construct keys and queries neglects the
fine-grained entity-type information.

To address this limitation, we explore three dif-
ferent key generation strategies, which can make
better use of the fine-grained entity-type informa-
tion. The detailed key generation strategies are
illustrated in Figure 4.

• Entity Bridge. Given a sentence, an intuitive
way to generate keys is based on entities. In par-
ticular, we first use the entities and their entity
types from the whole training set to construct a
dictionary and we did not use additional dictio-
naries or knowledge bases. Given a sentence, we
would ergodic all entities in a sentence and mod-
ify them one by one. In particular, based on one
given entity, and its entity type, we would ran-
domly select another entity from the constructed
dictionary to replace the entity. For example,
suppose there are five entities (entity types are
shown in the form of ()) in the training set: XXX
(person), YYY (person), and ZZZ (song), AAA
(location), BBB (song). the dictionary would

be person: XXX, YYY, location: AAA, song:
BBB. Then given the sentence A= "XXX and
YYY are running". If we want to modify XXX,
we would randomly select another entity type
except person from the dictionary (e.g., song
and location). Suppose the selected entity type
is song. Then we would randomly select one
entity from entities whose entity type is song
(e.g., ZZZ and BBB). Suppose the selected en-
tity is BBB. Then the generated negative key
would be BBB is running. Similarly, as shown
in Figure 4 (a), we can replace “Moldavia” in
the original sentence from the source domain
with “America”, where the “America” is a dif-
ferent entity with the same entity type country
as “Moldavia”. Similarly, we can replace “Wal-
lachia” with “Chicago”, “Algeria” with “India”,
from which we can get a positive Key “He also
collected in America, Chicago, and (in 1913)
India.”. Besides, a negative entity could be gen-
erated by replacing “Moldavia” with “Westenra”,
an entity belonging to another entity type award,
which is randomly sampled from the dataset. Fi-
nally, we can obtain a negative Key “He also col-
lected in Westenra, HeadtoHeart, and (in 1913)
Hero.”.

• Label Bridge. In order to leverage the label
information of text, which has been shown effec-
tive in the cross-domain NER task (Hu et al.,
2022), we propose a key generation strategy
called Label Bridge. As shown in Figure 4 (b),
to get a positive key, we replace the entity “Mol-
davia” in the original sentence with its entity
type country, and we can produce a negative key
by replacing “Moldavia” with another entity type
song, a different entity type randomly sampled

3872



from the dataset.

• The combination. In order to simultaneously
utilize the entity and label information, we adopt
either the entity bridge or the label bridge ran-
domly with equal likelihood, which has been
shown in Figure 4 (c). In terms of the positive
key, we can replace “Algeria” with an entity “In-
dia”, “Moldavia” with its entity type country,
and “Wallachia” with its entity type location.
When it comes to the negative key, it can be
generated by replacing “Moldavia” with another
entity type song and replacing “Wallachia” with
another entity HeadtoHeart.

After applying one of the above strategies, given
original sentences Si and Ti mentioned in Section
2.1.1, a new positive key possi for Si and a new pos-
itive key posTi for Ti will be generated, respectively.
Meanwhile, we generate N‡ different negative keys
negSi1 and negi2S for Si and two different negative
keys negTi1 and negTi2 for Ti to make better use of
mutual information (Oord et al., 2018).

2.2.2 Keys Encoder

By leveraging one of the above three key generation
strategies, we can obtain a total of six keys for each
original sentence. Each key X can be constructed
as “[CLS]X[SEP ]”, where [CLS] and [SEP] de-
note two special symbols (Kenton and Toutanova,
2019). Then, we feed them into the keys Encoder,
which can be implemented by a pre-trained model
like BERT to respectively obtain the correspond-
ing sentence representations, denoted as hSi+CLS of
possi , hTi+CLS of posTi , hSi1−CLS of negSi1, hTi1−CLS
of negTi1,hSi2−CLS of negSi1, hTi2−CLS of negTi1.

2.2.3 the Contrastive Learning Module

Based on the generated keys, we apply contrastive
learning to cross-domain NER by minimizing the
distance between representations of entities with
the same type and maximizing the distance between
representations of entities belonging to different
types in order to improve the applicability of the
model in the target domain.

Given the above sentence representations, we
can calculate the contrast loss for each original
sentence and its sampled sentences by:

‡According to preliminary experiment results, which is
described in Section 4.2 A3, we set N to 2.

LD
con = −

ND∑

i=1

1

|Di|
∗log s(q, k+)

s(q, k+) +
∑2

j=1 s(q, k
−)

(3)

s(q, k+) = s(hDiCLS , h
D
i+CLS)/τ (4)

s(q, k−) = s(hDiCLS , h
D
ij−CLS)/τ (5)

Here s denotes the function to calculate the sim-
ilarity score by applying the dot product opera-
tion between two given embeddings, while τ is
a scalar temperature parameter (Wang and Isola,
2020). Based on the similarity score, models could
minimize the distance between positive keys and
maximize the distance between the negative keys,
achieving alignments among entities.

2.3 Model training
Following (He et al., 2020), we utilize momentum
update to maintain the stability and to keep the
consistency of representations between the Base
cross-domain NER Encoder and the keys Encoder.
In particular, by having the weights of the networks
slowly track the learned networks, which means
the keys encoder updates slowly, this can greatly
improve the stability during training. Momentum
updates can be formulated as:

θ ← mθ + (1−m)θ′ (6)

where m is a momentum coefficient, which is a
relatively large number between 0 and 1, and θ and
θ′ is the parameter of the Base cross-domain NER
Encoder and the keys Encoder respectively.

Eventually, we attempt to minimize the com-
bined loss to train our model by:

L = LStask ++LTtask + γ(LS
con + LT

con) (7)

where γ is a weight coefficient.

3 Experimental Setups

3.1 Datasets & Evaluation Metrics
We use two datasets for experiments, including one
domain Social Media of the dataset Twitter (Lu
et al., 2018), and five domains in the dataset Cross-
NER (Liu et al., 2021). We take Social Media as
the source domain and five domains in CrossNER
as target domains (Liu et al., 2021). Table 2 shows
detailed statistics of each domain and their corre-
sponding entity types are shown in Table 3.
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Table 2: Statistics on the seven domains in our experi-
ments.

Domain #Train #Dev #Test
Source Social Media 4290 - -

Target

Politics 200 541 651
Science 200 450 543
Music 200 380 465

Literature 100 400 416
AI 100 350 431

Following (Liu et al., 2021) and (Zhang et al.,
2022a), we use F1-score to evaluate the perfor-
mance of models. In particular, an entity is consid-
ered to be correct only if its range and entity type
are both correct.

3.2 Experimental Settings
We combine MoCL with two pre-training language
models, including BERT‡ (Kenton and Toutanova,
2019) (i.e., the basic setting) and the domain-
adaptive pre-training language model (i.e., the
DAPT setting) of each target domain (Liu et al.,
2021). Following (Liu et al., 2021) and (Zhang
et al., 2022a), for the basic setting, we initialize the
textual representation by BERT and set the dimen-
sion to 768. While for the DAPT setting, follow-
ing (Liu et al., 2021) we use BERT and unlabeled
domain-specific corpus to train a domain-adaptive
pre-training language model for each domain‡. As
for two competitive baseline models BERT-JF and
MTD, we respectively follow the same settings
from the implementation of (Liu et al., 2021)‡ and
(Zhang et al., 2022a)‡ for a fair comparison.‡. In
order to get the keys required by contrastive learn-
ing, we first utilize the training set in each domain
to construct dictionaries of each entity type. Then
given the sentence from the source domain or target
domain, we apply one of the three key generation
strategies to generate keys based on the constructed
dictionaries. Moreover, we set τ = 0.07 (Eq. 4/5),
m = 0.999 (Eq. 8). While γ is tuned from 0.1, 0.2,
0.3, 0.5, 0.7, 0.9 1.0 in different settings and finally
is set to 0.7 (Politics), 1 (Science, Music), 0.1 (Lit-
erature, AI) under the basic setting, 0.1 (Politics,
AI, Music), 0.7 (Science), 0.3 (Literature) under

‡https://huggingface.co/bert-base-cased
‡We will release the checkpoints of all domain-adaptive

pre-training language models to facilitate further research.
‡https://github.com/zliucr/CrossNER
‡https://github.com/AIRobotZhang/MTD
‡We are highly grateful for their public codes, our code

will be publicly available via GitHub.

the DAPT setting. We implement our model with
the PyTorch framework and conduct experiments
at Tesla P100 and V100.

Table 3: The corresponding entity categories for each
cross-domain NER dataset.

Dataset Entity Categories

CoNLL 2003 person, organization, location, miscellaneous

Twitter person, organization, location, miscellaneous

Politics
person, organization, politician, political party,

location, event, country, election, miscellaneous

Science

person, country, university, scientist, organization,

location, miscellaneous, enzyme, protein, discipline

chemical element, event, academic journal, award,

theory, chemical compound, astronomical object

Music

musicalartist, music genre, band, album, song,

award, musical instrument, , event, country,

location, organization, person, miscellaneous

Literature
person, organization, writer, award, poem, book,

location, country, magazine, event, miscellaneous

AI

location, field, task, product, algorithm

person, country, researcher, metrics

organization, miscellaneous, university

3.3 Baseline Models
Our baselines are:

• BiLSTM-CRF, which combines BiLSTM and
CRF to train the model (Lample et al., 2016).

• LM-NER, which integrates cross-domain lan-
guage models (Jia and Zhang, 2020).

• BERT-PF, which firstly utilizes the source do-
main data and then uses the target domain data
(Liu et al., 2021).

• BERT-JF, which simultaneously utilizes both
the source and target domain data (Liu et al.,
2021).

• Style-NER, a method that applies data augmen-
tation (Chen et al., 2021b).

• MultiCell-LM, a method utilizes a separate cell
state to model each entity type for domain adap-
tation (Jia and Zhang, 2020).

• MTD, a modular learning-based method that
splits cross-domain NER into two sub-tasks
(Zhang et al., 2022a).

4 EXPERIMENTAL RESULTS

4.1 Overall Performance
According to Table 4, we observe that: (1) MTD-
MoCL achieves better performance than no align-
ment work BERT-JF with 8-11% improvements,
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Setting
Extra Data No. (Basic setting) Yes. (DAPT setting (Liu et al., 2021))

Source Domain Social Media (Twitter) ->
Target Domain Politics Science Music Litera. AI Politics Science Music Litera. AI

Baselines

BiLSTM-CRF 53.64 47.33 48.85 45.23 44.0 - - - - -
Style-NER - - - - - 70.94 68.28 74.40 67.05 63.33
LM-NER 66.99 64.23 61.48 59.09 50.46 - - - - -
BERT-JF 67.52 64.51 67.74 61.38 57.05 70.78 67.31 68.13 62.69 59.17
BERT-PF 68.60 62.23 68.06 61.91 54.72 70.11 66.87 73.88 66.61 61.12

MultiCell-LM 66.59 63.79 66.54 59.02 53.82 69.13 66.76 74.22 64.88 62.41
MTD 74.62 71.37 74.41 69.67 64.55 75.49 72.81 77.43 70.14 66.18

Ours
BERT-JF-MoCL 71.35 69.01 71.19 64.91 59.98 74.38 71.05 74.41 67.13 62.76

MTD-MoCL 75.13 72.83 77.15 70.71 67.87 77.78 75.08 80.02 72.09 69.94

Table 4: Detailed F1 scores on from the source domain Social Media to the five target domains. The best scores are
shown in bold.

showing the effectiveness of contrastive learning.
(2) MTD-MoCL achieves the state-of-the-art per-
formance and beats MTD (a representative model
of the modular learning-based approaches). More-
over, the performance of MTD-MoCL is relatively
high when the source domain is Twitter, whose
size is smaller than conll2003. This demonstrates
that MoCL could help methods achieve better per-
formance by refining the original representations,
especially in the low-source setting.

4.2 Analysis
A1: The effectiveness of incorporating MoCL
with different base cross-domain NER mod-
els. As shown in Tables 4, BERT-JF-MoCL also
achieves better performance than BERT-JF (a rep-
resentative model of the compositional labeling-
based approaches). This shows that MoCL can not
only benefit compositional labeling-based methods
but also modular learning-based methods.
A2: The effectiveness of incorporating MoCL
with different pre-training models. we incor-
porate MoCL with MTD with a domain-adaptive
pre-training model (Liu et al., 2021). As shown
in Table 4, both MTD-MoCL and BERT-JF-MoCL
respectively outperform MTD and BERT-JF from
across all domains with a noticeable margin, which
shows the great generalization ability of MoCL.

N 0 1 2 3 9 18
F1-score 74.41 76.08 77.15 76.37 76.16 75.59

Table 5: Performance of MTD-MoCL with different
values of N under the basic setting on the target domain
music.
A3: Impact of the value of negative samples N .
As shown in Table 5, the = 0 means MTD, which
still can be improved. On the one hand, when N is

less than 2, when N increases, the results are better.
On the other hand, when N is large than 2, when
N increases, the results are worse. As such, we set
N to 2.

Figure 5: Experimental results of different bridges under
DAPT setting.‡

A4: The effectiveness of different bridges. we
conduct experiments to investigate the impact of
bridges. According to Figure 5, we find that both
entity information and label information (Ours (en-
tity) VS MTD, Ours (label) VS MTD) are beneficial
for learning a better Cross-NER model. Besides,
there is no winner always and the performance was
improved consistently regardless of the bridges
used, which indicates the absolute advantage of
contrastive learning.
A5: Impact of γ in Equation 7. In Figure ??, the
γ = 0 means MTD, which still can be improved.
The influence of γ on domains is different. For
domains Literature, and AI, when γ are smaller,
the proposed MTD-MoCL achieved better perfor-
mance; While for domains Science, Politics, and

‡Here Ours (entity) means MTD-MoCL with the Entity
Bridge, Ours (label) means MTD-MoCL with the Label
Bridge, while Ours (both) means MTD-MoCL with the com-
bination of both bridges.
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(a) Ours (both) under Basic Setting
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(b) Ours (entity) under DAPT Setting
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(c) Ours (label) under DAPT Setting
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Figure 6: Performance of MTD-MoCL with different
values of γ.

(a) BERT-JF, before

(b) BERT-JF, after

(c) MTD, before

(d) MTD, before

Figure 7: The t-SNE visualization of entity represen-
tations on the domain music. (a), (b), (c) and (d) are
the results before and after applying MoCL with BERT-
JF/MTD, respectively.
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Music, when γ increases, the results of are better.
We also conduct experiments to evaluate the influ-
ence of γ with different bridges under the DAPT
setting and the results are shown in Figure 6. Simi-
lar to Figure 6, the γ = 0 means MTD, which still
can be improved regardless of what kind of bridge
is applied. Moreover, we observe that during the
DAPT setting, the influence of contrastive learning
is smaller than in the basic setting (e.g. the basic
between the best model and worst is smaller than
that in Figure 6). We think after fine-tuning BERT
on the large domain-specific corpus, models may
learn some discriminative representations. How-
ever, compared with applying contrastive learning,
training a domain-adaptive pre-training language
model is inefficient (e.g., it takes almost 30 hours
to train a model for each domain).
A6: Visualization analysis. We conduct visual-
ization analysis to explore the effects of MoCL on
the representation of entities. As shown in Figure
7:(1) On one hand, we observe that the original en-
tity representations of the same entity types under
the sequence-labeling framework or the modular-
learning-based framework disperse sparsely, which
is consistent with the observation of (Kenton and
Toutanova, 2019). After applying our proposed
bridges and contrastive learning, MoCL tries to
force the entities belonging to the same entity type
to collapse into essentially a close cluster. (2) On
the other hand, we observe that the original en-
tity representations of similar entity types under
the sequence-labeling framework or the modular-
learning-based framework are prone to mix with
each other, thus making them hard to be distin-
guished by the prediction model. In contrast, the en-
tity representations produced by MoCL are clearly
separated, which is much more discriminative.

5 Related Work

Due to the capability of extracting useful informa-
tion and benefiting many NLP applications (e.g.,
information retrieval (Fetahu et al., 2021; Guo
et al., 2009) and question answering (Longpre et al.,
2021)), NER appeals to many researchers (Jiang
et al., 2021; Feng et al., 2018; Kim et al., 2015;
Lee et al., 2018; Qu et al., 2016; Rodriguez et al.,
2018; Wang et al., 2018; Zhang et al., 2021b; Yang
et al., 2017; Yang and Katiyar, 2020; Fei et al.,
2021). Recently, to reduce the huge cost of an-
notating data, researchers start to explore cross-
domain NER methods. According to whether the

labeled data of the target domain are used or not,
these methods can be classified into unsupervised
(Jia et al., 2019; Peng et al., 2021; Chen et al.,
2022; Yang et al., 2022; Liu et al., 2022; Ma et al.,
2022b; Zhang et al., 2021a) and supervised (Wang
et al., 2020; Lin and Lu, 2018; Houlsby et al., 2019;
Zheng et al., 2022). This paper focuses on the latter
and according to the tagging scheme, supervised
cross-domain NER methods can be classified into
compositional labeling-based (Wang et al., 2020)
and modular learning-based (Zhang et al., 2022a).
Compared with previous studies, we attempt to im-
prove both kinds of methods from the perspective
of representation. In particular, a model-agnostic
framework MoCL is introduced to refine the origi-
nal chaotic representations by contrastive learning,
motivated by its success in computer vision (Rad-
ford et al., 2021; Grill et al., 2020; Caron et al.,
2020; Chen and He, 2021; Choi et al., 2022; Zhang
et al., 2022b; Giorgi et al., 2021; Xu et al., 2022).

6 Conclusion

This paper explores utilizing contrastive learning
to gain discriminative entity representations in the
field of cross-domain named entity recognition. To
guide contrastive learning at the entity level, we ex-
plored two bridges to capture different relations of
entities at different granularities. Additionally, our
framework is model-agnostic, so we respectively
integrate it into two existing cross-NER baselines
and two different pre-training language models
to evaluate its generalization ability. The exper-
imental results show that MoCL could help mod-
els learn discriminative representations and it has
good generalization ability. In terms of the limita-
tion, currently, we mainly evaluate MoCL under
the single-source cross-domain setting. We plan
to further extend it to multi-source cross-domain
settings. Moreover, the interaction between named
entity recognition and relation extraction can be
considered to improve performance in the future.

Limitations

We propose a sequence-level contrastive learning-
based model-agnostic framework MoCL to en-
hance entity type classification in cross-domain
named entity recognition (NER). In the future, we
would like to combine the different granularities of
contrastive learning (i.e., token-level and sequence-
level) to learn generalized representation for further
improving the capability of MoCL. In addition, due
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to the hierarchical structure of entity types between
the source domain and the target domain, it would
also be beneficial to adopt Non-Euclidean space
to represent words for better learning the relative
hierarchical relationship between entities.
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etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Please refer to Section 3.2 to see more details.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Please refer to Section 3.2 to see more details.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Please refer to Section 3.2 to see more details.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Please refer to Section 3.2 to see more details.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Please refer to Section 3.2 to see more details.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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