It Ain’t Over: A Multi-aspect Diverse Math Word Problem Dataset

Jiwoo Kim Youngbin Kim

Ilwoong Baek JinYeong Bak Jongwuk Lee *

Sungkyunkwan University, Republic of Korea
{jindog1210, andyk3603, alltun10@, jy.bak, jongwuklee}@skku.edu

Abstract

The math word problem (MWP) is a complex
task that requires natural language understand-
ing and logical reasoning to extract key knowl-
edge from natural language narratives. Previous
studies have provided various MWP datasets
but lack diversity in problem types, lexical us-
age patterns, languages, and annotations for
intermediate solutions. To address these limita-
tions, we introduce a new MWP dataset, named
DMath (Diverse Math Word Problems), of-
fering a wide range of diversity in problem
types, lexical usage patterns, languages, and
intermediate solutions. The problems are avail-
able in English and Korean and include an ex-
pression tree and Python code as intermedi-
ate solutions. Through extensive experiments,
we demonstrate that the DMath dataset pro-
vides a new opportunity to evaluate the capabil-
ity of large language models, i.e., GPT-4 only
achieves about 75% accuracy on the DMath!
dataset.

1 Introduction

The math word problem (MWP) is a challenging
and intriguing task that requires a deep understand-
ing of natural language narratives and logical rea-
soning (Bobrow, 1964; Kushman et al., 2014). The
narratives typically involve several numbers and
unknown variables. Also, some problems demand
commonsense reasoning. Solving these problems
requires a comprehensive understanding of world
knowledge and the reasoning between mathemati-
cal representations within a given context.

As the first step to developing MWP models, it
is vital to collect a representative subset of MWP
to construct MWP benchmark datasets. Although
many existing studies (Koncel-Kedziorski et al.,
2016; Roy and Roth, 2017; Miao et al., 2020) have
published various MWP corpora, they mostly lack

*Corresponding author

"The dataset is available at
JiwooKimAR/dmath

https://github.com/

[DMath (Ours) [GSM8K = SVAMP [ASDiv

100 100
s 90 90
S 8o ‘ 80
: |
3
o
9 704 ‘ 70
-
3
F 60 60

50 L 50

ChatGPT GPT-4

Figure 1: The accuracy of two LLMs on MWP datasets.
The result of ChatGPT (gpt-3.5-turbo; OpenAl) and
GPT-4 (OpenAl, 2023), using a few-shot CoT (Wei
et al., 2022) prompting method, indicate that DMath is
the most challenging benchmark. GPT-4 shows about
90% accuracy on three existing datasets and approxi-
mately 75% on DMath.

multi-aspect diversity regarding problem types, lex-
ical usage patterns, languages, and intermediate
solution forms, as reported in Table 1. The low-
diversity dataset leads to over-optimistic results for
MWP models by memorizing frequent patterns.

With the advent of large language models
(LLMs), they have shown remarkable perfor-
mances in various reasoning tasks. Notably, the
adoption of GPT-4 (OpenAl, 2023) has yielded
an impressive 92% accuracy on the GSMS8K
dataset (Cobbe et al., 2021), which is widely used
as a representative MWP benchmark. This result
has led to the belief that LLMs demonstrate ex-
ceptional proficiency in mathematical reasoning.
However, our empirical findings show that the true
capability of LLMs has not been revealed because
of the limited MWP benchmarks. As illustrated in
Figure 1, GPT-4 achieves more than 90% accuracy
on the existing three MWP datasets, but its accu-
racy drops to approximately 75% on our dataset
with multi-aspect diversity. This significant gap
motivates us to develop more diverse datasets with
greater complexity and challenges in real-world
problems than existing ones.

14984

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 14984—15011
December 6-10, 2023 ©2023 Association for Computational Linguistics

https://github.com/JiwooKimAR/dmath
https://github.com/JiwooKimAR/dmath

Dataset Language Annotation Data size | CLD | # Eq. templates | # Total ops
MAWPS (Koncel-Kedziorski et al., 2016) EN Expression tree 1,921 0.26 39 4
MathQA (Amini et al., 2019) EN Expression tree 37,259 0.05 6,599 58
ASDiv-A (Miao et al., 2020) EN Expression tree 1,218 0.50 19 4
SVAMP (Patel et al., 2021) EN Expression tree 1,000 0.22 26 4
GSMSK (Cobbe et al., 2021) EN Natural language 8,792 0.81 - 4
Math23K (Wang et al., 2017) ZH Expression tree 23,160 2,187 4
Ape210K (Zhao et al., 2020) ZH Expression tree 210,488 - 56,532 4
DMath (Ours) EN, KO | Expression tree, Python code 10,022 0.49 2,855 50

Table 1: Statistics of DMath and other MWP datasets. We used corpus lexicon diversity (CLD) proposed in Miao
et al. (2020) to quantify the diversity of lexical usage patterns. The higher, the more diverse. The underlined numbers
represent the top-3 values in each column. Let EN, KO, and ZH denote English, Korean, and Chinese, respectively,

and ‘ops’ denotes operators.

In this study, we introduce a multi-aspect diverse
MWP dataset, called DMath, which has the fol-
lowing key features: (1) DMath fully covers prob-
lem types across five categories outlined in the
math education guideline of grade schools in the
USA (CDE, 2006) and Korea (MOE, 2022). These
categories include arithmetic (ARI), comparison
(COM), correspondence (COR), geometry (GEO),
and possibility (POS). Thus, various mathematical
reasoning skills can be evaluated on DMath. (2)
DMath consists of about 10,000 problems manu-
ally created by 43 human workers covering various
lexical usage patterns. This diversity in lexical us-
age patterns helps evaluate the general performance
of MWP models. (3) DMath supports bilingual in-
put languages, i.e., English and Korean, to evaluate
the effect of input languages for MWP models. (4)
We offer the annotation of expression trees and
Python code as intermediate solutions to evaluate
the effect of expression forms in training MWP
models. To annotate the expression trees, we adopt
50 operators, some newly designed to handle the
operators for list structures. (Details are given in
Appendix B.)

To analyze the performance of various MWP
models on our dataset, we employ fine-tuning
and prompting approaches. For the fine-tuning
method, we employ three representative MWP
models with pre-trained language models, i.e.,
RoBERTa (Liu et al., 2019), GPT-2 (Radford
et al., 2019), and CodeGPT (Lu et al., 2021). For
the prompting method, we adopt representative
LLMs, i.e., GPT-3 (Brown et al., 2020), ChatGPT
(gpt-3.5-turbo; OpenAl), and GPT-4 (OpenAl,
2023), with various reasoning prompting meth-
ods, i.e., zero-shot (Brown et al., 2020), zero-shot
CoT (Kojima et al., 2022), few-shot CoT (Wei et al.,
2022), and PAL (Gao et al., 2022).

Through our empirical studies on DMath, we

ARI ARI

- 2 ChatGPT 20 GPT-4
6126 O\ a9y
POS coM POS 765 ‘com
68.2] 4076.
[aae7 T ‘062'54
‘
29.0

65.17 /
\68'67 4 _'78.07
GEO COR GEO CoR

Figure 2: Accuracy comparison over various reasoning
categories on DMath for ChatGPT (gpt-3.5-turbo;
OpenAl) and GPT-4 (OpenAl, 2023) are presented, re-
spectively. The few-shot CoT (Wei et al., 2022) prompt-
ing is used for inference in these models.

found several interesting observations. (1) Due to
the multi-aspect diversity, all the MWP models on
DMath yield lower performance than other datasets,
with ChatGPT and GPT-4 achieving about 60% and
75% accuracy, respectively. (2) The problem types
heavily affect the accuracy. As shown in Figure 2,
correspondence (COR) and possibility (POS) show
arelatively low accuracy, i.e., 44-49% and 62-65%
for ChatGPT and GPT-4, respectively. We conjec-
ture that math examples are biased for training
LLMs. (3) For different languages, English-based
prompting methods perform better than Korean-
based ones. As reported in OpenAl (2023), we also
confirm that LLMs show more favorable perfor-
mance on English corpora. (4) For different ex-
pression forms, Python code is more effective than
other forms. As also observed in Gao et al. (2022),
Python code is more robust for addressing logical
expressions using external tools.

2 Dataset Formulation

The MWP sample comprises a natural narrative
(input) and an answer (output). The input includes
natural sentences, symbols, and math equations.
The output represents a unique numeric or string
value. Besides, each sample is associated with its

14985

. You want to pick 2 fruits out of an apple, a peach, ARI COM COR GEO POS Total
%‘:legsltlls(;g a pear and place them in different fruit baskets. Train | 2476 1,338 1,656 1,417 1,056 7,943
What is the number of cases? Test 669 334 402 383 291 2,079
. At} Bgof, v F 270 E Hot AR e B Total | 3,145 1,672 2,058 1,800 1,347 | 10,022
(Riotiont w=jo] ko2l g
Fhsat A0 A nE B Fhx] U7 Table 3: The number of samples per category on DMath.
Hum? n len([apple, peach, pear]) permutation 2 ; : . _
solution metic reasoning, comparison (COM) and corre

A [LIST_SOL] apple peach pear [LIST_EOL]
Equation
[LIST_LEN] 2 [PERM]

a="apple’ b="peach’ c =’pear’ d=2

li= [] li.append(a) li.append(b) li.append(c)
e=len(li) f=1

for i, elem in enumerate(range(d)): f=£ * (e - i)
print(int(f))

Answer 6

Code

Table 2: Example of a math word problem with two lan-
guages (English and Korean), two expression forms (an
equation and its corresponding Python code), a human
solution, and the answer. More examples of DMath for
each category can be found in Appendix A.

intermediate solution, e.g., a natural language, an
expression tree, or Python code, to derive the an-
swer. Because it is difficult to infer the answer from
the narrative directly, the intermediate solution is
used as a hint to perform math reasoning and to
infer world knowledge from the narrative.

To construct the MWP dataset, we annotate the
sample as a triplet of (natural language narrative,
intermediate solution, answer). In this process, we
focus on extending the diversity of problem types,
lexical usage patterns, languages, and intermediate
solutions. Table 2 shows a sample with two input
languages, i.e., English and Korean, intermediate
expression forms for the expression tree and Python
code, and the final answer.

Diversity in problem types. To cover diverse math
concepts, we refer to the math education guide-
lines of grade schools in the USA (CDE, 2006)
and Korea (MOE, 2022). We identify four impor-
tant reasoning skills in mathematics: arithmetic,
relationship, geometric, and possibility. Arithmetic
reasoning encompasses four fundamental math op-
erations. Relationship reasoning requires the ability
to discern relationships between objects in various
phenomena. Geometric reasoning entails under-
standing the nature and relationship of geometric
shapes. Possibility reasoning requires the ability to
represent uncertainty numerically.

Based on these reasoning tasks, we categorize
five problem types, i.e., arithmetic (ARI) for arith-

spondence (COR) for relationship reasoning, ge-
ometry (GEO) for geometric reasoning, and possi-
bility (POS) for possibility reasoning. We split the
relationship reasoning into two groups due to their
distinct characteristics. Please refer to Appendix A
for examples of both categories. Table 3 reports the
number of samples for each category.

Diversity in lexical patterns. We use corpus lex-
icon diversity (CLD) introduced by Miao et al.
(2020) to quantify lexical usage patterns. Com-
pared to existing MWP datasets, the CLD of our
dataset is 0.49. Although it is similar to ASDiv,
the number of equation templates in our dataset is
2,855, much greater than ASDiv. It indicates that
our problems cover various problem types with
high diversity. For detail, a template represents the
process of performing an operation. If the order or
the type of operators is different, we regard that
they are different templates.

Diversity in language narratives. Existing
datasets (Amini et al., 2019; Wang et al., 2017;
Cobbe et al., 2021) are primarily based on monolin-
gual language, i.e., English or Chinese. Our dataset
provides bilingual languages, i.e., English and Ko-
rean. It is beneficial for validating the effect of
languages on LLMs.

Diversity in solution forms. To extend the usage,
we annotate two expression formats, an expres-
sion tree and Python code, as illustrated in Table 2.
The math equation has been widely used as an ex-
pression tree (Koncel-Kedziorski et al., 2016; Xie
and Sun, 2019). Some categories require us to enu-
merate and select a specific number/string from
a list/sequence of numbers/strings. GEO also de-
mands extensive knowledge of geometric shapes
like triangles, rectangles, and circles.

To annotate our collected problems, we intro-
duce 50 operators. (See Appendix B.) Follow-
ing are some rules for defining these operators.
First, we create operator names to match ac-
tual math symbols as closely as possible. (e.g.,
[ADD], [FLOOR], [GCD], [LIST_MAX]) Second,
when some operators perform the same action, we
use similar names. (e.g., (a) [LIST_GET_PERM], (b)

14986

[LIST_GET_PRODUCT], (c) [LIST_GET_DIVISOR].
(a), (b), and (c) all take a LIST as the in-
put and return a LIST as the output through
some operation (PERM, PRODUCT, DIVISOR), so
"LIST_GET_" overlaps.) Third, we employ con-
cise names, (e.g., [COMB], [LCM], [LIST_LEN],
[LIST2NUM].) Lastly, if a single operator performs
multiple operations, we represent the goal for oper-
ations. (e.g., [DIGIT_UNK_SOLVER]. This operator
takes an expression, and the string corresponding to
the digits in the expression and finds the unknown
numeric value (UNK) of the string.) Given a postfix
expression tree, we also convert it into Python code
automatically using our Python code generator. As
the byproduct of our code generator, we can thus
utilize Python code as another solution form.

3 Dataset Construction

While other MWP datasets are typically collected
from the web and annotated with relevant equa-
tions, the DMath dataset exclusively comprises
human-generated problems. The linguistic diversity
is higher than others regarding natural languages
and expression trees. Specifically, we provide a
comprehensive overview of collecting, augmenting,
annotating, validating, and translating the DMath
dataset.

Collection. Instead of curating existing math prob-
lems, we ask human workers to create new prob-
lems. We recruit 43 undergraduate and graduate
students and let them develop new and diverse
grade school-level math problems. Each worker
contributes to creating about 100-200 samples, re-
sulting in a total collection of 4,184 seed samples.
These samples were distributed across five math
categories, with 960 for arithmetic, 1,092 for com-
parison, 943 for correspondence, 401 for geometry,
and 788 for possibility.

Augmentation. Human workers manually augment
seed samples using three policies: paraphrasing, do-
main word changes, and expanding equation trees
(using a few more equations from the original sen-
tence problem or adding other equations). We care-
fully augment seed samples to minimize linguis-
tic similarities and superficial differences. Human
workers manually boost 1-3 samples from each
seed sample using different expressions. We also
verify the similarity between seed and augmented
samples using BLEU (Papineni et al., 2002) scores
and remove some samples with high similarities.
The statistics for BLEU score between seeds and

augmented problems are 0.0 for min, 0.24 for mean,
0.23 for median, and 0.92 for max. Refer to the de-
tailed histogram in Appendix C.

Annotation. We request the worker to annotate its
answer and the intermediate solution as an expres-
sion tree using pre-defined operators. This expres-
sion tree follows the postfix notation and consists
of numbers, strings, and operators, as exemplified
in Table 2. (See Appendix A for more examples.)
While existing studies (Koncel-Kedziorski et al.,
2015; Wang et al., 2017; Cobbe et al., 2021) solely
focus on variables for single numbers, we introduce
new variables and operators for list structure, which
can be used to solve complex and various math
problems. We implement an automatic code gener-
ator to convert the expression tree into Python code.
We also use the Python code to validate whether
the human-annotated answer is correct.

Validation. We recruit 13 graduate students ma-
joring in computer science who participate in the
previous process (collection, augmentation and an-
notation). They are familiar with the annotation for-
mat of the MWP dataset and can solve elementary-
level mathematical problems well. We perform
the following process sequentially: (1) Question-
answer validation, (2) Question-expression tree val-
idation, (3) Expression tree validation, and (4) Con-
ciseness validation of expression tree for multi-
expression tree matching problems. If any error
was detected during steps (1) to (3), we return to
step (1) for re-validation. After that, we perform
step (4).

We go through these procedures to reduce poten-
tial risks to the correctness of the annotated data.
For step (1) and step (2), we ensure that the ques-
tions assigned to human workers do not overlap so
that they do not receive the same questions in each
step, which can act as a cross-check. We employ
code to check step (3). For step (4), 2-3 human
workers are assigned per question. More detailed
procedures are as follows.

Step (1): Question-answer validation. After
the annotation process, we assign natural language
questions to human workers and ask them to solve
the provided questions. There are two cases where
their answers differ from the annotated answers.
The first is when the natural language problem is
unsolvable, and the second is when the annotated
answer is incorrect. When a worker encounters
these errors while solving a problem, the worker
corrects the error manually. In the first case, the

14987

worker should correct the natural language ques-
tion. In the second case, the worker should correct
the annotated answer. Besides, two or more work-
ers cross-check the corrected questions to ensure
No errors.

Step (2): Question-expression tree validation.
Natural language questions that are solvable and
correctly annotated with correct answers are given
to human workers along with expression trees. The
human workers check whether the given natural
language question and the expression tree are cor-
rectly paired. If not, they modify the expression
tree to match the natural language problem.

Step (3): Expression tree validation. After the
natural language question and the expression tree
have been properly matched in the previous step,
we verify that the expression tree produces the cor-
rect answer. The operators used in expression trees
can be converted to Python code. After converting
each expression tree to code, we verify if the out-
come produced upon execution corresponds to the
correct answer. Otherwise, return to step (1).

Step (4): Conciseness validation of expression
tree for multi-expression tree matching prob-
lems. There can be various potential solutions to
a mathematical problem, and we maintain that se-
lecting an expression tree is crucial to the model
training. For example, the following problem has
multiple expression trees. “There are six people.
Everyone shook hands with each other once. Find
the total number of handshakes.” We can make the
expression tree as one of 6%(6-1)/2 or 6C2. Here,
both equations lead to a reasonable correct answer.
We choose the expression tree with as short an
equation length as possible. (For this example, we
choose 6C2.) We considered this direction of reduc-
ing the equation length because the most concise
solution process captures the essence of the prob-
lem. Howeyver, even if a formula is not the shortest,
we choose it if most workers agree.

Translation. Once we build the Korean MWP
dataset, we translate it into English. First, we use
machine translation to translate Korean into En-
glish to improve the quality and quantity of trans-
lations in a limited time using Google Translator.
Then, we ask nine English-majored students to re-
vise any incorrect translations. This revision en-
sures that the English and Korean problems share
the same meaning. It can also improve the linguis-
tic diversity of the English language. For the whole
data (# = 10,022), translators change 71% of prob-

lems (# = 7,121) from machine-translated ones.
We further inspect 29% problems (# =2,901) to en-
sure no semantic/grammatical errors. Afterward, all
questions (# = 10,022) are checked for those errors.
This is done by three graduate students who are not
involved in the translation and are proficient in En-
glish and Korean. The results show that 5.24% (#
= 525) of the questions had semantic/grammatical
errors.

4 Experimental Setup

Datasets. We use three datasets to compare with
DMath, which are GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), and ASDiv (Miao
et al., 2020). GSMS8K is a commonly used dataset
for evaluating math reasoning and has high qual-
ity. SVAMP is a variation of the previous dataset
(MAWPS) (Koncel-Kedziorski et al., 2016), and
it allows us to evaluate the robustness of the meth-
ods. ASDiv is a highly diverse dataset, showing
the importance of increasing the lexical diversity
of the problem. We did not run experiments on
the MathQA (Amini et al., 2019) dataset because
we found that it has incorrect answers, as also dis-
cussed in existing studies (Austin et al., 2021; Jie
et al., 2022; Miao et al., 2020). Also, we did not
compare DMath with MATH (Hendrycks et al.,
2021) since there is a discrepancy in domain knowl-
edge levels. We aimed to tackle math problems
at the elementary school level (grades 1-6), while
MATH is designed for the high school level (grades
8-12). See more details in Appendix D.

Baselines. We evaluate the MWP solvers with the
fine-tuning method and the prompting method. For
the fine-tuning method, we use pre-trained lan-
guage models. We use two representative models,
RoBERTa (Liu et al., 2019) and GPT-2 (Radford
et al., 2019) for the expression tree output and use
CodeGPT (Lu et al., 2021) for the Python code out-
put. They are fine-tuned with DMath train data. For
more information on how the framework works,
refer to Appendix E.

For the prompting method, we use GPT-based
models. We use babbage, curie, davinci (Brown
et al., 2020), gpt-3.5-turbo (OpenAl), and
gpt-4 (OpenAl, 2023) model using API provided
by OpenAl. We denote babbage as GPT-3 [1B],
curie as GPT-3 [6.7B], davinci as GPT-3 [175B],
gpt-3.5-turbo as ChatGPT [175B], and gpt-4 as
GPT-4 [Unknown]. Besides, we use four prompting
methods: zero-shot (Brown et al., 2020), zero-shot

14988

Framework | # Params. Model Prompt method | ARI COM COR GEO POS | Total

124M GPT-2pasE - 3946 4431 41.46 2045 38.03 | 36.92

. . 125M RoBERTagasE - 41.60 3692 4237 2628 2990 | 36.54
Fine-tuning

355M RoBERTar arcE - 4599 4212 49.01 32.03 35.05 | 41.85

774M GPT-2pArRGE - 50.67 51.10 57.30 31.15 44.44 | 47.56

1B 4.63 25.5 4.98 6.53 8.25 8.95

6.7B GPT-3 Few-shot CoT 6.58 20.66 3.48 4.44 8.93 8.18

175B 18.68 37.13 920 1044 1031 | 17.12

Zero-shot 47.68 3832 23.13 37.08 29.90 | 36.99

Prompting 175B ChatGPT Zero-shot CoT 64.87 69.76 45777 64.23 36.77 | 57.91

Few-shot CoT 67.26 6826 49.00 68.67 44.67 | 60.99

Zero-shot 4993 50.00 28.11 46.21 3574 | 43.05

Unknown GPT-4 Zero-shot CoT 85.65 87.43 6592 81.72 62.54 | 78.16

Few-shot CoT 84.45 7635 65.17 78.07 62.54 | 75.18

Table 4: Accuracy comparison results of MWP models using expression tree solution form, GPT-2 (Radford et al.,
2019), RoBERTa (Liu et al., 2019), GPT-3 (Brown et al., 2020), ChatGPT (OpenAl), and GPT-4 (OpenAl, 2023),
on the English-based DMath dataset. Due to space limitation, we omit zero-shot (Brown et al., 2020) and zero-shot
CoT (Kojima et al., 2022) results for GPT-3, which follow a similar trend to that of few-shot CoT.

CoT (Kojima et al., 2022), few-shot CoT (Wei et al.,
2022), and PAL (Gao et al., 2022) to compare the
effect of different prompting methods.

Evaluation metrics. To evaluate MWP solvers, we
use accuracy (Acc.), commonly used in existing
studies. The accuracy checks whether the final an-
swer is correct without considering intermediate
solution forms. To extract the answers from the
MWP model, we use the following methods. For
the fine-tuning method, we convert the expression
tree solution form generated by models to Python
code and take the result of the code as the answer.
A model that generates Python code as the inter-
mediate output also takes the result of the code as
the answer. For the prompting method, we adopt
the majority voting method. It selects the most fre-
quent answer among the possible answers as the
final answer. We treat any answer after "answer is"
as a possible answer.

Implementation details. For the fine-tuning mod-
els, we use pre-trained models from the hugging-
face hub. We set the batch size to 32 and the maxi-
mum token length to 50. We fine-tune models for
three learning rates {1e-5, 3e-5, Se-5} to find the
best performance. We also run experiments with
three different seed values for each learning rate,
then select the best-performing learning rate and re-
port the average value over the three seeds. We run
our experiments using an NVIDIA TITAN-RTX
GPU with 24GB memory.

For prompting-based methods, we set the tem-
perature as 1.0 and top_p as 1.0. We also
set the number of few-shot examples as 8 for

GPT-3 (babbage, curie, davinci) and Chat-
GPT (gpt-3.5-turbo-0301), and set 5 for GPT-
4 (gpt-4-0314) following the conventions (Wei
et al., 2022; OpenAl, 2023). For GPT-3, we set the
maximum token length to 128. Also, we set few-
shot examples of GSM8K, SVAMP, and ASDiv as
Wei et al. (2022) and of DMath as Appendix F. We
take them differently for a fair comparison.

S Empirical Results

Overall performance results. Table 4 presents the
overall accuracies of fine-tuning and prompting
MWP models. First, owing to the impressive capa-
bilities of LLMs, GPT-4 with few-shot CoT shows
the highest accuracy, achieving 75.18%. For GPT-
3 [175B] and ChatGPT with the same number of
parameters, there exists a notable performance gap.
We conjecture that ChatGPT has undergone more
optimization for mathematical reasoning compared
to GPT-3. It is also worth noting that all fine-tuning
models surpass GPT-3, and even the fine-tuned
GPT-21 osrgE [774M] exhibits comparable accu-
racy to GPT-4 with zero-shot. This suggests that the
fine-tuning approach proves effective in optimizing
the MWP task.

Second, the worst problem categories differ
across MWP models. Both GEO and POS rely
on world knowledge, impacting the performance
of fine-tuning models, i.e., ROBERTar 4 pgg and
GPT-2; ArcE, differently. Fine-tuned models excel
at POS due to condensed operations but struggle
with expression tree-based problems in GEO. Con-
versely, prompting models, i.e., ChatGPT and GPT-

14989

Expression form Model # Params. | Prompt method | ARI COM COR GEO POS | Total
Expression tree RoBERTapask 125M - 41.60 36.92 4237 26.28 29.90 | 36.54
Python code CodeGPTsnmarL 124M - 4225 35.83 3275 2324 3334 | 34.63

NL prompt ChatGPT 1758 Few-shot CoT 67.26 6826 49.00 68.67 44.67 | 60.99
Python code prompt PAL 7474 5299 5249 61.62 46.39 | 60.56
NL prompt GPTA Unknown Few-shot CoT 84.45 7635 6517 78.07 6254 | 75.18
Python code prompt PAL 88.94 8383 6940 81.72 67.35 | 79.99

Table 5: Accuracy comparison results of MWP models on the DMath dataset per expression forms in English. NL
prompts used by ChatGPT (OpenAl) and GPT-4 (OpenAl, 2023) mean natural language prompts. We set few-shot
CoT (Wei et al., 2022) as NL prompts method and PAL (Gao et al., 2022) as Python code prompt. We choose
RoBERTag 45 (Liu et al., 2019) as the comparison model for CodeGPT g 41 (Lu et al., 2021) because it has

the most similar parameter sizes.

4 with few-shot CoT, trained on extensive world
knowledge, perform better in GEO but falter with
the Number of Cases problems in POS. In COR, the
models’ difficulty understanding specific problem
formats contributes to performance degradation.

Third, the prompting methods in LLMs also in-
cur distinct results. ChatGPT and GPT-4 show the
lowest performance for the zero-shot prompting.
They can be significantly improved by using CoT
prompting. However, when model sizes are too
small, the impact of few-shot CoT prompting is
insignificant, implying that model capacity is an
important factor in prompting-based models.

Lastly, we summarize our observations on five
problem types. ARI and COM can be regarded as
common math types frequently encountered in nat-
ural language corpora. These properties explain
the relatively higher accuracies of ARl and COM
than other types in both fine-tuning and prompt-
ing methods. Meanwhile, COR is a less frequent
problem type in ordinary language corpora, but an
appropriate substitution can solve it. This unique
characteristic of COR lends itself to the clear ad-
vantage of fine-tuning approach and CoT. GEO of-
ten requires world knowledge, thus, the prompting
method with LLMs is more advantageous than the
fine-tuning methods. Finally, POS is represented by
relatively longer equation trees, indicating a chal-
lenging problem type in general. The operations
and mathematical expressions for POS are also
domain-specific, limiting the generalization power
of LLMs and hindering their performance in this
problem type.

Expression form results. Table 5 presents the
result of different expression formats. Firstly,
ChatGPT achieves 60.99% with natural language
prompts and 60.56% with Python code prompts.
While the performance of the models using natu-
ral language prompts and those using Python code

prompts appear similar, a closer look reveals that
a specific prompt type is preferred depending on
the problem. Among the 2,079 questions in the
full test set, 15.39% (# = 320) of the questions
are correctly solved only on the natural language
prompt, 45.60% (# = 948) are correctly solved on
both the natural language prompt and the Python
code prompt, 14.96% (# =311) are correctly solved
on only the Python code prompt, and 24.05% (# =
500) were incorrect.

We further analyze these results by problem type.
For ARI types, 8.97% of problems are correct using
only natural language prompts and 16.44% are cor-
rect using only Python code prompts. For COM, the
corresponding percentages are 29.34% and 14.07%,
respectively. ARI and COM show the largest per-
formance differences among the five categories be-
tween natural language prompt and Python code
prompt. Python code prompts perform better on
ARI types because LLM often needs correction
in its calculations. The higher accuracy of natural
language prompts in COM types can be attributed
to the concise language expression of large and
small relationships between two objects, compared
to Python code.

Lastly, the fine-tuning and prompting methods
show similar tendencies in model performance.
This tendency indicates that various forms of ex-
pression have their preferred categories. To elab-
orate, when we state that form of expression
A outperforms form B, it does not imply that
every type within A uniformly surpasses every
type within B. Rather, it suggests that certain
types within A outperform B, while some types
in B excel over A. Within the fine-tuning frame-
work, we compare the ROBERTag 45 with the
CodeGPTs ;411 The RoOBERTag 45 model uses
an expression tree as the solution form, whereas the
CodeGPTgprarr, model uses Python code. Here,

14990

Prompt method Few-shot CoT Prompt Acc. (%)
Dataset Model
Zero-shot CoT Few-shot CoT Few-shot examples of (Wei et al., 2022) 57.96
GSMSK ChatGPT 78.85 80.82 Uniform category random 58.97
GPT-4 93.25 91.81 Reverse uniform category random 58.68
SVAMP ChatGPT 77.70 82.50 Random 59.31
GPT-4 88.10 91.60 One category random 60.99
ASDi ChatGPT 79.71 83.80
v GPT-4 88.55 90.03 Table 7: Accu.racy for several few—shoF CoT (Wei et al.,
ChaiGPT 5791 60.99 2022) prompting methods on the English-based DMath
DMath dataset.
GPT-4 78.16 75.18

Table 6: Accuracy comparison between DMath and
GSMS8K (Cobbe et al., 2021), SVAMP (Patel et al.,
2021), ASDiv (Miao et al., 2020) for different prompt
methods in English.

the length of the output sequence emerges as the
most significant impact. In detail, for ARI and POS
types, CodeGPTgr 411 using Python code per-
forms better, and for COM, COR, and GEO types,
RoBERTag 45 model using expression tree per-
forms better. The average token length and std. for
COR types with expression tree are (6.61, 4.13),
which is lower than the POS type of (10.81, 4.51).
That of POS type with Python code is (129.54,
57.55), which is lower than COR type of (147.61,
205.04). In common, GEO types seem to have
lower token lengths but lower performance due
to the lack of domain knowledge of pre-trained
models.

Comparison on different datasets. Table 6 shows
the results of two different prompting methods on
four datasets, including DMath. Except for DMath,
the GSM8K, SVAMP, and ASDiv datasets, all
achieve the accuracy higher than 90% on GPT-4
and surpass 80% on ChatGPT in few-shot prompts.
(Figure 1 showcases the few-shot prompt results
per dataset.) The zero-shot CoT results show a sim-
ilar trend. This trend can be attributed to the fact
that these datasets primarily handle arithmetic rea-
soning problems.

Instead of intentionally inflating the difficulty to
undermine model performance, we have noted sig-
nificant performance differences between models
on our dataset. Specifically, DMath exhibits aver-
age deviations of 13.07% and 15.35% in zero-shot
CoT and few-shot CoT prompting methods, respec-
tively, on the GPT-4 model. This suggests that our
dataset contains problems that can be incrementally
solved as model capacity improves. The problems
are challenging yet reasonable and tailored to grade
school levels. In brief, our dataset pinpoints areas

where large language models falter, setting a path-
way for future enhancements.

Few-shot selection. The few-shot prompt is given
DMath and other datasets (GSM8K, SVAMP, and
ASDiv) differently. Other datasets used the exam-
ple of Wei et al. (2022) as in previous studies.
Unlike them, DMath is a mix of different mathe-
matical categories. We consider evaluating DMath
with the same prompt as other arithmetic math-
ematical reasoning datasets to be unfair because
there are several problem types in DMath. If we
give few-shot examples of only arithmetic type,
then the model will not do well except arithmetic.
Therefore, various prompt selection methods were
taken, and the highest-performance prompt method,
one category random method was used as the final
few-shot prompt examples in this paper. (See more
details in Appendix F.)

We validate the best-performing prompt method
by comparing five few-shot CoT prompts. Table 7
shows the performance for each prompt method.
First, we use the few-shot example of Wei et al.
(2022) as a baseline. The other few-shot CoT
prompt selects examples from DMath train data.
The uniform category random selects examples ac-
cording to the proportion of problems in each cat-
egory; it selects 2 examples from ARI, COR, and
GEO and 1 example from COM and POS each. The
reverse uniform category random selects 1 problem
from ARI, COR, GEO and 2 problems from COM,
POS each. The Random selects examples randomly
from the whole dataset. Finally, the one category
random selects few-shot examples based on the
type of question, i.e., if the model gets an ARI type
question, it randomly selects few-shot examples
of ARI type, and if it gets a POS type question, it
selects few-shot examples of POS type.
Language-specific performance of LLMs. Ta-
ble 8 provides the results of different input lan-
guages, English and Korean. By using ChatGPT
and GPT-4, we observe that the English-based
prompt method performs better than its Korean-

14991

Model Prompt method Language
EN KO
ChatGPT Few-shot CoT 60.99 | 46.03
GPT-4 75.18 | 65.37

Table 8: Accuracy comparison results of MWP models,
ChatGPT (OpenAl) and GPT-4 (OpenAl, 2023), on
DMath. Few-shot CoT (Wei et al., 2022) is used as
the prompting method.

based counterparts despite both English and Korean
problems being identical in content but expressed
in different languages. Ideally, if the language un-
derstanding is independent of the mathematical
reasoning, it should have produced the same ac-
curacy. However, accuracy has shown more than
a 13% and 24% difference between the two on
GPT-4 model and ChatGPT, respectively. We con-
jecture that the data imbalance issue of LLMs leads
to performance bias, as pointed out in several pa-
pers (Blodgett et al., 2020; Lai et al., 2023).
Qualitative analysis of GPT-4 failure cases. We
conduct a qualitative analysis on failure cases of
GPT-4 with few-shot CoT. (See several examples
in Appendix G.) For ARI, COM, and GEO exam-
ples, as the length of the reasoning path increases,
GPT-4 generates incorrect answers more frequently.
For COR, the problems about the number of digits
in a number mostly incur incorrect answers. For
GEO, GPT-4 failed to elicit certain domain knowl-
edge, e.g., the rectangle that can be made to have
the largest area given a perimeter is a square. For
POS, we observe GPT-4 found difficulties in solv-
ing problems related to the Number of Cases.

6 Related Work

Math word problem solving datasets. Auto-
matic MWP-solving has been explored since the
1960s (Bobrow, 1964), with work primarily fo-
cused on corpus collection and model develop-
ment. Initially, small datasets were used (Kushman
et al., 2014; Upadhyay and Chang, 2015; Koncel-
Kedziorski et al., 2015; Hosseini et al., 2014; Roy
et al., 2015; Roy and Roth, 2017; Seo et al., 2014;
Shi et al., 2015). The MAWPS dataset (Koncel-
Kedziorski et al., 2016) unified these small-scale
datasets and incorporated various problem types.
Following studies like (Huang et al., 2016; Ling
et al., 2017; Amini et al., 2019; Zhao et al., 2020)
enriched this further, but they were limited by their
reliance on multiple choice and a lack of diverse
lexical usage patterns. Recent works (Cobbe et al.,

2021; Hendrycks et al., 2021) targeted a broader
diversity, but more enhancement is needed. Our
dataset addresses this by providing diversity in
problem types, lexical usage patterns, languages,
and expression forms.

Math word problem solving models. Early MWP
models used symbolic approaches (Kintsch and
Greeno, 1985; Fletcher, 1985), but their domain
specificity limited their use. Later, template-based
and statistical methods (Kushman et al., 2014; Hos-
seini et al., 2014; Mitra and Baral, 2016; Roy and
Roth, 2018; Koncel-Kedziorski et al., 2015) im-
proved performance but faced challenges with di-
verse datasets (Huang et al., 2016). Deep neural
networks became popular, with RNN-based mod-
els (Wang et al., 2017, 2019), tree generation mod-
els (Xie and Sun, 2019; Zhang et al., 2020; Wu
et al., 2021), and relation extraction models (Jie
et al., 2022). Recent models leverage pre-trained
language models like BERT (Devlin et al., 2019)
to enhance performance (Tan et al., 2021; Li et al.,
2021; Kim et al., 2020). Large language models
have also shown significant performance improve-
ments with techniques like step-by-step reason-
ing (Wei et al., 2022; Nye et al., 2021), calculation
verifiers (Cobbe et al., 2021), and various prompt-
ing methods (Kojima et al., 2022; Wei et al., 2022;
Gao et al., 2022). Recent studies (Huang et al.,
2022; Wang et al., 2022; Madaan et al., 2023) indi-
cate that large language models can improve reason-
ing capabilities autonomously without supervised
data, surpassing current techniques in accuracy.

7 Conclusion

This paper proposed DMath, a collection of 10K
high-quality grade school-level math word prob-
lems. It mainly pursued multi-aspect diversity for
problem types, lexical usage patterns, languages,
and expression forms. We evaluated various MWP
models on DMath and other datasets. We observed
that the logical reasoning capability of the MWP
model was mainly focused on arithmetic reasoning.
Because of various features, our dataset is more
beneficial for inspecting the diverse reasoning abil-
ities of models. Our dataset can also help evaluate
MWP models for diverse aspects.

Limitations

There are several limitations to this work. (1) Trans-
lating and annotating math problems require high
human costs. Although we carefully and manually

14992

check all the samples and their annotations, our
dataset might include a few samples with incorrect
answers. (2) Although it is interesting to observe
various model scales, evaluating pre-trained lan-
guage models with different model sizes requires
GPU resources and training time. Therefore, we
employ three well-known pre-trained models for
evaluation.

Ethics Statement

Following the ACL Code of Ethics, we emphasize
the ethical facets of data collection, use, and the
potential ramifications of our research within artifi-
cial intelligence. This study presents a new math-
ematical reasoning dataset, and we have carefully
examined and addressed all ethical considerations
tied to its creation and usage.

The construction of this mathematical reason-
ing dataset involved authors and human workers
in the data collection, creation, and augmentation
phases. All contributors have strictly followed eth-
ical guidelines, ensuring a respectful and fair en-
vironment. We have prioritized maintaining the
privacy and anonymity of all parties involved.

We have gone to great lengths to confirm that
the data gathered does not pose any risk of harm to
grade school students, the primary demographic of
our study. The content has been conscientiously cu-
rated to exclude harmful or inappropriate material,
fostering a safe learning environment.

The dataset’s accuracy is of utmost importance,
and every attempt has been made to ensure the
validity of the labels. Human reviewers have manu-
ally checked all answer labels in the dataset. How-
ever, despite our rigorous efforts, we acknowledge
that some errors may still exist due to the inherent
limitations of manual review and the complexity
of the task. We encourage users of the dataset to
remain mindful of this limitation and to report any
errors they encounter for continuous improvement
of the dataset.

We also recognize the potential misuse of the
dataset, and we ardently advocate for its ethical
and responsible usage within the Al community.
This dataset aims to advance the understanding of
mathematical reasoning among grade school stu-
dents, and any use that could compromise fairness
or propagate biases in Al systems is strongly dis-
couraged.

In conclusion, we strive to ensure our dataset
contributes to the field of Al and mathematical rea-

soning in a manner that aligns with the ACL’s Code
of Ethics. We encourage ongoing scrutiny and dis-
cussion around the dataset’s ethical implications
within the research community. We are commit-
ted to balancing research innovation with ethical
considerations and stand ready to address any con-
cerns raised by the ethics committee or users of the
dataset.

Acknowledgments

This work was supported by Institute of In-
formation & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2019-0-00421,
No0.2022-0-00006, No. 2022-0-00680, and RS-
2023-00219919).

References

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, (NAACL-HLT), pages 2357-2367.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and
Charles Sutton. 2021. Program synthesis with large
language models. ArXiv, abs/2108.07732.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in NLP. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 5454-5476,
Online. Association for Computational Linguistics.

Daniel G. Bobrow. 1964. A question-answering system
for high school algebra word problems. In Proceed-
ings of the 1964 fall joint computer conference, part
I (AFIPS), pages 591-614.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages
1877-1901. Curran Associates, Inc.

14993

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

CDE. 2006. Mathematics Framework for California
Public Schools: Kindergarten Through Grade Tivelve.
California Department of Education.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. CoRR, abs/2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Charles R. Fletcher. 1985. Understanding and solving
arithmetic word problems: A computer simulation.

Behavior Research Methods, Instruments, & Comput-
ers, 17:565-571.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. 2022. Pal: Program-aided language models.
ArXiv, abs/2211.10435.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to
solve arithmetic word problems with verb categoriza-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523-533.

Danging Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do computers
solve math word problems? large-scale dataset con-
struction and evaluation. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Zhanming Jie, Jierui Li, and Wei Lu. 2022. Learning
to reason deductively: Math word problem solving
as complex relation extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5944-5955, Dublin, Ireland. Association for Compu-
tational Linguistics.

Bugeun Kim, Kyung Seo Ki, Donggeon Lee, and Gah-
gene Gweon. 2020. Point to the Expression: Solv-
ing Algebraic Word Problems using the Expression-
Pointer Transformer Model. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3768-3779,
Online. Association for Computational Linguistics.

Walter Kintsch and James G. Greeno. 1985. Under-
standing and solving word arithmetic problems. Psy-
chological review, 92 1:109-29.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large

language models are zero-shot reasoners. ArXiv,
abs/2205.11916.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585-597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152—-1157, San
Diego, California. Association for Computational
Linguistics.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
271-281, Baltimore, Maryland. Association for Com-
putational Linguistics.

Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben
Veyseh, Hieu Man, Franck Dernoncourt, Trung Bui,
and Thien Huu Nguyen. 2023. Chatgpt beyond en-
glish: Towards a comprehensive evaluation of large
language models in multilingual learning. ArXiv,
abs/2304.05613.

Zhongli Li, Wenxuan Zhang, Chao Yan, Qingyu Zhou,
Chao Li, Hongzhi Liu, and Yunbo Cao. 2021. Seek-
ing patterns, not just memorizing procedures: Con-
trastive learning for solving math word problems.
ArXiv, abs/2110.08464.

Chao-Chun Liang, Shih-Hong Tsai, Ting-Yun Chang,
Yi-Chung Lin, and Keh-Yih Su. 2016. A meaning-
based English math word problem solver with under-
standing, reasoning and explanation. In Proceedings
of COLING 2016, the 26th International Conference
on Computational Linguistics: System Demonstra-
tions, pages 151-155, Osaka, Japan. The COLING
2016 Organizing Committee.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word

14994

https://books.google.co.kr/books?id=IC6sgzCQRbIC
https://books.google.co.kr/books?id=IC6sgzCQRbIC
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026
https://aclanthology.org/C16-2032
https://aclanthology.org/C16-2032
https://aclanthology.org/C16-2032
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015

problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158-167, Vancouver,
Canada. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
ArXiv, abs/2102.04664.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975-984, Online.
Association for Computational Linguistics.

Arindam Mitra and Chitta Baral. 2016. Learning to
use formulas to solve simple arithmetic problems.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2144-2153, Berlin, Germany.
Association for Computational Linguistics.

MOE. 2022. =55ty W8ty 22 94 ZF=2 11
A] (public notice on elementary and middle school
curriculum overview and specifics). Minstry of Edu-
cation.

Maxwell Nye, Anders Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for interme-
diate computation with language models. ArXiv,
abs/2112.00114.

OpenAl. Model index for researchers. https://platform.
openai.com/docs/model-index-for-researchers. Ac-
cessed: June 23, 2023.

OpenAl. 2023.
abs/2303.08774.

Gpt-4 technical report. ArXiv,

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,

Pennsylvania, USA. Association for Computational
Linguistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve sim-
ple math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word problem
solving. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 3082-3088.

Subhro Roy and Dan Roth. 2018. Mapping to declara-
tive knowledge for word problem solving. Transac-
tions of the Association for Computational Linguis-
tics, 6:159-172.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transac-

tions of the Association for Computational Linguis-
tics, 3:1-13.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and
Oren Etzioni. 2014. Diagram understanding in ge-
ometry questions. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 2831-2838.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1132-1142.

Minghuan Tan, Lei Wang, Lingxiao Jiang, and Jing
Jiang. 2021. Investigating math word problems us-
ing pretrained multilingual language models. ArXiv,
abs/2105.08928.

Shyam Upadhyay and Ming-Wei Chang. 2015. Draw:
A challenging and diverse algebra word problem set.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen. 2019.
Template-based math word problem solvers with re-
cursive neural networks. In AAAI Conference on
Artificial Intelligence.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845-854,

14995

https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/P16-1202
https://doi.org/10.18653/v1/P16-1202
https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=141&boardSeq=93458&lev=0&searchType=null&statusYN=W&page=1&s=moe&m=040401&opType=N
https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=141&boardSeq=93458&lev=0&searchType=null&statusYN=W&page=1&s=moe&m=040401&opType=N
https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=141&boardSeq=93458&lev=0&searchType=null&statusYN=W&page=1&s=moe&m=040401&opType=N
https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.1162/tacl_a_00012
https://doi.org/10.1162/tacl_a_00012
https://doi.org/10.1162/tacl_a_00118
https://doi.org/10.1162/tacl_a_00118
https://aclanthology.org/D15-1135
https://aclanthology.org/D15-1135
https://aclanthology.org/D15-1135
https://doi.org/10.18653/v1/D17-1088

Copenhagen, Denmark. Association for Computa- Table of Contents
tional Linguistics.
A. More examples of DMath
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten B. Operators used in expression tree solutions
Bosma, Ed Huai hsin Chi, Quoc Le, and Denny Zhou. C. Statistics for BLEU score
2022. Chain of thought prompting elicits reasoning ’ o
in large language models. ArXiv, abs/2201.11903. D. Characteristics of other benchmark datasets
E. MWP solving framework for fine-tuning meth-
Qinzhuo Wu, Qi Zhang, Zhongyu Wei, and Xuanjing ods
Huang. 2021. Math word problem solving with ex-
plicit numerical values. In Proceedings of the 59th F. Prompt examples
Annual Meeting of the Association for Computational G. Failed examples in GPT-4
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5859-5869, Online. Association
for Computational Linguistics.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word problems.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19,
pages 5299-5305. International Joint Conferences on
Artificial Intelligence Organization.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph-to-
tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3928—
3937, Online. Association for Computational Lin-
guistics.

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and
Jingming Liu. 2020. Ape210k: A large-scale and
template-rich dataset of math word problems. CoRR,
abs/2009.11506.

14996

https://doi.org/10.18653/v1/2021.acl-long.455
https://doi.org/10.18653/v1/2021.acl-long.455
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362

A More examples of DMath

CATEGORY: ARITHMETIC CALCULATION

Question in English

There are three numbers 10, 11 and 12. What is the remainder when the smallest number is divided by the
second smallest number?

Question in Korean

3709] 4 10, 11, 127} QU th 7 50l4 71 22 Lo 22 242 52 LHe Lol AE dotg)
1B

Equation

[LIST_SOL] 10 11 12 [LIST_EOL] 1 [LIST_MIN] 2 [LIST_MIN] [MOD]
Code

var_a=10\n var b=11\n var_c=12\n list_a=[]\n

if "/"in str(var_c):\n var_c = eval(str(var_c))\n list_a.append(var_c)\n
if "/" in str(var_b):\n var_b = eval(str(var_b))\n list_a.append(var_b)\n
if "/"in str(var_a):\n var_a = eval(str(var_a))\n list_a.append(var_a)\n
list_a.reverse()\n var_d = 1\n list_b=list_a.copy(\n list_b.sort()\n
var_e = list_b[var_d-1]\n var_f=2\n list_c=list_a.copy()\n list_c.sort()\n
var_g = list_c[var_f-1]\n var_h = var_e % var_g\n

print(int(var_h))

Answer

10

14997

CATEGORY: COMPARISON

Question in English
A is 49 plus 33, B is 9 multiplied by 9. Which of the two numbers A and B is greater?
Question in Korean

AL 4994 338 T3 4, B 09 4] 95 F3t 40]th A, B £ 4 5§ 2 4 £91917

rr

Equation

[LIST_SOL] A B [LIST_EOL] [LIST_SOL] 49 33 [ADD] 9 9 [MUL] [LIST_EOL] 1 [LIST_MAX]
[LIST_INDEX] [LIST_POP] [LIST_GET]

Code

var_a="A’\n var_b="B’\n list_a=[]\n

if "/" in str(var_b):\n var_b = eval(str(var_b))\n list_a.append(var_b)\n
if "/"in str(var_a):\n var_a = eval(str(var_a))\n list_a.append(var_a)\n
list_a.reverse)\n var_c=49\n var_d=33\n var_e = var_c+ var_d\n
var f=9%n var_g=9n var_ h=var_ f*var_g\n list_b=[]\n

if "/" in str(var_h):\n var_h = eval(str(var_h))\n list_b.append(var_h)\n
if "/" in str(var_e):\n var_e = eval(str(var_e))\n list_b.append(var_e)\n
list_b.reverse()\n var_i=1\n list_c=list_b.copy(Q\n list_c.sort()\n
var_j = list_c[-var_i]\n var_k = list_b.index(var_j)+1\n var_l = list_a[var_k-1]
print(var_l)

Answer

A

14998

CATEGORY: CORRESPONDENCE

Question in English

If the six-digit number 341 ABC is divisible by 7, 9, and 13, how much is the three-digit number ABC?
Question in Korean

o]0 #e] 4= 341ABCO] 7,9, 13.0.2 Lpiro] Wol 2 uf, 4] #e] 4= ABC- n}elx] Fs}olat.
Equation

341ABC [GEN_POSSIBLE_LIST] 7 [LIST_DIVISIBLE] 9 [LIST_DIVISIBLE] 13 [LIST_DIVISIBLE]
341ABC A [LIST_FIND_UNK] 100 [MUL] 341ABC B [LIST_FIND_UNK] 10 [MUL] 341ABC C
[LIST_FIND_UNK] [ADD] [ADD]

Code
var_a="341ABC’\n ans_dict =dictO\n var_a = str(var_a)\n list_a=[]\n

Variable_Candl — Set([,A’, ’B’, 7c9’ ’D’, ’E’, ’F,, ’G’, ’H’, ’I,, ’J’, ’K’, ’L’, ’M’, ’N’, 70” ’P’, ’Q,, ’R’,
9sv’ ’T’, ’U’, svs’ ’w” ’X’, ’Y’, 7z7])\n

for v in set(var_a):\n if v in variable_candi:\n ans_dict[v] = O\n
candi = list(itertools.product(’ 0123456789’ , repeat=len(ans_dict)))\n

for cincandi:\n temp =var_a\n fori, (k, _) in enumerate(ans_dict.items()):\n temp = temp.replace(k,
str(c[i]))\n

if len(var_a) == len(str(int(temp))):\n new_elem = int(temp)\n list_a.append(new_elem)\n

var_ b=7\n list. b=[]\n var_b =int(var_b)\n foriinlist_a:\n i=int(i)\n ifi % var_b == 0:\n
list_b.append(i)\n var_c=9\n list_c =[]\n

var_c =int(var_c)\n foriinlist_b:\n i=int(i)\n ifi % var_c==0:\n list_c.append(i)\n
var_d=13\n list. d=[]\n var_d =int(var_d)\n foriinlist_c:\n 1= int(i)\n

ifi % var_d ==0:\n list_d.append(i)\n var_e =’341ABC’\n var_f="A’\n var_e = str(var_e)\n
var_f =str(var_f)\n unk_idx = var_e.index(var_f)\n var_g=0\n for elem in list_d:\n
elem = str(elem)\n var_g = int(elem[unk_idx])\n var_h =100\n var_i = var_g * var_h\n
var_j="341ABC’\n var_k ="B’\n var_j =str(var_j)\n var_k = str(var_k)\n

unk_idx = var_j.index(var_k)\n var_l=0\n for elem in list_d:\n elem = str(elem)\n

var_l = int(elem[unk_idx])\n var_m = 10\n var_n=var_l* var_m\n var_o='341ABC’\n
var_p ="C\n var_o =str(var_o)\n var_p = str(var_p)\n unk_idx = var_o.index(var_p)\n
var_q=0\n foreleminlist_d:\n elem = str(elem)\n var_q = int(elem[unk_idx])\n
var_r=var_n+ var_q\n var_s =var_i + var_r\n

print(int(var_s))

Answer

523

14999

CATEGORY: GEOMETRY

Question in English

We are trying to stick a tape in a straight line. The three tapes cut are 36 centimeters (cm), 42 centimeters
(cm), and 48 centimeters (cm), respectively, and if the same part is overlapped and attached, the total
length is 97 centimeters (cm). Find the length of the overlapping part.

Question in Korean
Ho|ZE dAHow & Zo|HiL e Zehd 3719
Fils

J
(cw). 4851E]] Bl (cm)o] L 28 -2 A £o]7 F Lo}
o] ot dnfelx] AL

7 }%74 361 El] El(cn), 4241 €] 1 E]
97AIE] E] (cm)olTh. FA X FH

Equation

36 42 [ADD] 48 [ADD] 97 [SUB] 3 1 [SUB] [DIV]

Code

var a=36\n var b=42\n var c=var_a+ var b\n var_d=48\n
var_e =var_c+var_d\n var_f=97\n var_g=var_e - var_f\n
var_h=3\n var_i=1\n var_j=var_h-var_i\n var_k =var_g/var_j\n
print(’:.2f*.format(round(var_k+1e-10,2)))

Answer

14.50

15000

CATEGORY: POSSIBILITY

Question in English

You want to form a four-digit number using the four numbers 7, 2, 5, and 9 only once. How many
four-digit numbers can you make? Question in Korean

4] %71 7.2, 5,98 G WA AL Sto] U] 2] 8 WS L GUTh B 4 Qe) A S
L5 9 U7t

Equation

[LIST_SOL] 7259 [LIST_EOL] 4 [LIST_GET_PERM] [LIST_LEN]

Code

print(int(var_af))

var_a=7\n var b=2\n var ¢c=5\1n var_ d=9%n list_a=[]\n

if "/" in str(var_d):\n var_d = eval(str(var_d))\n list_a.append(var_d)\n

if "/"in str(var_c):\n var_c = eval(str(var_c))\n list_a.append(var_c)\n

if "/" in str(var_b):\n var_b = eval(str(var_b))\n list_a.append(var_b)\n

if "/" in str(var_a):\n var_a = eval(str(var_a))\n list_a.append(var_a)\n

list_a.reverseO\n var_e =4\n list_b = [str(i) foriin list_a]\n

list_b = list(itertools.permutations(list_b, var_e))\n list_b = [”.join(num_list) for num_list in list_b]\n
list_b = [str_num for str_num in list_b if str_num[0] !="0’]\n list_b = [float(i) for i in list_b]\n
var_f = len(list_b)\n

print(int(var_f))

Answer

24

15001

B Operators used in expression tree solutions

‘R: real number, N: Natural number, £: List, S: String, V: Variable, £: Equation

Operation Explanation Examples
[ADD] Get R1, R2 = Return R1 + R 12 [ADD] — 3
[SUB] Get R1, R2 = Return R1 - Ro 21[SUB]—1
[DIV] Get R1, R2 = Return R / Ro 62 [DIV] — 3
[MUL] Get R1, R2 = Return R1 * Ro 75 [MUL] — 35
[FDIV] Get R1, R2 = Return R1 // Ro 53 [FDIV] — 1
[MOD] Get R1, R2 = Return R1 % Ro 53 [MOD] — 2
[POW] Get R1, R2 = Return R1 * R2 52 [POW] — 25
Get R, N' = Return the value that round
[CEIL] up R from the Nth decimal place LI32[CEIL] — 1.2
Get R, N' = Return the value that round
[FLOOR| down R to the N'th decimal place 3472 1 [FLOOR] — 34.7
Get R, N' = Return the value that round
[ROUND] R to the A'th decimal place 22.679 2 [ROUND] — 22.68
[ABS] Get R = Return Absolute of R -13 [ABS] — 13
[COMB] j(\?/e; N1, N2 = Return /1 combination 32 [COMB] — 3
[PERM] '/C\}/?t N1, N3 = Return /1 permutation 32 [PERM] - 6
2
Get N1, N'2 = Return Greatest Common
[GCD] Divisor of N'1, N2 631GCD] — 3
Get N1, N'o = Return Least Common
[LCM] Multiple of N1, N2 23[LCM] =6
[LIST_SOL] Declare start and end of LIST, Used in
[LIST BOL] pairs [LIST_SOL] 12 [LIST_EOL] —[12]

[LIST_ARANGE]

Get N1, N2 and Step N3 = Return arith-
metic progression LIST

04 1[LIST_ARANGE] —[01234]

[LIST_ODD]

Get N1, N2 = Return odd number list
between LIST A1 and N5

04 [LIST_ODD] — [13]

[LIST_EVEN]

Get N'1, N2 numbers = Return even num-
ber LIST between N1 and N>

04 [LIST_EVEN] —=[024]

[LIST_POP]

Pops the topmost LIST from the stack

[LIST_GET_PERM]

Get £ with A's, N'1 = Return all possi-
ble A1 digit natural numbers by using As
once

[LIST_SOL] 2 3 [LIST_EOL] 2
[LIST_GET_PERM] — [2332]

[LIST_GET_PRODUCT]

Get £ with A's, N'1 = Return all possible
N digit natural numbers allowing dupli-

cate N's

[LIST_SOL] 2 3 [LIST_EOL] 2
[LIST_GET_PRODUCT] — [22233233]

[GEN_POSSIBLE_LIST]

Get S with V1, V1 = Return all possible
numbers by substituting 1-9 to V'

3A [GEN_POSSIBLE_LIST] — [30, ...,
39]

Get £, N' = Sort £ in descending order

[LIST_SOL] 11 10 12 [LIST_EOL] 2

[LIST_MAX] = Return N'th value in sorted £ [LIST_MAX] — 11
[LIST_MIN] Get £, N = Sort £ in ascending order = | [LIST_SOL] 11 10 12 [LIST_EOL] 1
- Return N'th value in sorted £ [LIST_MIN] — 10

[LIST_SOL] 11 10 12 [LIST_EOL]
[LIST_SUM] Get £ = Return sum of the £ [LIST_SUM] — 33

[LIST_SOL] 11 10 12 [LIST_EOL]
[LIST_LEN] Get £ = Return length of the £ [LIST_LEN] — 3
[LIST_GET] Get £, N1 = Return A1th value of £ | [LIST_SOL] 11 10 12 [LIST_EOL] 3

(N starts from 1)

[LIST_GET] — 12

[LIST_INDEX]

Get £, N1 = Find N1 in £; and Return
index of A1 from £ (index starts from 1)

[LIST_SOL] 11 10 12 [LIST_EOL] 11
[LIST_INDEX] — 1

[LIST_FIND_NUM]

Get £, N'1 = Return total number of N1
in £

[LIST_SOL] 12321 [LIST_EOL] 1
[LIST_FIND_NUM] — 2

15002

[LIST_MORE]

Get £, N1 = Return LIST with £’s ele-
ments bigger than NV

[LIST_SOL] 11 10 12 [LIST_EOL] 11
[LIST_MORE] — 12

[LIST_LESS]

Get £, N'1 = Return LIST with L’s ele-
ments smaller than Ny

[LIST_SOL] 11 10 12 [LIST_EOL] 11
[LIST_LESS] — 10

[LIST_MORE_EQUAL]

Get £, N1 = Return LIST with L’s ele-
ments same or bigger than A1

[LIST_SOL] 11 10 12 [LIST_EOL] 11
[LIST_MORE_EQUAL] — [11 12]

[LIST_LESS_EQUAL]

Get £, N1 = Return LIST with L’s ele-
ments same or smaller than A/

[LIST_SOL] 11 10 12 [LIST_EOL] 11
[LIST_LESS_EQUAL] — [11 10]

[SET_UNION]

Get L1, L2 = Return LIST which is union
of [,1) £2

[LIST_SOL] 12 3 [LIST_EOL]
[LIST_SOL] 2 3 4 [LIST_EOL]
[SET_UNION] —[1234]

[SET_DIFFERENCE]

Get L1, L2 = Return £, differnt from Lo

[LIST_SOL] 12 3 [LIST_EOL]
[LIST_SOL] 2 3 4 [LIST_EOL]
[SET_DIFFERENCE] — 1

[SET_INTERSECT]

Get L1, L2 = Return LIST which is inter-
sectof L1, Lo

[LIST_SOL] 12 3 [LIST_EOL]
[LIST_SOL] 2 3 4 [LIST_EOL]
[SET_INTERSECT] = [23]

[LIST_DIVISIBLE]

Get £, N'1 = Return £’s element which
is divisible by /1 in LIST

[LIST_SOL] 4 10 12 [LIST_EOL] 4
[LIST_DIVISIBLE] — [4 12]

[LIST_DIVIDE_AND
_REMAIN]

Get £, N1, N2 = Return LIST of L’s
element if the remainder of dividing £’s
element by Ny is V2.

[LIST_SOL] 4 7 12 [LIST_EOL] 3 1
[LIST_DIVIDE_AND_REMAIN] — [47]

[LIST_GET_DIVISOR]

Get N/ = Return LIST of divisors of N/

6 [LIST_GET_DIVISOR] —[1236]

[LIST_COND_MAX
_MIN]

Get L1, L2 = Return LIST in which £
is sorted in descending order according to
the condition of Lo

[LIST_SOL] (A) (B) (C) (D) [LIST_EOL]

[LIST_SOL] (B) (D) > (B) (A) > (C) (B)
> [LIST_EOL] [LIST_COND_MAX_MIN]
— (C) (B) (D) (A)

[LIST2NUM]

Get £ = Return A with each number of
digits in order of L’s element

[LIST_SOL] 1 2 3 [LIST_EOL]
[LIST2NUM] — 123

[NUM2LIST]

Get N = Return LIST of the digits of each
digit of A/

123 [NUM2LIST] — [123]

[LIST_NUM2SUM]

Get £ = Return LIST of each L’s ele-
ment’s sum of the digits

[LIST_SOL] 10 23 77 [LIST_EOL]
[LIST_NUM2SUM] — [15 14]

[LIST_SEARCH_FIXED
_DIGIT]

Get £, N1, N2 = Return LIST, which
has only elements of £ with Return A'1th
digit are Return NV5.

[LIST_SOL] 112 14 32 [LIST_EOL]
2 1 [LIST_SEARCH_FIXED_DIGIT]
S 11214]

[DIGIT_UNK_SOLVER]

Get £,V = Return N, which is the value
of V, satisfies £. If there are multiple val-
ues that can fit in V), return LIST. V is unit
digit.

A2+4B=69 A
[DIGIT_UNK_SOLVER]— 2

[LIST_FIND_UNK]

Get £, S, V = Return N, which is the
value of V. If there are multiple values that
can fit in V, return LIST. It should be used
as a pair with [GEN_POSSIBLE_LIST]

3A [GEN_POSSIBLE_LIST] 3A A
[LIST_FIND_UNK]— [0, ...,9]

[NUM_UNK_SOLVER]

Get £, S = Return N, which is the value
of S, satisfies £. If there are multiple values
that can fit in S, return LIST. S is not a unit
digit but a string.

15003

3/7=6/A=B/21 A
[NUM_UNK_SOLVER]— 14

1200

555 559

The number of sentences

0
0.0 0.2 0.4 0.6 0.8
BLEU score between seed sentence and augmented sentences

Figure 3: The histogram of BLEU score between seed sentences and augmented sentences.

C Statistics for BLEU score

The histogram for BLEU score between seed sentences and augmented sentences is in Figure 3. The
statistics for BLEU score between seeds and augmented problems are here: 0.0 for min, 0.24 for mean,
0.23 for median, and 0.92 for max.

D Characteristics of other benchmkark datasets

A model can only be considered capable of reasoning if it is capable of elementary school-level logical
reasoning. The mathematical reasoning abilities are diverse, as shown Section 2; however, the current
MWP task is focused on arithmetical reasoning using four fundamental arithmetic operations (Koncel-
Kedziorski et al., 2015; Roy and Roth, 2017; Miao et al., 2020; Cobbe et al., 2021).

Data such as MATH (Hendrycks et al., 2021) or MathQA (Amini et al., 2019) have other reasoning
problems. But MATH is too domain-specific. As mentioned in Liang et al. (2016), we think the MWP task
is a good problem in evaluating the ability to understand and reason because natural language narratives
of grade school-level math problems have less combined syntax and contain a small amount of domain
knowledge. Our objective was to develop an elementary school-level (grades 1-6) math dataset, whereas
MATH caters to high-school-level (grades 8-12) mathematics. It encompasses intricate mathematical
problems from AMC10, AMC12, and AIME that necessitate comprehension of advanced mathematical
concepts such as trigonometric functions or imaginary numbers. To ensure a fair comparison, we compared
it with grade school-level datasets such as GSM8K, SVAMP, and ASDiv.

Also, MathQA has too low a lexical diversity (Miao et al., 2020). It has been modified several times
by Austin et al. (2021) and Jie et al. (2022) but still not enough. We inspect 20 problems that GPT-
4 fails on in modified MathQA dataset (Austin et al., 2021) and find out that 30% of problems have
incorrect annotation, 10% of problems have vague problems, and 5% of problems are unsolvable. Miao
et al. (2020) got similar results, saying that 67% of problems have incorrect formulas, 23% of problems
have problematic descriptions, and 10% of problems have valueless answers, randomly inspecting 30
inconsistent samples. So, we choose only GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021), and
ASDiv (Miao et al., 2020) only.

E MWP solving framework for fine-tuning methods

We adopt a general framework to evaluate MWP models. It consists of three modules: template-based
conversion, MWP model, and equation-to-code conversion.

First, we convert some tokens in the narrative to pre-defined symbol tokens. Using a rule-based template
method, we only transform pre-defined token values into specific symbols. For instance, the numerical
tokens in the narrative are converted to [N1], [Na], ..., [N,]. Besides, some pre-defined tokens are
converted to the elements in the list.

15004

Second, the MWP models are trained to translate a narrative with abstract symbols into a postfix
equation. Although many existing studies have been proposed, (Xie and Sun, 2019; Zhang et al., 2020;
Jie et al., 2022) some models are limited to handling various operators. In other words, these models are
designed to solve the binary operator data like +, —, %, <. DMath has many operators that are not binary.
So, in this paper, we employ MWP models using pre-trained language models, i.e., RoOBERTa (Liu et al.,
2019) and GPT-2 (Radford et al., 2019).

Lastly, we convert the postfix expression to Python code. Because the operators are pre-defined, we
can generate the executable Python code from the postfix expression. When the postfix expression is
imprecise, it may fail to convert the postfix expression to the Python code. We simply return a NULL
value as the answer for the exceptional case. When we execute the Python code, we utilize the values for
the token mapping as the argument of the Python code.

F Prompt examples

In this section, we describe prompting methods used in DMath. The zero-shot (Brown et al., 2020)
prompting is written to give a question and generate an answer immediately, and the zero-shot CoT (Kojima
et al., 2022) prompting is written to generate the answer after giving the question and ‘Let’s think step by
step’. Prompt examples for zero-shot and zero-shot CoT per language can be found in Table 9.

Q: {problem}
EN .
Zero-shot A: The answer is

A& {problem}
o gl

[1 step]

Q: {problem}

A: Let’s think step by step.

KO

Zero-shot CoT EN
[2 step]

Q: {problem}

A: Let’s think step by step. {1 step output} The answer is
[1 step]

Z & {problem}

i 2A) tis dAE = FEojHAt

KO
[2 step]

Z & {problem}

G FAol o) gAE = FEo]H 2t (1 step output} F-2

Table 9: Prompt examples per language for zero-shot (Brown et al., 2020) and zero-shot CoT (Kojima et al., 2022).

In section 5, we use one category random method as examples of few-shot CoT (Wei et al., 2022)
in DMath. The following table shows the few-shot examples of one category random. When using the
babbage, curie, and davinci models, the prompting before the target question was truncated if few-shot
CoT prompting exceeds 2049 tokens.

15005

ARI PROMPT

Q: You sold 40 toys on Day 1. On Day 2, you sold 4 times the number of toys sold on Day 1. Find out the
number of toys you sold more on Day 2 compared to Day 1.

A: On the Day 1, you sold 40 toys. On the Day 2, you sold 4 times more toys than on the Day 1, so you
sold 4 * 40 = 160 toys. Therefore, the Day 2 sold 160 - 40 = 120 more toys than the Day 1. Therefore the
answer is 120.

Q: There is a banner 20 meters (m) long. I’m thinking of fixating this banner with nails. Nails were driven
1 meter (m) apart from both ends of the banner, and the remaining nails were nailed in at regular intervals.
A total of 7 nails were used. Find the distance between one nail and another.

A: The interval between the first and last nails is 20 - 1 * 2 = 18. Since there are a total of seven nails,
there are 7 - 1 = 6 gaps between the nails. Therefore, the interval between nails is 18 / 6 = 3. Therefore the
answer is 3.

Q: Yeongchan’s group consists of 7 people. One person can fold two paper cranes in one minute. How
many minutes will it take Yeongchan’s group to fold 182 paper cranes?

A: In Yeongchan’s group, one person can fold two paper cranes per minute, and in Yeongchan’s group,
there are seven people, so Yeongchan’s group can fold 2 * 7 = 14 paper cranes per minute. If Youngchan’s
group folds 182 paper cranes, it takes 182 / 14 = 13 minutes. Therefore the answer is 13.

Q: Namjoon rode his bike and traveled 96.967 kilometers (km) in 1.3 hours. If Namjoon went at a steady
speed, how many kilometers (km) did he travel in 1 hour?

A: The distance Namjoon went for an hour is 96.967 / 1.3 = 74.59 kilometers (km). Therefore the answer
is 74.59.

Q: There are 24 female and male students in total. Among them, 50 sheets of colored paper were equally
distributed to female students only, and 2 sheets were left. How many pieces of colored paper will the
girls have if there are twice as many boys as girls?

A: Female students have 50 - 2 = 48 colored papers. When the number of girls is x, the number of boys is
2x. Since there are 24 female and male students, it is X + 2x = 3x = 24. Therefore, the number of female
students is 8. One female student has 48 / 8 = 6. Therefore the answer is 6.

Q: There is a train that runs at 95 kilometers (km) per hour and a car that runs at 65 kilometers (km) per
hour. If the train and the car travel for 8 hours at a constant speed, by how many kilometers (km) does the
train travel more than the car?

A: The train traveled 95 * 8 = 760 kilometers (km) in 8 hours, and the car traveled 65 * 8 = 520 kilometers
(km) in 8 hours. Therefore, the train went 760 - 520 = 240 kilometers (km) longer than the car. Therefore
the answer is 240.

Q: There are a total 12 of 10-won, 50-won, and 100-won coins. I checked the total amount and it was 500
won. If the number of 10-won and 50-won coins is the same, how many 100-won coins are there?

A: Let’s say the number of 10-won coins and 50-won coins is X and the number of 100-won coins is y. If
so, there are 12 coins worth 10, 50, and 100-won, so x + x + y = 12. Since the total amount is 500-won, it
is 10 * x + 50 * x + 100 * y = 500. Solving this equation, x is 5 and y is 2. Therefore the answer is 2.

Q: There is a scale that can weigh more than 2 kilograms (kg). If you have lifted 3 weights of 200 grams
(g) so far, find how many more weights you need to lift to measure the weight.

A: I’ve put up three 200 grams (g) weights, so there’s an 200 * 3 = 600 grams (g) on the scale now. 2
* 1000 - 600 = 1400 grams (g) is needed to weigh 2 kilograms (kg) more. Therefore, 1400 / 200 = 7
additional 200 grams (g) scales are needed. Therefore the answer is 7.

Q: {problem}
A:

15006

COM PrROMPT

Q: There are 24 balloons. Of these, there are 6 more blue balloons than red balloons, red balloons are 1/4
of the total, and the rest are all yellow balloons. What color balloons will be the most?

A Since the red balloons are 1/4 of the total, 24 * (1 /4) = 6 balloons. Blue balloons are 6 + 6 = 12
because there are 6 more blue balloons than red ones. The rest are yellow balloons, so 24 - 6 - 12 = 6.
Therefore, blue balloons are the most common. Therefore the answer is blue.

Q: How many of 0.8, 1/2, and 0.9 are greater than 0.4?
A: Of 0.8, 1/2, and 0.9, three are greater than 0.4. Therefore the answer is 3.

Q: Yoongi has 4 apples and Jungkook has 6 divided by 3 apples. Who has the greater number of apples?

A: Jungkook has 6 / 3 = 2 apples because he has 6 divided by 3 apples. Yoongi has four apples, so he has
more apples than Jungkook. Therefore the answer is Yoongi.

Q: Choose the 2nd smallest number among 5, 8, 4, 3, and 2.

A: The second smallest number of 5, 8, 4, 3, and 2 is 3. Therefore the answer is 3.

Q: Eight students stand in a line to borrow books. How many students are standing between the student
standing 1st from the front and the student standing 4th from the back?

A: When a total of eight students are standing in a line, there are 8 - 1 - 4 = 3 students between the first
student in the front and the fourth student in the back. Therefore the answer is 3.

Q: Taehyung, Minju, Sangmin, Yoonjung, and Yoojeong took turns crossing the finish line. Who went in
first?

A: Taehyung is first place. Therefore the answer is Taehyung.

Q: Find the number of numbers less than or equal to 0.4 among 0.8, 1/2, and 0.3.
A: The number less than or equal to 0.4 of 0.8, 1/2, and 0.3 is 0.3. Therefore the answer is 1.

Q: What is the smallest number among the numbers greater than 1.1 among the numbers 1.4, 9/10, 1.2,
0.5, and 13/10?

A: Among 1.4, 9/10, 1.2, 0.5, and 13/10, the number greater than 1.1 is 1.4, 1.2, and 13/10. The smallest
number of these is 1.2. Therefore the answer is 1.2.

Q: {problem}
A:

15007

COR PrROMPT

Q: There are three natural numbers A, B, and C. When A is divided by 7, the quotient is B and the
remainder is C. The quotient and remainder are equal in this equation. Find the largest number among A.

A: When A is divided by 7, the remaining C can be 0, 1, 2, 3, 4, 5, and 6. In order to make A the largest,
C must be 6 and B must be 6. Thus, the largest A is 6 * 7 + 6 = 48. Therefore the answer is 48.

Q: There is a single digit number A. When 7A7 is rounded up to the tens place is 730. What is the right
value for A?

A: The fact that 7A7 is raised from the decimal place to 730 means that A is 2. Therefore the answer is 2.

Q: Jisoo had 6,000 won and she bought a ballpoint pen for 3,200 won, an eraser for 1,000 won, and candy
for 500 won. Assuming that all remaining money is saved, find the amount saved.

A: The amount of money Jisoo has left after buying the product is 6000 - 3200 - 1000 - 500 = 1300 won.
Therefore the answer is 1300.

Q: The length of Siwon’s ribbon is 8.8 meters longer than Seojun’s. If Seojun cuts his own ribbon 4.3
meters (m) and gives it to Siwon, find out what the difference between the lengths of the two people’s
ribbons.

A: If Siwon’s ribbon length is x, Seojun’s ribbon length is x - 8.8. After Seojun gives the ribbon to Siwon,
the length of Seojun’s ribbon is x - 8.8 - 4.3, and the length of Siwon’s ribbon is x + 4.3. The difference
between the two is (X +4.3) - (x - 8.8 - 4.3) = 17.40 Therefore the answer is 17.40.

Q: 37 is 69 smaller than a number. What is the number that is 55 greater than the number?

A: A number that is 69 smaller than the number is 37, so the number is 69 + 37 = 106. Therefore, a
number greater than the number by 55 is 106 + 55 = 161. Therefore the answer is 161.

Q: 24 is a result of subtracting 63 from a particular number by mistake when the original calculation was
to subtract 36 from that particular number. Find the result of the original calculation.

A: The number is 24 + 63 = 87. Correctly calculated, the value obtained by subtracting 36 from the
number is 87 - 36 = 51. Therefore the answer is 51.

Q: It was 40 that should be subtracted from, but mistakenly subtracting 21 from a number yields 52. How
much do you get when you calculate it correctly?

A: The number is 52 + 21 = 73. Correctly calculated, subtracting 40 from the number is 73 - 40 = 33.
Therefore the answer is 33.

Q: You need to subtract 46 from a certain number, but mistakenly subtracted 64, and got 122. Find the
result of the correct calculation.

A: The number is 122 + 64 = 186. To calculate correctly, subtract 46 from the number is 186 - 46 = 140.
Therefore the answer is 140.

Q: {problem}
A:

15008

GEO PROMPT

Q: There is a parallelogram that has a base of 3.6 and a height of 2.5 times the base. Find the area of this
parallelogram.

A: The area of the parallelogram is the product of the base and the height. Since the base of this
parallelogram is 3.6 and the height is 3.6 * 2.5 =9, the area is 3.6 * 9 = 32.4. Therefore the answer is 32.4.

Q: 12 friends, including Yoonseok, are standing as a dodecagon. Every student shook hands once with
every friend except for the friend on either side of them. How many handshakes did Yoonseok shake?
A: Yoon Seok shook hands 12 - 2 - 1 = 9 times because he shook hands with friends except for two on
both sides of him and one on his own. Therefore the answer is 9.

Q: There are pretty blankets whose shape is the same as a regular tetradecagon. When the length of all
corners is 154 centimeters (cm). Find the length of one edge of the blanket.

A: Since there are a total of 14 edges of a square, the length of one edge is 154 / 14 = 11. Therefore the
answer is 11.

Q: How many square centimeters (cm?) is the sum of the widths of two squares, every 11 centimeters
(cm) and 5 centimeters (cm) long?

A: The area of a square with a side length of 11 centimeters (cm) is 11 * 11 = 121 square centimeters
(cm?), and the area of a square with a side length of 5 centimeters (cm) is 5 * 5 = 25 square centimeters
(cm?). The sum of the widths of the two squares is 121 + 25 = 146 square centimeters (cm?). Therefore
the answer is 146.

Q: The perimeter of the square is 17.8 centimeters (cm). Find the length of one side of this square.

A: The circumference of a square is four times the length of a side. Therefore, the length of one side of a
square with a circumference of 17.8 centimeters (cm) is 17.8 / 4 = 4.45 centimeters (cm). Therefore the
answer is 4.45.

Q: What is the number of edges of a cube?
A: The number of edges of a cube is 6 * 2 = 12. Therefore the answer is 12.

Q: After arranging several cans of soda in a square shape, there were 6 cans left. So, I tried to increase the
width and length by one row, but 11 cans were inadequate. If you arrange these cans in 7 rows, how many
cans are there in one row?

A: Let’s say that the number of cans of soda currently on one side of the square is x. If you want to
increase the width and length by one row, you need 2 * x + 1 cans of soda. Currently, there are 6 cans left,
and 11 cans are insufficient when trying to increase it, so it can be considered 2 * x + 1 =6 + 11. So x is 8.
The number of beverage cans currently in possession is x * x + 6 = 8 * 8 + 6 = 70. If these 70 cans are set
in seven rows, there are 70 / 7 = 10 cans in the first row. Therefore the answer is 10.

Q: There is a rhombus with an area of 64/5 square centimeters (cm?). If one diagonal is 64/9 centimeters
(cm), how long is the other diagonal in centimeters (cm)?

A: The area of the rhombus is equal to the product of the two diagonals in the rhombus multiplied by
one-half. Thus, when one diagonal is 64/9 centimeters (cm), the length of the other diagonal is (64 /5) * 2
/(64 /9) = 3.6 centimeters (cm). Therefore, the answer is 3.6.

Q: {problem}
A:

15009

POS PROMPT

Q: There are two types of Korean language workbooks and four types of math workbooks. When choosing
one book among them, in how many cases can you choose Korean workbook or math workbook?

A: When there are two types of Korean workbooks and four types of math workbooks, the number of
cases in which one Korean workbooks or one math workbooks is selected is 2 + 4 = 6. Therefore the
answer 1s 6.

Q: You want to create a three-digit number by drawing three different numbers from 0, 1, 3, and 5. Find
the sum of the largest and smallest possible numbers.

A: The largest number that can be made is 531, and the smallest number is 103. The sum of the two is 531
+ 103 = 634. Therefore the answer is 634.

Q: Nine digits from 1 to 9 are used once to form a nine-digit number. If this number is a multiple of 55,
find the largest 9-digit number.

A: The largest number of nine digits, a multiple of 55, is 987642315. Therefore the answer is 987642315.

Q: How many two-digit numbers can be formed by selecting two different numbers from 1, 3, and 4?

A: The number of two digits that can be made by drawing two different numbers from 1, 3, and 4 is 3P2 =
6. Therefore the answer is 6.

Q: There are 5 marbles: red, blue, yellow, purple, and black. You want to choose two of these and give
one to your younger brother and the other to your older brother as a gift. Find the number of cases in this
situation.

A: The number of cases in which two of the five different colored beads are selected is SP2 = 20. Therefore
the answer is 20.

Q: You have 4 blue pencils and 1 red pencil. How many different ways can you place 5 pencils in a row?

A: When there are four blue pencils and one red pencil, there are a total of five ways to put these five
pencils in one line. Therefore the answer is 5.

Q: How many multiples of 4 are there among the four-digit numbers made using the number cards 1, 3, 5,
and 6 once?

A: The four digits that can be made using the number cards 1, 3, 5, and 6 once are 1356, 1365, 1536,
1563, 3156, 3165, 3516, 3516, 3561, 3615, 3651, 5136, 5163, 5163, 5361, 5613, 6135, 6153, 6351, 6513,
6531, 6531. Among them, the multiples of 4 are 1356, 1536, 3156, 3516, 5136, and 5316. Therefore the
answer is 6.

Q: Find the smallest number that can be made by using all the number cards 0, 2, 4, 6, 8 and 9 only once.

A: The smallest number that can be made using the number cards of 0, 2, 4, 6, 8, and 9 once is 204689.
Therefore the answer is 204689.

Q: {problem}
A:

15010

G Failed examples in GPT-4

ARI

Question: How many four-digit numbers are divisible by the two numbers 3 and 5?

Reasoning: A number that is divisible by both 3 and 5 is divisible by their least common multiple (LCM).
The LCM of 3 and 5 is 15. To find the number of four-digit numbers divisible by 15, we need to find the
range of these numbers. The smallest four-digit number is 1000, and the largest is 9999. The smallest
four-digit number divisible by 15 is 1005 (1000 + 5), and the largest is 9990 (9999 - 9). Now, we need to
find how many numbers are in this range that are divisible by 15. To do this, we can divide the difference
between the largest and smallest numbers by 15 and add 1. (9990 - 1005) / 15+ 1=5985/15+1=399 +
1 =400. So, there are 400 four-digit numbers that are divisible by both 3 and 5.

Correct Answer: 600
COM

Question: Nine people stand in a line in order from shortest to tallest. Hoseok stands in the front. If they
line up again in order from the tallest to the shortest, what number will Hoseok stand from the back?

Reasoning: Since Hoseok is the shortest and stands in the front when they line up from shortest to tallest,
he will be the last person when they line up from tallest to shortest. So, Hoseok will stand 9th from the
back. Therefore the answer is 9.

Correct Answer: 1
COR
Question: When you round 34AC to the nearest hundred, you get 3400. Find the sum of the possible As.

Question: When rounding 34AC to the nearest hundred, the possible values for A are 3, 4, 5, and 6. This
is because if A is 3 or 4, the number will round down to 3400, and if A is 5 or 6, the number will round up
to 3400. The sum of the possible As is 3 + 4 + 5 + 6 = 18. Therefore, the answer is 18.

Correct Answer: 10
GEO
Question: How many sides are there in a polygon which 12 diagonals can be drawn from one vertex?

Reasoning: If 12 diagonals can be drawn from one vertex, then there are 12 other vertices that are not
adjacent to the given vertex. Since a polygon has as many sides as it has vertices, there must be 12 + 1
(the given vertex) = 13 sides in the polygon. Therefore, the polygon has 13 sides.

Correct Answer: 15
POS

Question: You want to create a three-digit number by drawing three cards out of number cards with 1,
7, 0, and 3 written on them and using them only once. Find the value of multiplying the second largest
number and the second smallest number that can be made.

Reasoning: The second largest number that can be made is 371, and the second smallest number is 130.
The value of multiplying the two is 371 x 130 = 48,230. Therefore the answer is 48,230.

Correct Answer: 78110

15011

