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Abstract
Representations from large language models
(LLMs) are known to be dominated by a small
subset of dimensions with exceedingly high
variance. Previous works have argued that
although ablating these outlier dimensions in
LLM representations hurts downstream perfor-
mance, outlier dimensions are detrimental to
the representational quality of embeddings. In
this study, we investigate how fine-tuning im-
pacts outlier dimensions and show that 1) out-
lier dimensions that occur in pre-training per-
sist in fine-tuned models and 2) a single out-
lier dimension can complete downstream tasks
with a minimal error rate. Our results suggest
that outlier dimensions can encode crucial task-
specific knowledge and that the value of a rep-
resentation in a single outlier dimension drives
downstream model decisions.1

1 Introduction

Large Language Models (LLMs) are highly over-
parameterized with LLM representations utilizing
only a small portion of the available embedding
space uniformly (Gordon et al., 2020; Prasanna
et al., 2020; Rudman et al., 2022). Representations
of transformer-based LLMs are dominated by a
few outlier dimensions whose variance and mag-
nitude are significantly larger than the rest of the
model’s representations (Timkey and van Schijn-
del, 2021; Kovaleva et al., 2021). Previous studies
devoted to the formation of outlier dimensions in
pre-trained LLMs suggest that imbalanced token
frequency causes an uneven distribution of variance
in model representations (Gao et al., 2019; Puccetti
et al., 2022). Although many argue that outlier di-
mensions “disrupt” model representations, making
them less interpretable and hindering model perfor-
mance, ablating outlier dimensions has been shown
to cause downstream performance to decrease dra-
matically (Kovaleva et al., 2021; Puccetti et al.,
2022).

1Code: https://github.com/wrudman/outlier_dimensions

There currently is little understanding of how
fine-tuning impacts outlier dimensions and why ab-
lating outlier dimensions is harmful to downstream
performance. We address this gap in the litera-
ture by investigating 1) how fine-tuning changes
the structure of outlier dimensions and 2) testing
the hypothesis that outlier dimensions contain task-
specific knowledge. This study makes the follow-
ing novel contributions:

1. We find that outlier dimensions present in pre-
training remain outlier dimensions after fine-
tuning, regardless of the given downstream
task or random seed.

2. We demonstrate that outlier dimensions in
ALBERT, GPT-2, Pythia-160M, and Pythia-
410M encode task-specific knowledge and
show that it is feasible to accomplish down-
stream tasks by applying a linear threshold
to a single outlier dimension with only a
marginal performance decline.

2 Related Works

Two seminal works discovered the presence of “out-
lier” (Kovaleva et al., 2021) or “rogue” (Timkey
and van Schijndel, 2021) dimensions in pre-trained
LLMs. Following Kovaleva et al. (2021) and Puc-
cetti et al. (2022), we define outlier dimensions
as dimensions in LLM representations whose vari-
ance is at least 5x larger than the average variance
in the global vector space. The formation of outlier
dimensions is caused by a token imbalance in the
pre-training data with more common tokens hav-
ing much higher norms in the outlier dimensions
compared to rare tokens (Gao et al., 2019; Puccetti
et al., 2022). Although the community agrees on
the origin of outlier dimensions, their impact on
the representational quality of pre-trained LLMs
has been widely contested.

The concept of isotropy (i.e., the uniformity of
variance in a distribution) is closely related to out-
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Figure 1: Average activation diagrams of sentence embeddings on the SST-2 validation dataset. The x-axis represents
the index of the dimension, and the y-axis is the corresponding magnitude in that given dimension. Top: pre-trained
models where no fine-tuning occurs. Bottom: models fine-tuned to complete SST-2.

lier dimensions. Namely, the presence of outlier di-
mensions causes model representations to be highly
anisotropic (Rudman and Eickhoff, 2023). Many
previous works have argued that mitigating the im-
pact of outlier dimensions by forcing LLM rep-
resentations to be isotropic improves model inter-
pretability and performance (Rajaee and Pilehvar,
2021; Liang et al., 2021; Mu et al., 2017; Zhou
et al., 2020; Gao et al., 2019). Further, Timkey
and van Schijndel (2021) claim that outlier dimen-
sions do not meaningfully contribute to the model
decision-making process and that removing outlier
dimensions aligns LLM embeddings more closely
to human similarity judgments. Although the no-
tion that isotropy is beneficial to model represen-
tations has been widely adopted in the literature,
recent studies have shown that many tools used to
measure isotropy and the impact of outlier dimen-
sions in NLP are fundamentally flawed (Rudman
et al., 2022).

There is a growing body of literature arguing
that anisotropy is a natural consequence of stochas-
tic gradient descent and that compressing repre-
sentations into low-dimensional manifold corre-
lates with improved downstream performance (Zhu
et al., 2018; Ansuini et al., 2019; Recanatesi et al.,
2019; Rudman and Eickhoff, 2023). Recent works
in NLP suggest that LLMs store linguistic and
task-specific information in a low-dimensional sub-
space (Coenen et al., 2019; Hernandez and An-
dreas, 2021; Zhang et al., 2023). Further, Rud-
man and Eickhoff (2023) argue that encouraging
the formation of outlier dimensions in LLM repre-
sentations improves model performance on down-

stream tasks. In this study, we demonstrate that
certain LLMs store task-specific knowledge in a
1-dimensional subspace and provide evidence sup-
porting claims that outlier dimensions are benefi-
cial to model performance.

3 Experiments

Training Details We fine-tune 4 transformer en-
coder LLMs: BERT (Devlin et al., 2018), ALBERT
(Lan et al., 2020), DistilBERT (Sanh et al., 2020),
RoBERTa (Liu et al., 2019) and 4 transformer de-
coder LLMs: GPT-2 (Radford et al., 2019), Pythia-
70M, Pythia-160M, Pythia-410M (Biderman et al.,
2023). We fine-tune our models on 5 binary clas-
sification tasks contained in the GLUE benchmark
(Wang et al., 2018): SST-2 (Socher et al., 2013),
QNLI (Rajpurkar et al., 2016), RTE (Dagan et al.,
2005), MRPC (Dolan and Brockett, 2005), QQP. A
detailed description of each task is available in Sec-
tion A of the Appendix. A detailed description of
our hyperparameter search, exact hyperparameters,
and random seeds is given in Section B. We follow
the common practice of reporting results on GLUE
tasks using the hidden validation dataset.

3.1 Persistence of Outlier Dimensions
Methods After training the model, we calculate
the variance of sentence embeddings on the valida-
tion data on each task and each random seed and
count the number of times a given dimension has
a variance 5x larger than the overall average. We
visualize outlier dimensions by creating “activation
diagrams” where the x-axis is the index of a given
dimension, and the y-axis is the magnitude of a
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Figure 2: Frequency of the 7 most commonly occurring outlier dimensions across all fine-tuning tasks and all
random seeds. The x-axis plots the dimension frequency, and the y-axis plots the dimension index.

sentence embedding in that dimension. We report
the average sentence embeddings across 4 random
seeds for all activation diagrams.

Results Figure 1 demonstrates how fine-tuning
impacts model representations of sentence embed-
dings by plotting activation diagrams from BERT,
ALBERT, DistilBERT, and GPT-2 on the SST-2
validation data before (top row) and after (bottom
row) fine-tuning. Activation diagrams for the re-
maining four models are available in Section E in
the Appendix. The magnitudes of outlier dimen-
sions in GPT-2 are far larger than any of the mod-
els considered in this study. The outlier dimension
with the largest variance in GPT-2 has an average
variance value of 3511.82 compared to 4.87, 9.30,
and 4.68 for BERT, ALBERT, and DistilBERT (see
Section C for full results). For GPT-2, fine-tuning
exacerbates the variance of existing outlier dimen-
sions but decreases the mean value of outlier di-
mensions. Notably, in GPT-2, the exact set of top
3 outlier dimensions in pre-training persist when
fine-tuning models to complete downstream tasks.
Figure 2 demonstrates that a small subset of outlier
dimensions emerge for a given model regardless of
the downstream classification tasks or the random
seed. In particular, in GPT-2 and RoBERTa, there
are dimensions that qualify as outlier dimensions
for every fine-tuning task and random seed. Outlier
dimensions in the Pythia models have a far lower
occurrence rate than any of the models in the paper.
This finding is especially pronounced in Pythia-
70M and Pythia-160M, where no dimensions have

an occurrence rate higher than 70%.
Not only do the outlier dimensions in Pythia

models have low occurrence rates, but the Pythia
models have far fewer outlier dimensions present
in the embedding space compared to BERT, AL-
BERT, DistilBERT, and RoBERTa. In general, far
more outlier dimensions emerge in the encoder
models considered in this study compared to the
decoder models. In particular, GPT-2 and Pythia-
70M only have 8 and 4 unique outlier dimensions
that appear across all fine-tuning tasks and random
seeds compared to 62, 60, 24, and 64 for BERT,
ALBERT, DistilBERT, and RoBERTa, respectively.
Interestingly, Figure 2 shows that the 4 most com-
mon outlier dimensions in BERT and DistilBERT
are the same, indicating that outlier dimensions
persist even when distilling larger models. Further
discussion of the persistence of outlier dimensions
is available in Section C.

3.2 Testing Outlier Dimensions for
Task-Specific Knowledge

Methods In order to test the hypothesis that out-
lier dimensions contain task-specific knowledge,
we attempt to complete an inference task using
only the outlier dimension in the fine-tuned model
with the highest variance. For the remainder of
this paper, we refer to the outlier dimension with
the highest variance as the principal outlier dimen-
sion, which we denote as ρ. After fine-tuning our
model, we use a simple brute-force algorithm to
find a linear decision rule to complete the down-
stream GLUE task using only the principal outlier
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Task BERT ALBERT DistilBERT RoBERTa GPT-2 Pythia-70M Pythia-160M Pythia-410M
SST-2 91.86/77.58 ∆15.54 91.90/84.32 ∆8.25 90.14/54.39 ∆39.66 94.35/63.85 ∆ 32.33 91.77/91.69 ∆0.09 87.30/72.62 ∆16.82 89.25/86.64 ∆ 2.95 94.53/92.19 ∆ 2.48
QNLI 90.11/69.69 ∆22.66 91.28/88.16 ∆3.42 86.48/66.12 ∆23.54 92.78/59.69 ∆ 35.67 87.80/85.90 ∆2.16 80.14/62.93 ∆21.47 85.41/82.87 ∆2.97 91.41/91.41 ∆0.0
RTE 61.01/55.60 ∆8.87 66.70/63.09 ∆5.41 55.14/52.44 ∆4.90 76.56/70.31∆ 8.16 61.64/59.74 ∆3.08 55.14/53.97 ∆ 2.12 61.82/50.00 ∆ 19.12 71.88/ 47.66∆33.69
MRPC 84.80/76.04 ∆10.33 87.01/79.72 ∆8.38 81.56/75.06 ∆7.97 86.15/80.70 ∆ 6.33 78.92/74.08 ∆6.13 70.71/68.75 ∆ 4.12 74.69/68.26 ∆ 8.38 79.68/ 63.28∆ 20.58
QQP 90.13/68.27 ∆24.25 90.01/85.37 ∆5.15 89.12/71.70 ∆19.55 90.99/81.53 ∆ 10.40 89.38/86.91 ∆2.76 86.88/70.93 ∆ 18.36 89.12/85.77 ∆ 3.76 85.94/80.47 ∆6.36
Avg. 83.58/69.43 ∆16.33 85.38/80.13 ∆6.12 80.48/63.94 ∆19.12 88.17/71.21 ∆ 19.23 81.90/79.66 ∆2.85 76.23/65.84 ∆ 12.58 80.06/74.71 ∆ 7.48 84.69/75.02 ∆11.44

Table 1: Comparing the performance of the fully fine-tuned model to our brute-force algorithm on the principal
outlier dimension, ρ (Equation 1). We compute the percent decrease between the full model performance and the
1-D performance using Equation 1 as full-performance minus 1D-performance divided by full-performance. The
reported performance is an average over 4 random seeds.

dimension. We first collect a small sample of 500
sentence embeddings from the training data to find
ρ and calculate its mean value, which we denote as
µρ. Equation 1 describes the classification decision
rule for an input sentence using only ρ:

xlabel =

{
0 if xρ ≤ µρ + ϵ

1 if xρ > µρ + ϵ
(1)

where xρ denotes the principal outlier di-
mension for an input sentence x, ϵ ∈
{-50, -49.5, ..., 49.5, 50}. Let X̄label denote the
training accuracy of Equation 1. If 1 − X̄label >
X̄label we flip the inequalities in Equation 1:

xlabel =

{
0 if xρ ≥ µρ + ϵ

1 if xρ < µρ + ϵ
.

After finding both the value of ϵ that maximizes
accuracy on the training data and the correct direc-
tion of the inequality, we measure the ability of ρ
to complete downstream tasks using Equation 1 on
the hidden validation data.

Results In GPT-2, using the principal outlier di-
mension results in only a 3% performance drop
compared to using the full model representations
for most tasks (Table 1). Further, there are several
tasks in ALBERT, Pythia-160M, and Pythia-410M
where there is little to no change in performance
when using only the principal outlier dimension.
Although outlier dimensions encode task-specific
knowledge in some models, outlier dimensions in
BERT, DistilBERT, RoBERTa, and Pythia-70M
are insufficient for completing most downstream
tasks. In particular, for QNLI, using our brute-
force algorithm on a single outlier dimension in
GPT-2, ALBERT, Pythia-160M, and Pythia-410M
only results in a 2.16%, 3.42%, 2.97%, and 0% per-
formance decrease, where performance on QNLI
drops by 22.66%, 23.54%, 33.67% and 21.47%
for BERT, DistilBERT, RoBERTa, and Pythia-70M

respectively. Additionally, the average percent de-
crease in performance is significantly lower for
GPT-2 (2.85%), ALBERT (6.12%), Pythia-160M
(7.48%) compared to BERT (16.33%), DistilBERT
(19.12%) and RoBERTa (19.23%).

3.3 Variance vs. 1D-Performance

Methods In this section, we extend our experi-
ment in Section 3.2 by testing each 1-D subspace
in model activations for task-specific knowledge.
Namely, we use our brute-force algorithm in Equa-
tion 1 to learn a linear threshold for each dimension
of the model’s sentence embeddings.

Results Figure 3 shows multiple 1-D subspaces
in model sentence embeddings that contain task-
specific information. Importantly, the downstream
performance of a single dimension is strongly cor-
related with the variance in that given dimension.
Even in cases where the principal outlier dimension
does not contain enough task-specific information
to complete the downstream task, there are several
non-principal outlier dimensions that are capable
of completing the downstream task with a high
degree of accuracy. For instance, applying Equa-
tion 1 to the largest outlier dimension in BERT on
QNLI results in a 22.26% decrease in performance,
whereas using Equation 1 on the 5th largest out-
lier dimension only leads to a 0.56% reduction in
performance. We even find a few cases where ap-
plying Equation 1 results in improved performance
over feeding the full representations into a classifi-
cation head. For full results and further discussion,
see Table 3 and Section D in the Appendix.

4 Discussion

Previous studies investigating the role of outlier di-
mensions tend to only focus on BERT or RoBERTa,
yet make broad claims about the role of outlier di-
mensions for LLMs as a whole (Kovaleva et al.,
2021; Puccetti et al., 2022). Our results demon-
strate that outlier dimensions have different func-
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Figure 3: Comparing the downstream performance of all 1-D subspaces of sentence embedding activations on QNLI
against the variance in that given dimension. Results for all tasks are available in Section D in the Appendix. The
red dashed line indicates the threshold for whether a dimension qualifies as an “outlier dimension” (i.e., 5x the
average variance in vector space).

tions for different models and tasks. In particular,
outlier dimensions contain task-specific knowledge
that can complete downstream fine-tuning tasks
for some models (GPT-2, ALBERT, Pythia-160M,
and Pythia-410M) but not for others (BERT, Distil-
BERT, RoBERTa, and Pythia-70M). Future work
should avoid generalizing results from one obser-
vation to all other models.

Although numerous studies have argued that out-
lier dimensions are harmful to model representa-
tions (Gao et al., 2019; Timkey and van Schijndel,
2021; Cai et al., 2021), we quantitatively show that
the single principal outlier dimension can store
enough task-specific knowledge in GPT-2, AL-
BERT, Pythia-160M, and Pythia-410M to complete
downstream tasks. In cases where the principal
outlier dimension does not contain sufficient task-
specific knowledge to complete downstream tasks,
we find that there are often non-principal outlier di-
mensions that retain high 1-D performance. In par-
ticular, Figure 3 shows that there are non-principal
outlier dimensions in BERT and RoBERTa that can
complete QNLI using Equation 1 with only a 0.56%
and 1.01% performance decrease compared to us-
ing full model representations and a classification
head. These findings help explain recent results
showing that encouraging even larger variance in
outlier dimensions is beneficial to LLM fine-tuning
performance (Rudman and Eickhoff, 2023).

Additionally, our finding that 1-D subspaces con-
tain task-specific knowledge strengthens the argu-
ments that LLMs store linguistic knowledge in

a low-dimensional subspace (Hernandez and An-
dreas, 2021; Coenen et al., 2019; Zhang et al.,
2023). The persistence of the same small set
of outlier dimensions in pre-training and fine-
tuning across various classification tasks and ran-
dom seeds provides strong evidence that the low-
dimensional subspaces learned for different tasks
are highly similar. Namely, when fine-tuning, cer-
tain LLMs adapt the same small set of outlier di-
mensions to store task-specific knowledge.

5 Conclusions & Future Works

This study challenges the dominant belief in the
literature that outlier dimensions are detrimental
to model performance by demonstrating that 1)
the exact outlier dimensions that emerge in pre-
training persist when fine-tuning models regardless
of the classification task or random seed and 2) in
some LLMs, outlier dimensions contain enough
task-specific knowledge to linearly separate points
by class label. However, it is still unclear why the
principal outlier dimension contains task-specific
knowledge in some models and not others. Future
work should investigate the specifics of these oc-
currences and how this finding is affected by model
scale, architectural choices, and training objectives.
Ultimately, understanding the mechanisms and im-
plications of outlier dimensions in LLMs can con-
tribute to advancements in transfer learning, model
interpretability, and optimizing performance in sev-
eral NLP tasks.
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6 Limitations

Our study follows the common practice of only con-
sidering binary classification tasks. Studies have
yet to investigate how changing outlier dimensions
behave when fine-tuning for alternative tasks such
as question-answering or generative tasks. We limit
our analysis to smaller models that are easy to fine-
tune. We do not consider how model size impacts
the presence of outlier dimensions and whether
outlier dimensions store task-specific information
with very large LLMs. However, outlier dimen-
sions will likely continue to play a role in larger
models, given that outlier dimensions are persistent
in GPT-2 and that most of the largest models in
NLP are transformer decoders.
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A Dataset Details

Stanford Sentiment Treebank with 2 classes (SST-
2) is a binary classification task where models must
determine whether a short movie review is posi-
tive or negative in sentiment (Socher et al., 2013).
Question-answering Natural Language Inference
(QNLI) is a binary natural language inference task
where models must decide whether or not a given
answer is entailed from a specified question (Ra-
jpurkar et al., 2016). Recognizing Textual Entail-
ment (RTE) is a binary classification task where a
model must determine if a given sentence logically
follows a preceding sentence. The Microsoft Re-
search Paraphrase Corpus (MRPC) tasks models
with determining if a pair of sentences are para-
phrases of each other (i.e., semantically equivalent).
The Quora Question Pairs (QQP) dataset consists
of question pairs from Quora. Models must deter-
mine if the sentence pairs are semantically equiva-
lent. Note that all tasks are datasets in the GLUE
benchmark (Wang et al., 2018).

Model L.R. Batch Size Epoch
BERT 3e-5 32 2

ALBERT 1e-5 32 3
DistilBERT 1e-5 64 5
RoBERTa 1e-5 64 3

GPT-2 1e-5 32 3
Pythia-70M 1e-5 32 4

Pythia-160M 1e-5 32 4
Pythia-410M 1e-5 32 4

Table 2: Detailed model hyperparameters.

B Hyperparameter Details

Following Geiping and Goldstein (2022), we
hyperparameter-tune each model on a single task to
learn a set of global hyperparameters. We then use
the set of global hyperparameters to fine-tune each
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BERT ALBERT DistilBERT RoBERTa GPT-2 Pythia-70M Pythia-160M Pythia-410M
Task Acc Var % Acc Var % Acc Var % Acc Var % Acc Var % Acc Var % Acc Var % Acc Var %

SST-2 91.37 ∆ 0.53 96 91.69∆0.23 99 89.42∆0.80 99 93.26∆1.15 96 91.43∆0.37 99 76.03∆12.91 64 87.23∆2.22 96 94.53 ∆ 0.00 88
QNLI 89.66 ∆ 0.56 99 90.23∆1.15 99 82.65∆4.43 98 91.84 ∆ 1.01 94 85.73∆2.36 99 67.46∆15.82 56 85.00∆0.47 99 93.75 ∆+2.56 92
RTE 61.73∆+1.18 88 67.68∆+1.48 98 55.69∆+0.99 31 79.69∆+4.09 95 60.29∆2.19 100 55.59∆+0.83 38 55.32∆10.50 19 60.94∆15.23 70

MRPC 80.69∆4.83 98 82.97∆4.65 92 74.08∆9.17 95 84.38∆2.1 93 75.06∆4.89 99 68.38∆4.64 13 68.44∆8.36 96 70.31∆11.76 87
QQP 87.59∆2.81 93 85.56∆5.94 94 81.29∆8.78 97 89.14∆2.03 90 87.07∆2.59 99 70.54∆18.80 66 85.17 ∆ 4.43 70 89.84∆+4.54 98
Avg. 82.21 ∆ 1.50 97 83.67∆1.90 97 76.62∆4.44 85 87.66∆0.43 94 79.91∆2.48 99 67.60∆10.27 58 76.24∆5.20 76 81.88∆3.9 87

Table 3: Maximum value of applying our brute force algorithm to all 1D subspaces in the last layer sentence
embedding to the full model performance. ∆ represents the percent change between the maximum 1D value and
the full model performance. Note that bold entries are those where the best 1D subspace performs better than the
full model representations. Our brute force algorithm on the best 1D subspace. Variance % is the percentile of
the variance of the dimension that corresponds to the maximum brute-force classification accuracy. The reported
performance is an average over 4 random seeds.

model on the remaining tasks. For this study, we
learn global hyperparameters from QNLI and train
our models using 4 random seeds. Note that we
exclude COLA (Warstadt et al., 2019) from anal-
ysis as Geiping and Goldstein (2022) find COLA
is highly sensitive to hyperparameter tuning and
performs poorly with a global set of parameters.
For each model, we search for the optimal com-
bination of learning rate {1e-5, 3e-5, 5e-5, 1e-4},
batch size {16, 32, 64} and the number of train-
ing epochs {1,2,3,4,5}. To correctly perform the
hyperparameter tuning, we randomly remove 5%
of the training data and use it as hyperparameter-
tuning evaluation data since we report performance
results on the GLUE validation data. Table 2 de-
tails the complete set of hyperparameters used for
each task in this paper. Note: we train all of our
models using mixed-precision training, except for
Pythia-70M and Pythia-160M. For Pythia-70M and
Pythia-160M, we use full precision since we re-
ceived NaN values in our loss function when using
mixed-point precision training. Once we learn the
global hyperparameters set in Table 2, we fine-tune
the models on random seeds 1,2,3,4.

C Persistence of Outlier Dimensions
Continued

First, note that the dimension of Pythia-70M’s acti-
vation space is 512, and the dimension of Pythia-
410M’s activation space is 1028. All other models
have activation spaces with 768 dimensions.Table 4
lists the number of outlier dimensions and the aver-
age maximum variance value of all models on all
tasks. Fine-tuning models increases both the num-
ber of outlier dimensions present in embedding
space as well as the average maximum variance
value. This trend is the strongest for the encoder
models considered in this paper as well as GPT-2
and Pythia-70M.

Pre-Trained Fine-Tuned
Model Num Outliers Avg. Var(ρ) Num Outliers Avg. Var(ρ)
BERT 2 0.10 62 4.87

ALBERT 3 3.74 60 9.30
DistilBERT 3 0.04 25 4.68
RoBERTa 4 0.02 64 13.45

GPT-2 6 619.18 8 3511.82
Pythia-70M∗ 2 13.49 4 61.54
Pythia-160M 35 32.71 27 9.85
Pythia-410M∗ 11 12.15 129 6.48

Table 4: Counts of the number of outlier dimensions
that appear across all tasks and the average variance
value of the principal outline dimensions, ρ.

D All 1-D Results

Variance vs. Performance In this Section, we
provide full results for the experiment in Sec-
tion 3.3. Namely, we apply Equation 1 to all 1-
dimensional subspaces in the sentence embeddings
of each model on every task. For nearly every
model and every task, we find the same strong cor-
relation between a dimension variance and the abil-
ity to encode task-specific information. There are
very few exceptions to this trend. However, there
are two tasks (RTE& MRPC) where there is no
strong correlation between performance and vari-
ance for some of the models considered in this pa-
per. Note that in MRPC, a correlation between high
variance value and performance does not emerge
as Pythia-70M and Pythia-160M barely perform
above predicting the class majority label of 68.38%.
In fact, no 1-D subspace of Pythia-70M fine-tuned
on MRPC performs above “random” performance
of 68.38%. For RTE, there is only a mild correla-
tion between variance and performance for BERT,
ALBERT, and RoBERTa. For DistilBERT and the
Pythia models, the correlation between variance
and performance degrades even further. We hy-
pothesize this is in part due to RTE being a difficult
task where models tend to perform poorly. An in-
teresting direction of future work would be to see if
there are types of tasks, such as question-answering
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Figure 4: Average activation diagrams of sentence embeddings on the SST-2 validation dataset. The x-axis represents
the index of the dimension, and the y-axis is the corresponding magnitude in that given dimension. Top: pre-trained
models where no fine-tuning occurs. Bottom: models fine-tuned to complete SST-2.

or textual entailment, that impact an outlier dimen-
sion’s ability to store task-specific information.

Maximal 1-D Subspaces Figures 3 and 5 demon-
strate that oftentimes the principal outlier dimen-
sion is not the best performing 1-D subspace. In
Table 3, we report the maximum performance of a
1-D subspace after applying Equation 1 to complete
the downstream task along with the percentile of
the variance of the maximal 1-D subspace. Trends
in Table 3 provide further evidence for our find-
ing that the variance of the activation value corre-
lates with 1-D performance. With the exception
of Pythia-70M, the average performance decrease
between the maximum 1-D performance and the
full model performance is less than ≈5% for all
models considered in this paper. Surprisingly, we
find 7 cases where the maximum 1-D subspace per-
forms better than feeding the full representations
into a classification head. This finding is the most
pronounced on RoBERTa-RTE, Pythia-410M-QQP,
and Pythia-410M-QNLI, where the best 1-D sub-
space improves upon full model performance by
4.09%, 4.54%, and 2.56%, respectively.

E All Activation Diagrams

In this section, we report the remaining models’
(RoBERTa, Pythia-70M, Pythia-160M, and Pythia-
410M) activation diagrams on SST-2. Trends on
SST-2 are representative of all of the tasks consid-
ered in this paper. We report a similar phenomenon
of variance drastically increasing in RoBERTa and
Pythia-70M after fine-tuning, particularly in outlier
dimensions. The Pythia models, however, exhibit

different trends. In Pythia-160M and Pythia-410M,
the average variance in the principal outlier dimen-
sion decreases after fine-tuning. Table 4 shows that
the average max variance decreases from 32.71 to
9.85 in Pythia-160M and decreases from 12.15 to
6.48 in Pythia-410M. Interestingly, in Pythia-70M
and Pythia-160M, the embedding dimensions are
much further from the origin compared to every
other model considered in this paper. Our results
highlight how, even for models with similar archi-
tectures (Pythia models and GPT-2), the structure
of embedding space can be very dissimilar. Further
research is needed to understand how model archi-
tecture and training objectives impact the structure
of model embeddings.
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Figure 5: Comparing the downstream performance of all 1-D subspace of sentence embedding activations on SST-2,
RTE, MRPC, and QQP against the variance in that given dimension. Results for all tasks are available in Section D
in the Appendix. The red dashed line indicates the threshold for whether a dimension qualifies as an “outlier
dimension” (i.e. 5x the average variance in vector space).
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