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Abstract

Existing large language models (LLMs) that
mainly focus on Standard American English
(SAE) often lead to significantly worse perfor-
mance when being applied to other English
dialects. While existing mitigations tackle dis-
crepancies for individual target dialects, they
assume access to high-accuracy dialect identi-
fication systems. The boundaries between di-
alects are inherently flexible, making it difficult
to categorize language into discrete predefined
categories. In this work, we propose DADA
(Dialect Adaptation via Dynamic Aggregation),
a modular approach to imbue SAE-trained mod-
els with multi-dialectal robustness by compos-
ing adapters which handle specific linguistic
features. The compositional architecture of
DADA allows for both targeted adaptation to
specific dialect variants and simultaneous adap-
tation to various dialects. We show that DADA
is effective for both single task and instruction
finetuned language models, offering an exten-
sible and interpretable framework for adapting
existing LLMs to different English dialects.1

1 Introduction

As Natural Language Processing (NLP) becomes
even more impactful, the equitable distribution of
its benefits becomes an increasing concern. Specif-
ically, NLP tooling is often trained and evaluated
on dominant language variants, such as Standard
American English (SAE). This results in a signifi-
cant decline in the performance when these tools
are applied to non-SAE dialects. Studies have re-
vealed that SAE models tested on African American
Vernacular English (AAVE) encounter difficulties in
language identification (Jurgens et al., 2017a) as
well as various other natural language tasks (Jør-
gensen et al., 2016a; Kiritchenko and Mohammad,

1All the code, synthetic datasets, and trained adapters in
this work are available at https://github.com/SALT-NLP/
DADA.
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Figure 1: DADA dynamically composes adapters that
handle specific features of dialectal variation to adapt
an SAE model to various dialects by leveraging their
commonality. We train nearly 200 feature adapters to
capture the linguistic differences between SAE and its di-
alect variants. These feature adapters can be composed
flexibly and arbitrarily to target different dialects.

2018; Blodgett et al., 2018). These challenges ex-
tend to automated speech recognition used by vir-
tual assistants (Koenecke et al., 2020) and hate
speech detection employed by online media plat-
forms (Davidson et al., 2019; Sap et al., 2019; Rios,
2020; Mozafari et al., 2020; Halevy et al., 2021a;
Zhou et al., 2021). Notably, even large language
models are not exempt from these limitations (Bom-
masani et al., 2021; Solaiman and Dennison, 2021;
Rae et al., 2022; Liang et al., 2022). Such perfor-
mance disparities raise ethical and moral concerns
regarding the potential for racial disparities in the
seemingly expeditious development of language
technologies (Hovy and Spruit, 2016; Blodgett and
O’Connor, 2017; Halevy et al., 2021b).

Existing research to mitigate this disparity has
mainly focused on dialectal adaptation targeting
individual dialects of interest (Ziems et al., 2022;
Garcia and Firat, 2022; Ziems et al., 2023; Sun
et al., 2022). This approach is a powerful first step,
but it has key limitations of missing connectedness

13776

https://github.com/SALT-NLP/DADA
https://github.com/SALT-NLP/DADA


among dialects; for instance, English alone has 77
recognized variants that vary internally (Koenecke
et al., 2020; Demszky et al., 2021). Prior adaptation
methods also require highly accurate dialect identi-
fication systems for real-world uses, leading to the
development of separate systems for different di-
alects. Such separate systems are not yet available
for many dialects and related languages (Malmasi
et al., 2016; Aepli et al., 2023; Chakravarthi et al.,
2021; Aepli et al., 2022). Alternative approaches
train models using a combination of various dialect
variants in a multi-task learning manner (Caruana,
1997; Liu et al., 2019a). However, this approach re-
quires training new models for dialectal NLP from
scratch simultaneously with data from all desired
dialects. This training process is prohibitive, es-
pecially given the trend towards larger language
models with costs upwards of millions of dollars2.
Thus, there is a pressing need for an effective and
extensible approach that can adapt existing models
to the multi-dialectal setting.

Previous linguistic works have developed a col-
lection of lexical and morphosyntactic features
that describe the differences between SAE and vari-
ous other English dialects (Kortmann et al., 2020;
Ziems et al., 2023). Many dialects can be described
by this common set of features or linguistic rules,
with each dialect expressing a subset of the feature
space. In addition, dialects are not deterministic
speech patterns but rather ranges of acceptable use
of these features that speakers adjust based on so-
cial contexts (Ziems et al., 2023; Koenecke et al.,
2020; Demszky et al., 2021). As a result, dialects
do not neatly fit into predefined categories.

To this end, we develop a model which han-
dles this reality by accommodating the diversity of
English variants at a fine-grained level (linguistic
features or linguistic rules). Concretely, we pro-
pose Dialect Adaptation via Dynamic Aggregation
(DADA): a modular approach to adapt an estab-
lished model trained on SAE to dialect variants by
composing linguistic features. DADA captures and
encapsulates each feature using adapters (Houlsby
et al., 2019) trained on individual feature rules.
Feature adapters dynamically aggregate at test time
using adapter fusion (Pfeiffer et al., 2021), which
enables the SAE model to flexibly adapt to dialects.
The modular design of DADA enables targeted
adaptation to specific dialect variants or simulta-

2https://lambdalabs.com/blog/
demystifying-gpt-3

neous adaptation to multiple dialects. As a result
of its compositional nature, DADA also makes it
easy to re-use feature adapters regardless of dialect,
speaker, or time variations in feature usage. The
modular architecture ensures interpretability by en-
abling analysis of the components responsible for
the improvement in performance.

To sum up, our work contributes the following:

• We propose a modular approach DADA to
adapt the standard SAE model to dialect vari-
ants via a dynamic aggregation of different
linguistic features. (Sec. 3)

• We train nearly 200 feature adapters, which
can be flexibly composed to target different di-
alects. Moreover, we demonstrate that DADA

with all the trained feature adapters can con-
sistently improve model performance across
five English dialects. (Sec. 4)

• DADA exhibits strong interpretability. Using
AAVE as an example, we illustrate that DADA

possesses the capability to detect the relevant
linguistic features for a given input and sub-
sequently activate the corresponding feature
adapters. (Sec. 5)

• We show that DADA improves dialectal robust-
ness in task-agnostic instruction-tuned LLMs
using FLAN-T5 (Chung et al., 2022) (Sec. 6),
which highlights the capability of DADA in
learning task-agnostic features that can be ap-
plied to newer general-purpose models.

2 Related Work

Dialect NLP research tends to focus primarily on
dominant dialects represented in "textbook" gram-
mar, such as Standard American English (SAE),
over lower-resource dialects. The performance dis-
parity in resulting models is pervasive (Koenecke
et al., 2020; Davidson et al., 2019; Sap et al., 2019;
Rios, 2020; Mozafari et al., 2020; Halevy et al.,
2021a; Zhou et al., 2021; Ziems et al., 2022, 2023;
Sun et al., 2022). The existence of such perfor-
mance disparities raises ethical and moral concerns
where NLP can potentially exacerbate the marginal-
ization of the speakers of these dialects (Blodgett
and O’Connor, 2017; Halevy et al., 2021b). Lack-
ing a common dialectal evaluation, NLP can re-
inforce existing power discrepancies (Hovy and
Spruit, 2016; Bommasani et al., 2021). Existing
works on English dialects have mainly focused
on adapting models to individual dialects, such as
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Figure 2: The overall process of DADA. We first construct a synthetic dataset Di by applying each linguistic
transformation rule Ti ∈ T , such as drop_aux: "AAVE allows copula deletion and other auxiliary dropping", to
each individual training example within the original training dataset D (taking MNLI as an example). Then we
develop a feature adapter Ai for each linguistic rule Ti by training it on the corresponding synthetic dataset Di. We
select the backbone model trained on the original SAE task datasets to enable the feature adapter to capture linguistic
differences while disregarding the task-specific information.

African American Vernacular English (AAVE) (Jør-
gensen et al., 2016b; Blevins et al., 2016; Ziems
et al., 2022). However, for real-world use, such
systems would require another system to recognize
these dialects so that the appropriate model can be
used for each input. This task itself is challenging,
with state-of-the-art systems showing relatively low
accuracy even when distinguishing high-resource
dialects of English (Zampieri et al., 2023). Our
work avoids this flaw by modeling multiple dialects
at once using multidialectal training data. Multidi-
alectal training data has been shown to potentially
increase robustness across all dialects in multiple
prior works around data collection (Jurgens et al.,
2017b) and augmentation (Ziems et al., 2023).

Parameter-Efficient Learning To efficiently
transfer pretrained language models to downstream
tasks, several techniques (He et al., 2022) have
been proposed to update only a small number of
extra parameters while keeping most parameters
frozen. For example, adapter tuning (Houlsby et al.,
2019; Pfeiffer et al., 2020) adapts models using
small bottleneck modules. Prefix tuning (Li and
Liang, 2021) and prompt tuning (Lester et al., 2021)
prepend additional tunable prefix tokens to input
or hidden layers. Brown et al. (2020); Liu et al.
(2022a,b) prompt language models for specific
tasks without any parameter updates by in-context

learning. Besides, several research efforts have
been carried out to ensemble parameter-efficient
components for multi-task learning and domain
adaptation. Pfeiffer et al. (2021) propose to ag-
gregate adapters trained on source tasks with an
attentional layer to transfer acquired knowledge to
a target task. Asai et al. (2022) introduce a sim-
ilar method, while using soft prompts instead of
adapters. To improve robustness against dataset
shortcuts, Liu et al. (2023) combine adapters with
gating networks. Recently, Held et al. (2023) use
adapter stacking for task-agnostic robustness tar-
geting individual dialects. However, given the in-
herent flexibility of dialects, there arises a necessity
for a method to enhance multi-dialectal robustness.
Moreover, the existence of well-defined transfor-
mation rules between dialects, which is uncommon
in other domains, allows us to achieve finer-grained
adaptation by aggregating linguistic features.

Instruction Tuning Inspired by the success of
prompting LLMs to adapt to various tasks (Brown
et al., 2020), instruction tuning (Sanh et al., 2022;
Wei et al., 2022; Ouyang et al., 2022) propose to
finetune language models on a variety of tasks de-
scribed through instructions to achieve the multi-
task capability and to enhance zero-shot perfor-
mance on unseen tasks. Since instruction tuning in-
volves prompting the language models at the input
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level, our approach is orthogonal to it and can be
employed in conjunction to enhance model’s multi-
task and multi-dialect abilities simultaneously.

3 DADA

We introduce Dialect Adaptation via Dynamic
Aggregation (DADA), a modular method for adapt-
ing an existing model trained on the Standard
American English (SAE) to accommodate dialect
variants at a finer-grained level. Our proposed
method deploys a dynamic aggregation of feature
adapters, which characterize the divergence of lin-
guistic features between SAE and its dialect vari-
ants. Specifically, DADA involves the creation of
a synthetic training dataset for each individual fea-
ture using transformation rules (Ziems et al., 2023).
These synthetic datasets are used to train respective
adapters for each linguistic feature. Finally, we
compose these feature adapters to create a single
model via an additional fusion layer.

3.1 Synthetic Datasets

Previous works have discerned a series of linguistic
divergences and devised Multi-VALUE, a collection
of lexical and morphosyntactic transformation rules
3 between SAE and its 50 dialect variants (Ziems
et al., 2022, 2023), including Appalachian English
(AppE), Chicano English (ChcE), Colloquial Sin-
gapore English (CollSgE), Indian English(IndE),
and African American Vernacular English (AAVE),
among others. For instance, a well-known linguis-
tic feature of AAVE is the use of Negative Concord,
where two negative morphemes are employed to
convey a single negation (Martin and Wolfram,
2021). This transformation rule is sensitive to
the verb-object dependency structure and neces-
sitates an indefinite noun object (Green, 2002). As
an example, the SAE sentence “He doesn’t have a
camera” could be rendered as “He don’t have no
camera” in AAVE.

Let T = {T1, T2, ...TN} denote the set of trans-
formation rules between SAE and its dialect variants.
For each transformation rule Ti ∈ T , we can gener-
ate a corresponding synthetic dataset Di by apply-
ing the respective rule to each individual training
example within the original training dataset D.

3See Appendix A for a detailed description of each trans-
formation rule and the statistics of the corresponding synthetic
training dataset.

3.2 Feature Adapter

Adapter tuning is known for its ability to adapt
quickly to new tasks without catastrophic forgetting
(Pfeiffer et al., 2021). Given these benefits and
the inherent modularity of adapters, we develop
a feature adapter Ai for each of the N linguistic
transformation rules Ti ∈ T by training it on the
corresponding synthetic dataset Di created in Sec.
3.1. We insert an adapter module after each feed-
forward layer 4 of the backbone model M that has
been trained on the original SAE task datasets, in
order to target specific lexical and morphosyntactic
differences between SAE and its dialect variants.

3.3 Dynamic Aggregation

In Sec. 3.2, we described the process of training
feature adapter Ai for each linguistic transforma-
tion rule to capture a specific type of linguistic dif-
ference between SAE and its dialect variants. How-
ever, it is common for multiple linguistic differ-
ences to co-occur within a single sentence in real-
world scenarios, thereby necessitating the model
to simultaneously consider these distinct linguistic
features to varying degrees.

Therefore, we propose to dynamically aggre-
gate the N trained feature adapters, denoted as
A = {A1, A2, ...AN}, into the SAE-trained back-
bone model M via an additional fusion layer (Pfeif-
fer et al., 2021). For this purpose, we first construct
a super-synthetic training dataset D, employing the
same approach as described in Sec. 3.1, but with all
lexical and morphosyntactic transformation rules
T = {T1, T2, ...TN} applied. After incorporating
the N trained feature adapters A and a fusion layer
into each layer of the backbone model, we train
the fusion layers using the super-synthetic training
dataset D, while keeping the feature adapters A
and the backbone model M frozen.

Following Pfeiffer et al. (2021), we define the
fusion layer as a composition of Key, Value and
Query matrices at each layer l of the transformer,
denoted by Kl, Vl and Ql respectively. The output
of the feedforward layer hl is taken as the query
vector and the output of each feature adapter Ai,
denoted as al,i is used as input to both the value
and key transformations. With this attention-like
fusion layer (Vaswani et al., 2017), the outputs of

4There are different implementation variants for adapter
tuning, and in our work, we follow Pfeiffer et al. (2020) by
only inserting adapter modules after each feed-forward layer,
while in some other works, adapters are inserted after multi-
head attention layers as well.
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all feature adapters are combined as followed:

sl = softmax(hT
l Ql · aTl,iKl), i ∈ {1, ..., N} ,

a′l,i = aTl,iVl, i ∈ {1, ..., N} ,
A′

l = [a′l,0, ...a
′
l,N ],

ol = sTl A
′
l,

where [·, ·] indicates the concatenation of vec-
tors and ol is the output of the l-th fusion layer.
Through training on the super-synthetic dataset D,
a parameterized compositional mixture of feature
adapters can be learned to identify the applied lin-
guistic features for a given input and activate the
corresponding feature adapters, thereby facilitating
the effective addressing of linguistic discrepancies
between SAE and its dialect variants.

To sum up, the compositionality of DADA en-
ables targeted adaptation to specific dialect variants
by selecting appropriate feature adapters. DADA

uses modularity and compositionality to adapt a
model to linguistic features present at test time
since the pervasiveness of a feature can vary greatly
based on its applicability and density (Demszky
et al., 2021). This allows DADA to simultaneously
adapt to various dialects by using a comprehensive
set of feature adapters. We explore this property
further in Sec. 5, using its interpretability to study
individual feature adaptations utilized (see Sec. 5).

4 Multi-Dialect Adaptation

In this section, we demonstrate how DADA can
enable the adaptation of an existing SAE model
to multiple dialect variants, taking Multi-Genre
Natural Language Inference (MNLI; Williams et al.
(2018)) task as an example.

4.1 Experimental Setup and Evaluation

As described in Sec. 3.2, we train a feature adapter
for each transformation rule from Ziems et al.
(2023), the collection of lexical and morphosyn-
tactic transformation rules between SAE and its di-
alect variants. In total, we train nearly 200 feature
adapters for downstream use. Here, we demon-
strate that these features can be flexibly composed
in DADA to improve model performance across
multiple dialects simultaneously. We evaluate on
five representative dialects: AppE, ChcE, CollSgE,
IndE, AAVE. We employ RoBERTa Base (Liu et al.,
2019b) that has been finetuned on the original SAE
MNLI training dataset as the backbone model.

For each transformation rule, we generate a syn-
thetic dataset by applying only that specific trans-
formation rule to each example in the original
MNLI training dataset. We only retain examples
that differ from the original example, i.e., examples
that have been transformed. Afterward, we train
feature adapters using these synthetic datasets, as
described in Sec. 3.2. To aggregate trained fea-
ture adapters into the backbone model, we train
a large fusion layer for 5 epochs on a synthetic
dataset that applies all dialectal variations simulta-
neously, termed Multi. Additionally, we include a
null adapter that remains as the identity function.
This is kept for purely SAE inputs. In Appendix
B, we report full hyperparameters along with the
training details. We evaluate DADA on five English
dialects: AppE, ChcE, CollSgE, IndE, AAVE and re-
port the results in Table 1. Followed by Ziems et al.
(2022, 2023), we construct each dialect-specific
MNLI dataset by utilizing a subset of transforma-
tion rules that correspond to the respective dialect.

4.2 Results

Compared to the standard SAE model trained on
the original MNLI dataset (SAE baseline), DADA

demonstrates significant performance improve-
ments across all evaluated dialects and even on
SAE, with an average improvement of 2.16%. More-
over, DADA delivers comparable performance to
the strong baseline provided by individual further
fine-tuning or adapter tuning on the SAE trained
model with dialect-specific training data (Single
Finetuning and Single Adapter). However, while
these two approaches require a perfect dialect iden-
tification system and D models, our approach uses
a single model and therefore does not rely on di-
alect identification. This makes DADA a simpler
and more realistic method for use when the target
dialect distribution is unknown.

Compared to additional finetuning or adapter
tuning Multi on standard SAE model (Multi Fine-
tuning and Multi Adapter), DADA brings an aver-
age improvement of 0.32% and 0.47%, respectively.
Moreover, it tunes fewer parameters during a single
training run compared to Multi Finetuning. We
confirm that the empirically strong performance of
DADA stems from the effective use of the correct
individual feature adapters in Sec. 5.

Note that with DADA, in instances where a new
dialect arises, the integration of this new dialect
can be achieved through the identification of the
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Dialect Adaptation Details Evaluation Performance

Method
Dialect

Data
Total

Params.
Dialect
Params.

AppE ChcE CollSgE IndE AAVE Mean SAE

SAE Baseline - 125M 0 83.70 84.91 80.62 82.00 83.95 82.71 86.57
Finetuning Multi 125M 125M 85.72 86.33 85.00 85.09 84.44 85.30±0.31 86.72
Adapter Multi 126M 1.5M 85.68 86.38 84.26 84.76 84.66 85.15±0.32 86.73
DADA Multi 316M 192M 86.00 (+2.30) 86.70 (+1.79) 84.59 (+3.97) 85.37 (+3.37) 85.50 (+1.55) 85.62±0.31 87.16 (+0.59)

DADAw/o null Multi 315M 190M 86.14 (+2.44) 86.61 (+1.70) 84.25 (+3.63) 84.80 (+2.80) 85.74 (+1.79) 85.49±0.31 87.08 (+0.51)

Finetuning single D · 125M D · 125M 85.74 86.45 84.84 85.11 86.15 85.56 86.57
Adapter single D · 126M D · 1.5M 86.23 86.53 84.85 85.40 86.26 85.63 86.57

Table 1: Multi-Dialect Adaptation results of SAE RoBERTa Base (Liu et al., 2019b) model for five English dialects:
AppE, ChcE, CollSgE, IndE and AAVE. Due to the submission limitations of the GLUE benchmark, the results are reported
on the validation mismatched split. The significance bars of the mean accuracies are determined through a paired bootstrap
test conducted on the concatenation of each individual dialect dataset. D is the number of target dialects for dialect adaptation.
DADA outperforms the standard SAE baseline on all five dialects and SAE (marked as (+)), with an averge of 2.16% improvement.
Most importantly, DADA achieves comparable performance and even surpasses (underlined) that of individual models.

linguistic transformation rules that govern the shift
from SAE to the new dialect, followed by the train-
ing of a feature adapter for each new transformation
rule, and finally the retraining of the fusion layer.
Furthermore, the potential for reusability of trained
feature adapters is significant as many dialects of-
ten share common linguistic features.

null adapter For SAE inputs, every adapter has
the potential to incorrectly change the model’s orig-
inal predictions. Therefore, we introduce a null
adapter that which preserves the output of the orig-
inal SAE model at each layer. We conduct an ab-
lation study to evaluate the necessity of the null
adapter by comparing with models where it is ex-
cluded. We denote this variant as DADAw/o null. As
shown in Table 1, excluding the null adapter results
in a slight drop in performance for SAE.

Number of feature adapters We analyze the av-
erage performance of DADA on 5 evaluated English
dialects, considering different numbers of feature
adapters (k) ranging from 1 to all. For each k,
we select the top k feature adapters with the best
performance on the evaluation set. The results in
Figure 3 demonstrate an overall increasing trend,
indicating that each feature adapter incorporated in
DADA can contribute to performance improvement,
rather than relying solely on a select few.

5 Interpretability

As discussed in Sec. 3, DADA can implicitly iden-
tify the relevant linguistic features for a given in-
put and activate the corresponding feature adapters.
We validate this by investigating the correlation be-
tween attention scores within each layer of DADA

and the presence of linguistic features, to deter-
mine whether the contributing feature adapters are
relevant to the features present.

0 25 50 75 100 125 150 175
Number of Feature Adapters

M
ea

n 
Ac

cu
ra

cy

85.30

DADA
Multi Finetuning

Figure 3: The mean accuracy of DADA shows an overall
upward trend with the number of feature adapters.

5.1 Analyses Setup and Results

Here, we use the AAVE dialect and MNLI task as
an example. To adapt a standard MNLI-finetuned
RoBERTa Base model to target the AAVE dialect,
we only need to take into account the 10 transfor-
mation rules between SAE and AAVE proposed by
Ziems et al. (2022). We select the corresponding
feature adapters from our collection and dynam-
ically aggregate them by training a fusion layer
on AAVE training set for 5 epochs with a learning
rate 5e-5 and batch size 64. We evaluate the re-
sulting model on the test split of the AAVE matched
MNLI dataset as shown in Table 2. In comparison
to the standard SAE model, DADA demonstrates
a 3.2% and 1.4% improvement on AAVE and SAE,
respectively. Moreover, DADA outperforms simple
additional finetuning and adapter tuning of AAVE
on SAE model by 0.4% and 0.5%, respectively,
achieving the best performance of 86.6% on AAVE.
These results demonstrate the superior performance
of DADA over all other methods evaluated.
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Dialect Adaptation Details Test Acc.
Backbone Method Data AAVE SAE

pretrained
FT SAE 83.4 86.2
FT SAE + AAVE 84.8 85.6

SAE
FT AAVE 86.2 87.4

Adapter AAVE 86.1 87.4
finetuned DADA AAVE 86.6✓ 87.6 ✓

Table 2: AAVE Adaptation results of RoBERTa Base
(Liu et al., 2019b). pretrained denotes the pretrained
RoBERTa Base model, while SAE finetuned denotes the
RoBERTa Base model that has been finetuned on the origi-
nal SAE MNLI dataset. FT refers to "fine-tuning". DADA
demonstrates superior performance on AAVE and SAE com-
pared to baselines (marked as ✓).

5.2 Correlation Analysis of Fusion Activation

We perform a correlation analysis of these 10 fea-
ture adapters for the linguistic features applied to
the input data. For each transformation rule, we
calculate the softmax activation for each adapter,
for each input to which the specific linguistic fea-
ture applies, and average over all activations within
the same layer calculated over all instances in the
AAVE MNLI test set. For better clarity, our final
metrics takes the average utilization score of each
feature adapter for the entire dataset and then sub-
tracts the average utilization score associated with
each transformation rule.

We plot the results for layers 1, 3, 7, 11 in Figure
4. We found that significant correlations in utiliza-
tion on the lower layers (0-3) are observed, while
those on the middle and higher layers are found to
be negligible. This is consistent with our intuition,
as the primary distinction between SAE and its di-
alect variants lies in their linguistic features (lexical
and morphosyntactic), which are mainly captured
by the lower layers of the model5. This analysis
demonstrates that DADA has the capability to detect
which linguistic features are relevant to the given
input, and subsequently trigger the corresponding
feature adapters. This highlights the interpretability
of DADA with regard to the underlying factors that
contribute to performance improvement.

6 Multi-Task Dialect Adaptation

Recent LLMs such as FLAN-T5 (Chung et al.,
2022) and InstructGPT (Ouyang et al., 2022) are
instruction-tuned (Wei et al., 2022) for various
tasks, which is orthogonal to our method, making

5The linguistic feature differences are subtle. Although
the absolute values of the correlation coefficients are not large,
they are sufficient to indicate the existence of correlations.

it possible to combine the two approaches easily.
In this section, we demonstrate how DADA can be
employed to instruction-tuned LLMs to improve
their task-agnostic performance on dialects.

6.1 Experimental Setup
Using AAVE dialect as a case study, to demonstrate
the effectiveness of our method in adapting the
SAE model across multiple tasks, we include the
tasks from the AAVE transformed version (Ziems
et al., 2022) of the GLUE Benchmark (Wang et al.,
2018), including CoLA, MNLI, QNLI, QQP, SST-
2, and STS-B. For our backbone model, we employ
a FLAN-T5 Base (Chung et al., 2022). Despite
the original paper incorporates GLUE within the
FLAN-T5’s training data, we retrain the model on
these specific tasks to enhance its suitability.

6.2 Multi-task training
For each transformation rule of AAVE dialect, we
construct synthetic training data following the pro-
cedure described in Sec. 3.1. However, in the case
of a multi-task model, we construct a synthetic
dataset for each task considered and utilize the mix-
ture to train the corresponding feature adapter. Sub-
sequently, we proceed to fuse these feature adapters
by training a fusion layer on the super-synthetic
dataset Multi-Task AAVE, which is constructed
by applying all the AAVE transformation rules. In
Appendix D, we provide the templates used to train
the FLAN-T5 model. In Appendix B, we report
full hyperparameters along with the training details.
We assess the performance of DADA on AAVE trans-
formed version of the GLUE Benchmark, and com-
pare its results with the SAE baseline and Adapter
Tuning with Multi-Task AAVE.

6.3 Results
It is surprising to note that although single Adapter
Tuning with Multi-Task AAVE demonstrates im-
provements in 4 out of 7 tasks, the overall average
performance is even inferior to that of the SAE
baseline. In contrast, DADA consistently outper-
forms both the SAE baseline and Adapter Tuning
across all evaluated tasks, resulting in an overall im-
provement of 1.80/1.92 points on the AAVE GLUE
benchmark, respectively. Specifically, on the rel-
atively large datasets, DADA achieves a notable
accuracy improvement of 2.0%/1.0% on MNLI-
mm, 0.9%/1.2% on QNLI, and 1.5%/0.9% on QQP
when compared to the SAE Baseline and Adapter
Tuning, respectively. These results demonstrate
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Figure 4: Correlation Coefficients for AAVE adaptation between the feature adapters (column) and the inputs
to which specific linguistic features (row) apply in layers 1, 3, 7, 11. (See Appendix C for other layers.) Significant
correlations can be observed within the lower layers (0-3), whereas there appear to be little to no correlations in the middle and
higher layers. We use abbreviations for certain terms, such as "nc" for "negative_concord."

AAVE GLUE Performance
Method CoLA MNLI-m MNLI-mm QNLI QQP SST2 STS-B Mean
SAE Baseline 21.1 83.2 82.6 90.6 87.1 92.1 86.4 77.59
Adapter Tuning 18.2 84.1 83.6 90.3 87.7 92.9 85.5 77.47
DADA 26.3 ✓ 84.4 ✓ 84.6 ✓ 91.5 ✓ 88.6 ✓ 93.7 ✓ 86.6 ✓ 79.39 ✓
ChatGPT 26.33 59.60 63.00 82.00 72.40 95.00 80.15 68.35
ChatGPT + "Native Speaker" 18.24 ↓ 56.00 ↓ 57.20 ↓ 73.60 ↓ 67.60 ↓ 91.60 ↓ 48.91 ↓ 59.02 ↓

Table 3: Multi-Task AAVE Adaptation results of SAE FLAN-T5 Base (Chung et al., 2022) (Matthew’s Corr. for
CoLA; Pearson-Spearman Corr. for STS-B; Accuracy for all others). SAE Baseline denotes the FLAN-T5 Base
model that has been finetuned using the original SAE mixture of task datasets. In comparison to both the SAE
Baseline and Adapter Tuning with Multi-Task AAVE, DADA consistently exhibits superior performance across all
evaluated tasks (marked with ✓). Due to budget constraints, the results of ChatGPT are reported on a randomly
sampled 500 example subset of the development sets. Prompt based interventions do not improve ChatGPT’s
performance on AAVE. On the contrary, it can even result in further degraded performance (marked with ↓).

that our proposed approach, DADA, is not limited
to single-task applications but can be easily scaled
up to accommodate various tasks for use with the
increasingly common multi-task instruction-tuning
setup using in popular large-scale industrial sys-
tems (Ouyang et al., 2022; OpenAI, 2023a; Anil
et al., 2023; OpenAI, 2023b).

In Table 3, we also present the results obtained
with ChatGPT6 (OpenAI, 2023a). Due to budget
constraints, we were only able to evaluate randomly
sampled 500 examples from the development set
of each task. However, even with this limited eval-
uation, we can still gain insights that ChatGPT
performs significantly worse than the SAE FLAN-
T5 Base model on 5 out of 7 tasks. This empha-
sizes that merely scaling up the model is inade-
quate for tackling the challenge of dialect dispari-
ties. These limitations persist even in the context
of large language models. Inspired by "expert"

6Engine: gpt-3.5-turbo. We conducted our ChatGPT ex-
periments on May 16, 2023.

prompts (Odena et al., 2021; Shi et al., 2022), we
incorporate a "Native Speaker" Prompt for Chat-
GPT:
“You are a native [DIALECT_NAME]

English speaker, and here is your task:"

However, ChatGPT + "Native Speaker" Prompt
does not yield improved results and, in fact, per-
forms even worse than the vanilla ChatGPT on all
evaluated tasks. This highlights that dialect adap-
tation is not solved with trivial prompt-based inter-
ventions while being simultaneously less grounded
in expert linguistic resources than DADA.

7 Conclusion

In this paper, we present Dialect Adaptation via
Dynamic Aggregation (DADA), a fine-grained and
modular approach designed to adapt an established
model trained on Standard American English to
its dialect variants through the compositional ag-
gregation of linguistic features. Our experiments
demonstrate that the compositionality of DADA en-
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ables targeted adaptation to specific dialects, and
demonstrated improved robustness across multiple
evaluated dialects, including AppE, ChcE, CollSgE,
IndE, and AAVE. Our analysis also highlights the
interpretability of DADA, as shown through its
capability to identify relevant linguistic features
for a given input and trigger the corresponding
adapters. Furthermore, our experiments on FLAN-
T5 illustrate the potential of applying DADA to task-
agnostic instruction-tuned large language models,
showcasing its generalizability.

Limitations

DADA involves the training for feature adapters
and the fusion layer, which can make it computa-
tionally expensive, especially when dealing with
a substantial number of linguistic rules. However,
each training run only requires a small number
of parameters to be learned, and parallelization is
feasible for feature adapter training. More impor-
tantly, these trained feature adapters exhibit signif-
icant reusability; the same set of feature adapters
can be reused and employed for multiple dialects,
though the fusion layer would need to be retrained
for these dialects. However, if a use case does not
involve significant reuses, this aspect may indeed
remain a limitation. We will release our trained
feature adapters so that future studies will not need
to reincur the up-front training cost.

Furthermore, while DADA has the flexibility to
utilize any linguistic rules, in our experiments, we
specifically employed these linguistic transforma-
tion rules that are well-established in prior work
for English (Ziems et al., 2022, 2023). These rules
were chosen because they were curated by lin-
guists, validated by dialect speakers, and because
English has many globally relevant dialects (Bird,
2022). However, evaluating DADA for other lan-
guage groups and broader sets of lexical variation
is key area for future work.

While DADA mainly relies on Multi-VALUE
(Ziems et al., 2022, 2023), they are orthogonal
processes with different assumptions about dialect
use. For each dialect, Multi-VALUE defines the
density of a dialectal feature as the probability of
the feature occurring when it is applicable, as well
as the probability of the corresponding perturbation
to be used in converting a sentence from SAE into
that dialect. However, the actual prevalence of a
feature heavily depends also on applicability.

DADA instead focuses on adapting to the lin-

guistic features present in a given sentence. We
learn a parameterized compositional mixture of the
dialectal features automatically, rather than rely-
ing on static assumptions of density. This avoids
what we view as a major issue: it is often difficult
to determine the dialect of an input since dialects
themselves vary depending on context and speaker.
The density of a dialectal feature represents an ap-
proximate of density across the entire dialect, but
may not be accurate to a specific speaker and con-
text (Koenecke et al., 2020). On the other hand,
DADA can dynamically recognize the applicable
dialectal features for a given input and activate the
corresponding feature adapters. It remains to be
explored in future work how the density of dialectal
features, as captured in the linguistic literature, re-
lates to the compositional mixture of these features
as learned in the fusion layer of DADA.

Ethics Statement

Previous linguistic works on dialectal features may
not fully or accurately document the natural us-
age patterns of all existing dialects in terms of
their linguistic rules. As a result, we acknowledge
that our proposed method DADA, which relies on
these dialectal features from prior literature, may
not take some undocumented features associated
with dialects into account. However, by curating
more dialectal features, our method can be easily
extended to a broader range of dialects. Addition-
ally, as DADA is task-agnostic when applied to
instruction-tuned models (Sec 6), malicious indi-
viduals might misuse it. To address this concern,
we will release DADA with a license that explicitly
prohibits its usage for purposes of deception, im-
personation, mockery, discrimination, hate speech,
targeted harassment, and cultural appropriation tar-
geting dialect-speaking communities.
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A Tranformation Rules Details

Ziems et al. (2022, 2023) developed a collection of
lexical and morphosyntactic transformation rules
that account for the differences in linguistic fea-
tures between SAE and its various dialect variants.
In our study, we build upon this work by train-
ing transformation adapters for each rule in this
collection. In their original paper, they present a
comprehensive overview of each transformation
rule in Appendix B. In Tables 9-21, they provide
detailed Multi-VALUE implementations, including
an enumeration of the implemented dialects and
features, accompanied by illustrative examples for
each.

Furthermore, we provide detailed statistics for
the respective synthetic training datasets (for MNLI
task) associated with each linguistic rule for the
AAVE dialect in Table 4. While we do not present
statistics for every linguistic feature for all dialects
across all evaluated tasks, we release our code, all
synthetic datasets and the trained adapters, to fur-
ther improve the reproducibility.

Linguistic Rule Size Eval Acc
been_done 48,515 84.46
dey_it 33,927 84.41
drop_aux 78,157 84.06
got 25,203 83.41
lexical 331,784 86.11
negative_concord 49,529 84.41
negative_inversion 658 83.03
null_genetive 50,122 84.11
null_relcl 45,899 83.70
uninflect 124,447 84.64

Table 4: Linguistic Rules, Dataset Size, and Feature
Adapter Accuracy for AAVE dialect (MNLI task).

B Training Details

Multi-Dialect Adaptation We train feature
adapters for each transformation rule using syn-
thetic datasets, as described in Sec. 3.2, with learn-
ing rate 3e-4 and batch size 64 followed by Houlsby
et al. (2019). To prevent significant performance
differences among the trained feature adapters due
to varying sizes of synthetic datasets, we fix the
number of training steps to 10,000. For each fea-
ture adapter, we choose the checkpoint with the
highest accuracy on the validation matched split of
a synthetic dataset that applies all dialectal varia-
tions simultaneously, termed Multi. For dynamic
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aggregation, we train a large fusion layer for 5
epochs on Multi. We set the learning rate to 2.5e-5
and the batch size to 64.

Multi-Task Dialect Adaptation For feature
adapter training, we set the learning rate to 1e-3
and fix the number of training steps as 50000. To
fuse these feature adapters, we train a fusion layer
for 5 epochs using a learning rate of 8e-5.

Throughout the process of model training (in-
cluding finetuning, adapter tuning, DADA training
etc.), we consistently employ the standard train-
ing objectives specific to the tasks, such as cross-
entropy loss for classification tasks.

C Utilization Correlation Coefficients
Plots

In Sec. 5, we showcase the effectiveness of DADA

in adapting the RoBERTa Base (Liu et al., 2019b)
model that has been finetuned on the original SAE
MNLI training dataset to AAVE. To demonstrate the
interpretability of DADA, we conduct an analysis
of the utilization correlation among the aggregated
10 transformation adapters. We present utilization
correlation coefficient plots for all layers in Figure
5 and 6.

D FLAN-T5 Templates

We provide here the templates used in Sec. 6 to
train the FLAN-T5 model for each task. In the orig-
inal paper by Chung et al. (2022), they defined 10
templates for each task and randomly applied them
to each training example to enhance the model’s
robustness to varying instruction wordings. How-
ever, in our study, our goal is to demonstrate the
generalizability of our proposed method DADA to
instruction-tuned models, rather than focusing on
improving the model’s instruction-following capa-
bility. Therefore, for each task, we fix the usage
of the first template from the set of 10 templates
designed in the original paper.

CoLA The Corpus of Linguistic Acceptability
(CoLA; Warstadt et al. (2018)) task is a widely
used benchmark that focuses on grammatical ac-
ceptability judgments. It aims to assess the ability
of models to determine whether a given sentence is
syntactically and semantically correct or not. For
the CoLA task, we adopt the following template:

Sentence: {sentence}
Would a linguist rate this sentence to be
acceptable linguistically?

I think the answer is {answer}

MNLI The Multi-Genre Natural Language Infer-
ence (MNLI; Williams et al. (2018)) is designed
to assess the model’s ability to comprehend and
reason. MNLI involves determining the logical
relationship - entailment, contradiction, or neutral-
ity - between a given premise and a corresponding
hypothesis. For the MNLI task, we adopt the fol-
lowing template:

Premise: {premise}

Hypothesis: {hypothesis}

Does the premise entail the hypothesis?

{answer}

QNLI The Question-answering Natural Lan-
guage Inference (QNLI; (Wang et al., 2018)) task
is a prominent benchmark that focuses on assessing
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Figure 5: Correlation Coefficients between the transformation adapters (column) and the inputs to which specific
transformation rules (row) apply in layers 0-5.

the ability of models to perform sentence-level se-
mantic matching and reasoning. In this task, given
a question and a corresponding sentence, the objec-

tive is to determine whether the sentence contains
the answer to the question, considering both lin-
guistic and logical entailment. For the QNLI task,
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Figure 6: Correlation Coefficients between the transformation adapters (column) and the inputs to which specific
transformation rules (row) apply in layers 6-11.

we adopt the following template: Does the sentence {sentence} answer the
question {question}

{answer}
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QQP The Quora Question Pairs7 (QQP) task is
a widely recognized benchmark that focuses on
question sentence similarity. The task involves
determining whether a pair of questions asked on
the Quora platform is semantically equivalent or
not. For the QQP task, we adopt the following
template:

{question1}
{question2}
Would you say that these questions are the same?
{answer}

SST-2 The SST-2 (Stanford Sentiment Treebank;
Socher et al. (2013)) task is a widely used bench-
mark for sentiment analysis. It involves classifying
the sentiment of a given sentence as either posi-
tive or negative. For the SST-2 task, we adopt the
following template:

Review:
{sentence}
Is this movie review sentence negative or posi-
tive?
The answer is: {answer}

STS-B The Semantic Textual Similarity Bench-
mark (STS-B; Cer et al. (2017)) task is a widely
recognized benchmark that evaluates the ability of
models to assess the semantic similarity between
pairs of sentences. The task involves assigning
a similarity score to pairs of sentences based on
their semantic equivalence. For the STS-B task, we
adopt the following template:

{sentence1}
{sentence2}

Rate the textual similarity of these two
sentences on a scale from 0 to 5, where 0 is "no
meaning overlap" and 5 is "means the same
thing".

{answer}

7https://www.kaggle.com/c/quora-question-pairs
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