
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 1218–1228
December 6-10, 2023 ©2023 Association for Computational Linguistics

Penalty Decoding: Well Suppress the Self-Reinforcement Effect in
Open-Ended Text Generation

Wenhong Zhu , Hongkun Hao and Rui Wang∗

Shanghai Jiao Tong University
{zwhong714, haohongkun, wangrui12 }@sjtu.edu.cn

Abstract

The decoding algorithm is critical for open-
ended text generation, transforming latent
representations into coherent and meaning-
ful outputs. This paper investigates the self-
reinforcement effect in text generation and the
effectiveness of a repetition penalty to mitigate
it. However, determining the optimal repetition
penalty value is challenging. To tackle this,
we propose a forgetting mechanism that dis-
regards distant tokens, reducing the burden of
penalty selection. In addition, we introduce a
length penalty to address overly short sentences
caused by excessive penalties. Our penalty de-
coding approach incorporating three strategies
helps resolve issues with sampling methods
deviating from factual information. Experi-
mental results demonstrate the efficacy of our
approach in generating high-quality sentences
resembling human output.1

1 Introduction

Open-ended text generation tasks involve generat-
ing coherent and fluent output with limited input
information (Holtzman et al., 2020). These tasks
encompass various applications such as chit-chat
dialog (Thoppilan et al., 2022), story generation
(Mostafazadeh et al., 2016), and similar domains.
Transformer-based models (Vaswani et al., 2017),
which predict the probability of the next token dur-
ing text decoding, have been widely adopted for
such tasks. Among them, the GPT series, utilizing
a decoder-only auto-regressive model, has demon-
strated remarkable performance (Radford et al.,
2019). The choice of decoding strategy plays a
crucial role in determining the quality of text gen-
eration, not only in open-ended text generation but
also in other natural language generation tasks.

Decoding strategies can be categorized into two
types. One is deterministic methods, and another

∗Rui Wang is corresponding author.
1The source code and data will be shown at https://

github.com/zwhong714/penalty_decoding

Figure 1: The predicted distribution of a neural language
model (LM) can be regarded as a reinforced version of
the model itself, as illustrated in the left part of the figure.
To ensure high-quality text generation, penalties can be
applied to the reinforced tokens, thereby correcting the
distribution and improving the generated output.

is stochastic methods, also named truncation sam-
pling (Meister et al., 2023). (1) Deterministic de-
coding strategies such as greedy search and beam
search, which take the highest probability, would
cause dull and repetitive text (Li et al., 2020). Con-
trastive search (Su et al., 2022), a recently pro-
posed deterministic method, aims to enhance diver-
sity while maintaining coherence in the generated
text. However, it requires model retraining using
contrastive training objectives and has a high time
complexity of decoding. (2) Stochastic decoding
strategies such as top-k (Fan et al., 2018) and top-p
(Holtzman et al., 2020) sampling introduce ran-
domness to increase the diversity of generated text.
Several methods have been proposed to improve
the truncation space based on these two methods,
such as typical decoding (Meister et al., 2023), η-
sampling (Hewitt et al., 2022), Mirostat (Basu et al.,
2021) and other methods. However, it is worth not-
ing that existing stochastic decoding strategies may
exacerbate the issue of model hallucinations (Ope-
nAI, 2023; Lan et al., 2022).

In this paper, we begin by reviewing and ana-
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lyzing the self-reinforcement effect proposed by
Xu et al. (2022), which refers to the tendency of
maximization-based decoding algorithms to assign
higher probabilities to tokens that have already
been generated, leading to repetitive text. Inspired
by the work of Wang et al. (2022), who observed
that the vanilla GPT3 model (Brown et al., 2020)
often produces irrelevant and repetitive text, we
hypothesize that this phenomenon may also exist
in large language models. A critical insight of our
work is to consider the distribution of a neural LM
as an enhanced version. For instance, when pre-
sented with a prefix such as "Barack Obama was
born in Honolulu, Hawaii. He was born in," the
model (e.g., GPT2-XL) tends to repeat the previ-
ous context. This phenomenon might occur due to
the probability distribution of the words "Hawaii"
and "Honolulu" having a notable reinforcing effect
within the probability space, as illustrated in the left
part of Figure 1. To tackle this problem, we have in-
troduced the repetition penalty proposed by Keskar
et al. (2019). This penalty effectively mitigates the
self-reinforcement effect and reshapes the token
distribution, as demonstrated in the right section of
Figure 1, resulting in a higher generation quality.
However, tuning the repetition penalty hyperpa-
rameter can be challenging. Therefore, we propose
the forgetting mechanism and length penalty as
additional strategies to ensure generation quality.
Through extensive experiments, we demonstrate
the efficacy of our approach in generating sentences
that closely resemble human-produced text.

2 Self-Reinforcement Effect

The self-reinforcement effect refers to the proba-
bility of repetition increasing with the number of
historical repetitions (Holtzman et al., 2020; Xu
et al., 2022). This effect can be intuitively reflected
in the red probability shown in Figure 1, which
may cause the model to get stuck in a repetition
loop since the selection of tokens is forced to be
limited to these enhanced tokens.

To quantify this phenomenon, we design the fol-
lowing metrics at various levels. Different from
the metrics proposed by Xu et al. (2022), which
analyze the self-reinforcement of repeated tokens
by different numbers of repeated prefixes, we dy-
namically do analyzation in the model’s natural
decoding process to reasonably evaluate the self-
reinforcement phenomenon arising from the natu-
ral decoding state of the model. Given a language

(a) (b)

Figure 2: The comparison of different decoding meth-
ods in self-reinforcement effect. PD refers to our penalty
decoding. a) The nucleus level (SRtopk) comparison. b)
The summed probability of the top-k tokens. Note: top-
k in Vtopk the size of token space with different values
of k, while top-k in the legend refers to the sampling
method with k = 5.

model Pθ, we have:

N-gram Level. If 1
n

∑n−1
i=0 Pθ(xu+i|x<u+i) is

greater than 1
n

∑n−1
i=0 Pθ(xv+i|x<v+i), where

xu, ..., xu+n−1 is the next recurring n-gram of
xv, ..., xv+n−1, u and v refer to the current de-
coding subscript position, then we say n-gram
xu, ..., xu+n−1 is a reinforced version. We define
the ratio of self-reinforcement at n-gram level SRn
as:

SRn =
1

Lg − n+ 1
#(

n−1∑

i=0

Pθ(xu+i | x<u+i)

>
n−1∑

i=0

Pθ(xv+i | x<v+i)),

(1)

where #(·) is the number of n-gram reinforced,
Lg is the length of the generated sentence.

Nucleus Level. The nucleus size of top-k
highest probabilities in the probability distribu-
tion for the tth token is defined as NS(t) =∑

x∈Vtopk
Pθ(xt|x<t), where Vtopk is top-k high-

est probability token space according to Pθ. If
1
t

∑t
u=1 NS(u) > 1

t−1

∑t−1
u=1 NS(u), we say the

model becomes much confident. Then

SRtopk =
1

Lg

Lg∑

t=1

I(
1

t

t∑

u=1

NS(u)

>
1

t− 1

t−1∑

u=1

NS(u)),

(2)

where I is an indicator function; this metric mea-
sures how confident the model becomes.
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Method SR1 ↓ SR2 ↓ SR3 ↓ SR4 ↓
greedy 44.12 43.16 39.80 37.82
top-k 23.71 10.83 6.88 4.81
top-p 17.62 5.01 2.92 1.71
penalty decoding 5.36 2.71 1.32 0.84

Table 1: The self-reinforcement effect at n-gram level
(SRn) with different values of n. p is 0.95 and k is 5.
Penalty decoding is with the parameter α = 1.5 and
window size w = 100.

Results and Analyses. We compare the self-
reinforcement effect of three common decoding
methods on a widely used dataset using the GPT2-
XL model (see §4.1 for details). Table 1 illustrates
this effect at different n-gram levels during text
generation on the test set. It is observed that as
the value of n increases, the rate of reinforcement
decreases. However, the self-reinforcement effect
still remains significant in the case of greedy de-
coding for n-grams. This finding highlights the
notable self-reinforcement result of greedy decod-
ing, and the stochastic decoding algorithms can
effectively mitigate this effect. Top-p decoding
demonstrates superior suppression, indicating a
more pronounced mitigation as the sampling space
expands.

Figure 2 presents the self-reinforcement effect
at the nucleus level on the test set, along with the
probability of the Vtopk space. As depicted in Fig-
ure 2(a), when employing greedy decoding the
model tends to concentrate the probability more
on the Vtopk space compared to the stochastic meth-
ods. Furthermore, Figure 2(b) demonstrates that
the probability distribution heavily favors the Vtopk
space after decoding, with the greedy search ap-
proach yielding probabilities as high as 90%. As is
well known, as the generation proceeds, decoding
to some extent concentrates on a smaller set of di-
rections and greedy decoding would accelerate this
process.

The above analysis surprisingly finds that adding
perturbation to these reinforced spaces can effec-
tively suppress this effect. However, stochastic
methods depending on randomness would lead to
serious hallucination (OpenAI, 2023; Lan et al.,
2022). We guess other techniques exist to modify
the maximization-based decoding, such as adding
repetition penalties, to achieve the same result.

3 Method

In this section, we will present our penalty decod-
ing approach, which comprises three techniques de-

signed to enhance the performance of greedy decod-
ing by efficiently mitigating the self-reinforcement
effect to generate high-quality text.

3.1 Repetition Penalty

The repetition penalty, as introduced by Keskar
et al. (2019) (Keskar et al., 2019), aligns closely
with our insight by penalizing tokens that could
potentially exacerbate self-reinforcement. These
penalties will be directly applied to the reinforced
tokens. Following the softmax function, this rein-
forced portion can be redistributed to other tokens,
as depicted in the green part of Figure 1, thereby
ensuring the feasibility of alternative token sam-
pling.

Pθ(v|x) =
exp (vi/α · (I(i ∈ x))∑
j exp (vj/α · (I(j ∈ x))

, (3)

where vi and vj represent specific tokens within
the vocabulary, x represents the generated text, and
α is a hyper-parameter greater than one.

3.2 Forgetting Mechanism

As illustrated in Equation 3, the penalties persist
throughout the generation process and may result
in significant semantic deviations. Thus, we pro-
pose the forgetting mechanism to limit repetition
counting to a window w around the current decoded
location. This approach preserves text coherence
by ensuring the decoding process aligns closely
with contextual cues. The main implementation is
as follows:

Pθ(v|x) =
exp (vi/α · (I(i ∈ x[−w :]))∑
j exp (vj/α · (I(j ∈ x[−w :]))

,
(4)

3.3 Length Penalty

Choosing an appropriate repetition penalty can be
challenging, as discussed in Basu et al. (2021). If
the repetition penalty is too small, it may not ef-
fectively alleviate self-reinforcement, while a large
one can lead to short sentences as the <eos> 2 token
is sampled early. The length penalty is applied to
mitigate this problem and a straightforward imple-
mentation is a linear penalty imposed on the logits
of <eos> token Pθ(<eos>) as follows.

2<eos>: end-of-sentence identifier
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Pθ(<eos>) = α · Pθ(<eos>)(Lt − Lx), (5)

where Lt is the preset target length, typically the
same as the maximum length allowed, and Lx de-
notes the current length of the decoded text.

3.4 Penalty Decoding

We introduce the penalty decoding algorithm out-
lined in Algorithm 1 by incorporating the strategies
above.

Algorithm 1: Penalty decoding
Input: Language Model Pθ; prefix x;

repetition penalty α; window size w,
targeted length Lt, the vocabulary of
the language model V .

while x[-1] ̸= <eos> do
Calculate the next token logits: Pθ(v|x)
Let w = min(w, len(x))
Let Pθ(<eos>) =
α · Pθ(<eos>) · (Lt − len(x))

Calculate Softmax function:

Pθ(v|x) =
exp (xi/α · (I(i ∈ x[−w :]))∑
j exp (xj/α · (I(j ∈ x[−w :]))

Get the most probable token v̂:
v̂ = argmaxv∈V Pθ(v|x)

Update the prefix x = [x : v̂]
end
Output: The generated text x.

4 Experiments

In this section, we examine the effectiveness of
penalty decoding compared to other decoding meth-
ods for open-ended text generation tasks. Detailed
setup for experiments can be found in Appendix
A.1, and comprehensive ablation studies are shown
in Appendix B.

4.1 Model and Dataset

In all of our experiments, we utilize the GPT2-XL
(Radford et al., 2019) that is available in the Hug-
gingface library (Wolf et al., 2020). The dataset
is derived from WebText (Radford et al., 2019),
specifically the held-out validation or test set of
GPT-2.

4.2 Automatic Evaluation
We evaluate the quality of our generated texts us-
ing various automatic metrics, including diversity,
MAUVE (Pillutla et al., 2021), coherence (Zhang
et al., 2022), greedy ratio (Lan et al., 2022), and
gen-length. Please refer to Appendix A.2 for more
information about these metrics. Additionally, we
measure the self-reinforcement effect after apply-
ing our penalty decoding.

Results and Analysis. The main results are pre-
sented in Table 2. Observations reveal that all
stochastic decoding algorithms, except Mirostat,
exhibit high diversity and MAUVE scores. This
may be attributed to the incorporation of random-
ness, which diminishes the model’s confidence and
effectively mitigates the self-reinforcement effect.
Furthermore, stochastic decoding is conducive to
generating longer text.

Both greedy decoding and beam search are asso-
ciated with reduced diversity and lower MAUVE
scores. Greedy decoding, in particular, often gen-
erates longer texts, potentially due to the model
becoming trapped in a repetition loop.

Our penalty-based decoding effectively strikes a
balance among these automation metrics. In con-
trast to near-greedy decoding, it can generate longer
sentences. Moreover, it achieves comparable levels
of diversity and MAUVE scores, similar to con-
trastive decoding and other stochastic decoding
methods. According to the greedy ratio, approxi-
mately 44.01% of tokens have been subjected to
penalties in the generation, effectively mitigating
the self-reinforcement effect at both the n-gram
and nucleus levels, as demonstrated in Table 1 and
Figure 2.

From Figure 2(b), we surprisingly find that our
penalty decoding falls between greedy decoding
and the stochastic decoding algorithms within the
Vtopk space. This demonstrates our approach’s ca-
pacity to mitigate model overconfidence and pre-
vent hallucination problems caused by decoding
divergence. In other words, as the generation pro-
cess unfolds, penalty decoding still tends to focus
on a narrower set of directions.

The coherence score demonstrates a strong corre-
lation with the greedy ratio, where a higher greedy
ratio often leads to enhanced coherence. Compar-
ing the near-greedy approach that only utilizes rep-
etition penalty, we observe penalty decoding can
generate longer texts with higher MAUVE scores
while maintaining the same level of coherence.
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Method Diversity(%)↑ MAUVE(%)↑ Coherence↑ Greedy Ratio(%) Gen-Length
top-k (Fan et al., 2018) 85.67 92.19 -1.74 59.91 93.08

top-p (Holtzman et al., 2020) 91.79 94.50 -2.13 53.56 91.99
typical (Meister et al., 2023) 93.44 93.77 -2.26 52.02 91.57

η-sampling (Hewitt et al., 2022) 93.17 94.39 -2.29 51.46 93.17
Mirostat (Basu et al., 2021) 53.01 69.26 -1.27 87.49 96.48

Greedy 20.09 27.03 -0.87 100.00 94.27
Beam 15.33 17.21 -0.68 92.21 85.24

contrastive (Su et al., 2022) 91.26 92.54 -1.38 76.58 86.56
near-greedy (Keskar et al., 2019) 99.47 81.29 -2.15 55.31 85.96

penalty decoding 98.73 95.43 -2.15 55.99 94.49

Table 2: Test results of different decoding methods. The methods above the dotted line are stochastic decoding
methods, while the others are deterministic. The hyper-parameter sweep is shown in Appendix A.3.

4.3 LLM for Evaluation
Conventional evaluation methods typically require
human annotations and rely on ground-truth re-
sponses, which can be resource-intensive and time-
consuming (Lin and Chen, 2023). We employ
the large language model text-davinci-003 (Brown
et al., 2020) to overcome these limitations as an
evaluator surrogate. Details of the evaluation and
prompt design can be found in the appendix C.

Method A is better(%) Method B is better(%)

penalty decoding

44.33 55.67 top-k
55.44 44.56 top-p
54.69 45.31 typical
54.45 45.55 η-sampling
48.73 51.27 contrastive

Table 3: LLM evaluation results.

Results. The comparison results are displayed in
Table 3, indicating that penalty decoding surpasses
top-p, typical, and η-sampling decoding methods,
and it offers decoding performance on par with the
contrastive search method.

4.4 Human Evaluation
Auto evaluation metrics are not always entirely
reliable. For instance, the MAUVE metric has
demonstrated sensitivity to the length of generated
content, as discussed by Su and Collier (2023).
Therefore, we have conducted human evaluations
to address this concern. Comprehensive details
regarding the evaluation process can be found in
Appendix D.

Results. The comparative results are displayed in
Table 4. Human evaluations indicate that penalty
decoding outperforms all other decoding methods.

4.5 Case Study
We present two examples to demonstrate the su-
perior performance of penalty decoding compared

Method A is better(%) Method B is better(%)

penalty decoding

66.00 34.00 top-k
76.00 24.00 top-p
64.00 26.00 typical
72.00 28.00 η-sampling
68.00 32.00 contrastive

Table 4: Human evaluation results.

to other decoding methods. The first tests whether
the decoding method can generate factual informa-
tion, while the second tests whether the decoding
method can produce coherent text.

Table 7 demonstrates that our penalty-based de-
coding yields more factually accurate information
about DeepMind company and produces sentences
that closely resemble human-written text. While
Contrastive decoding does manage to generate
some factual content, the resulting text appears
somewhat lacking in diversity. In contrast, the
quality of stochastic sampling is unsatisfactory. In
Table 8, the provided prefix offers sufficient contex-
tual information, and our penalty decoding method
successfully generates coherent text that maintains
logical flow and coherence.

5 Conclusion

This paper delves into the self-reinforcement phe-
nomenon in text generation and introduces penalty
decoding as a solution. Through the integration of
a repetition penalty, a forgetting mechanism, and a
length penalty, the token distribution is adjusted to
enhance diversity and diminish model-induced hal-
lucinations, consequently elevating the quality and
coherence of the generated text. Our penalty de-
coding can also be combined with sampling-based
methods like top-k and top-p sampling. The find-
ings and evaluations in this study aim to encourage
further research in advancing the generation capa-
bilities of neural language models.
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A Experimental Details

A.1 Expeimental Setups

We conducted all experiments using the GPT2-XL
model. In the main experiment, we generated texts
conditioned on the initial paragraph, limited to 32
tokens, from documents in the held-out set of Web-
Text. The text generation process was terminated
upon encountering an end-of-document token or
reaching a maximum length of 128 new tokens.
The test set consists of 1000 samples selected from
Webtext, while the validation set comprises 500
samples extracted from the remaining data sets.
The experimental configurations generally follow
the work of Su and Collier (2023).

A.2 Automatic Evaluation

Diversity. This metric considers the repetition of
generated text at different n-gram levels and can
be calculated as follows: diversity =

∏4
n=2(1.0−

rep-n
100 ).

MAUVE. The score (Pillutla et al., 2021) is a
metric that quantifies the similarity in token distri-
bution between generated text and human-written
text.

Gen-Length. This metric is utilized to compute
the average length of the generated text.
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Coherence. This metric (Su and Collier, 2023)
employs the OPT-2.7B language model (Zhang
et al., 2022) to assess the coherence between the
generated text and a given prefix. The metric is
defined as follows:

1

|x̂|

|x̂|∑

i=1

log pM (x̂i | [x : x̂<i]) , (6)

where [:] is the concatenation operation.

Greedy Ratio. This metric quantifies the propor-
tion of times the language model selects the token
with the highest probability during text generation
(Lan et al., 2022).

A.3 Hyperparameters

Some decoding methods rely on specific hyperpa-
rameters that significantly impact the quality of the
generated sentences. To determine the optimal hy-
perparameters, we utilize the MAUVE metric and
search for a predefined set, as outlined in Table 5.
The best-performing hyperparameters on the vali-
dation set, indicated in bold font, are then selected,
and their corresponding performance on the test set
is reported in Table 2.

Method Hyperparameters
top-k {3, 5, 7, 9}
top-p {0.89, 0.90, 0.92, 0.95, 0.99}

typical {0.2, 0.9, 0.92, 0.95, 0.99}
η {0.004, 0.002, 0.0009, 0.0006, 0.0003}

Mirostat τ {2, 3, 4, 5}
Beam {3, 5, 7, 9}

contrastive {(5, 0.5), (5, 0.8), (10, 0.5), (10, 0.8)}
penalty {1.1, 1.5, 2.0, 2.5, 3.0}

Table 5: Hyperparameter sweep for each decoding
method. For contrastive, the parameter format is (k,
penalty_alpha).

B Ablation Studies

We employ the validation dataset for conducting
ablation studies.

B.1 The impact of repetition penalty

In the absence of the repetition penalty, the de-
coding performance is equivalent to that of greedy
decoding. The diversity measure is only 20.09%,
indicating limited variation in the generated text,
while the MAUVE score is only 27.03%, indicat-
ing a lower resemblance to human-written text. As
depicted in Figure 3(a), higher repetition penal-
ties result in increased diversity but lower MAUVE

scores. Lower repetition penalties lead to decreased
diversity and lower MAUVE scores.

B.2 The impact of forgetting mechanism

A window size of 0 corresponds to greedy decod-
ing, while a window size larger than the length
of the generated text indicates near-greedy decod-
ing. From Figure 3(b), we can observe that using
a small window size results in lower text quality.
Typically, a larger window value is essential to en-
sure the generation’s quality, signifying that the
self-reinforcement effect tends to persist through-
out the building process. Nevertheless, it’s worth
noting that bigger window values are not always
advantageous. In some cases, they can lead to a
reduction in MAUVE, potentially due to the accu-
mulation of penalties causing the text to deviate
from its intended semantics, subsequently degrad-
ing text quality.

B.3 The impact of length penalty

As shown in Table 6, the introduction of a length
penalty has a discernible impact on the MAUVE
metric for the generated text. It’s crucial to recog-
nize that MAUVE is influenced by text length and
may not always guarantee the holistic quality of the
generated content. However, it remains a pertinent
observation that the accumulation of penalties can
lead to the model generating overly short text.

C Prompt Design

The design of prompts is illustrated in Figure 4.
The Language Model (LLM) receives input con-
sisting of a prefix, a reference completion, com-
pletion A generated by one decoding algorithm,
and completion B generated by another decoding
algorithm. The LLM then assesses and determines
whether completion A is better than completion B
based on criteria such as consistency, fluency, and
informativeness. The evaluation process involves
200 samples, and any invalid outputs are excluded
from the results.

D Human Evaluation

We randomly selected 50 samples from the test set
and applied various decoding algorithms to gen-
erate sentences from them. For evaluation, we
engaged two English language experts. The eval-
uation method involves comparing sentences gen-
erated by penalty-based decoding with those pro-
duced by alternative decoding algorithms. Prior to
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(a) The impact of repetition penalty (b) The impact of forgetting mechanism

Figure 3: Ablation Studies

Method Diversity MAUVE Coherence Greedy Ratio Gen-length
w length penalty 97.25 96.14 -2.15 56.33 102.33

w/o length penalty 97.60 92.79 -2.12 57.33 89.18

Table 6: The impact of length penalty

Figure 4: Prompt Design

the comparison, the experts are kept unaware of
the specific decoding algorithm used for sentence
generation. They should assess and select supe-
rior sentences based on three criteria: consistency,
fluency, and informativeness.

1226



Prefix DeepMind Company is
top-k the Google of artificial intelligence. The firm is responsible for developing

DeepMind’s flagship AlphaGo e program, and also has an interest in the field
of deep learning. The company has also been involved in several other deep
learning projects, such as a project to develop a neural network for image
recognition. The company’s main business is to help companies build and
operate AI-enabled applications. The DeepMind team,

top-p
In fact, Google has long had something of a habit of being named after compa-
nies.
The most recent and well-known example is Google’s parent company Alphabet,
which was named after the English scientist, Alexander von Humboldt.
Google parent company Alphabet is named after Alexander von Humboldt
Others include Google Fiber, which refers to the internet search company’s
fiber

typical the company behind London DeepMind, a Google DeepMind project and a sub-
sidiary of Alphabet (Google’s parent company.) Google, in turn, is an investor
in DeepMind, as well as the London-based artificial intelligence company SQM
Technology Ltd. All the above investments (as well as many more), collectively,
give DeepMind a valuation of $500

η-sampling co aware that they have received this notice. They are in discussion with us
in accordance with the law and will respond accordingly.", the spokesperson
wrote. The decision to suspend the project is an unusual one, because at the
moment of the public announcement, it meant that the search for a successor
wouldn’t continue - for this search to continue, a firm would have to submit a
formal bid.
Last

contrastive a company founded by DeepMind co-founder Demis Hassabis and Alex Graves,
who is also DeepMind co-founder. It is a research and development company
that is building a deep learning system for artificial intelligence. The AI system
has already won several computer vision and speech recognition comp

penalty decoding a London-based artificial intelligence company that has been working on deep
learning since 2010. It was founded by Demis Hassabis, a computer scientist
and entrepreneur who cofounded Google’s Deep Mind division in 2014 with
Shane Legg at the University of Cambridge. The new AI system will be able
to learn from data sets containing millions or billions of examples (called
"training" datasets) as well as real world

Table 7: Example 1. The generated documents by GPT-2-XL using different decoding methods with the prefix
"DeepMind Company is". The factually correct content is highlighted in red.
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Prefix In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to
the researchers was the fact that the unicorns spoke perfect English.

top-k "I was very excited and curious to find out more about these unicorns and their
way of life," said Dr. John Catt, the lead author, who was studying the Andean
clouded leopards in a remote location.
After a few weeks, he had his answer: The unicorns had a language of their
own.
"They had very sophisticated social structures that were

top-p The wild creatures are a species of the same genus as the Asian hornless horse,
which still continues to live in the wild. The researchers were able to record the
unicorns’ calls in a recording device, which recorded the animals’ calls.
"Our study of the Andean valley Unicron - Latin for unicorn - is one of the most
significant contributions to the history of speech in the world

typical There are about 1,200 unicorn sightings, reported worldwide since the 1860s.
Most of the sightings come from the southern hemisphere. Experts believe
there could be up to 10,000 unicorns in total.
These creatures seem to be a different race of unicorns or possibly even a

η-sampling After years of careful study of their behavior and language, researchers conclude
that the unicorns live in these remote valleys in central Bolivia, and that there is
a reason why we sometimes don’t see them. Scientists have a name for such
unicorns: the Andean llama herd, a wild species of goats native to the Andes
that are endangered by loss of territory due to mining and grazing issues. Their

contrastive According to the BBC, the researchers were able to record the unicorn’s lan-
guage in the region, where the animals live in the remote Andes Mountains.
The unicorns, called the "Urania" in the study, are believed to be the largest
herd of the animals in the world.
The research was carried out by researchers from Argentina’s Universidad de
La Plata, and the University

penalty decoding The discovery is being hailed as one of the most important scientific discoveries
ever made by an indigenous group from South America and has been dubbed
"the unicorn language." The scientists believe it could be used for communica-
tion between humans and animals or even other species on Earth.
"We have found evidence that these creatures are capable of communicating
with each other," said Dr. Carlos Bustamante, a researcher at Univers

Table 8: Example 2. The generated documents by GPT-2-XL using different decoding methods with the prefix "In a
shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the
Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English."
The content that is relevant to the prefix is highlight in blue.
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