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Abstract

A popular approach for improving the correct-
ness of output from large language models
(LLMs) is Self-Consistency – poll the LLM
multiple times and output the most frequent
solution. Existing Self-Consistency techniques
always generate a constant number of samples
per question, where a better approach will be
to non-uniformly distribute the available bud-
get based on the amount of agreement in the
samples generated so far. In response, we in-
troduce Adaptive-Consistency, a cost-efficient,
model-agnostic technique that dynamically ad-
justs the number of samples per question us-
ing a lightweight stopping criterion. Our ex-
periments over 17 reasoning and code genera-
tion datasets and three LLMs demonstrate that
Adaptive-Consistency reduces sample budget
by up to 7.9 times with an average accuracy
drop of less than 0.1%.1

1 Introduction

The increasing adoption of large language models
(LLMs) across various tasks, such as text genera-
tion and reasoning (Wei et al., 2022; Kojima et al.,
2022; Wang et al., 2022a; Mishra et al., 2022),
mathematical reasoning (Lewkowycz et al., 2022;
Gao et al., 2022; Arora et al., 2023), and code gen-
eration (Li et al., 2022; Madaan et al., 2023b), has
underscored the importance of improving the cor-
rectness of their outputs. A popular method for
achieving this goal is Self-Consistency (Wang et al.,
2022b), a majority voting technique where multiple
output samples are generated for a given input, and
the final decision is based on the most frequently
occurring output among the samples.

Current Self-Consistency methods typically em-
ploy a fixed budget approach, wherein a predeter-
mined number of samples (e.g., 40) are generated
to make a decision. However, as LLMs continue

1Code and LLM outputs are available at https://
sample-step-by-step.info/.

to grow in size and complexity, the sampling time
and computational costs associated with majority
voting become increasingly challenging. This chal-
lenge is particularly evident in high-stakes appli-
cations like competition-level code generation (Li
et al., 2022), where generating a large number of
programs, sometimes up to a million, is essential
for maximizing performance.

To address this challenge, we introduce Adaptive-
Consistency, a cost-efficient, model-agnostic ma-
jority voting technique. Adaptive-Consistency em-
ploys a lightweight stopping criterion that dynam-
ically adjusts the number of samples (n) for each
input, as opposed to using a fixed budget (k). The
intuition is that if a clear majority is established
with high confidence after sampling fewer than k
answers (n < k), there is no need to generate addi-
tional samples.

Adaptive-Consistency models the probability
distribution over unique samples using a Dirich-
let distribution, allowing us to quantify the con-
fidence in the lead of the majority element over
other elements. For instance, if the majority ele-
ment has a count of 9 out of the first 10 samples,
the likelihood of it remaining the majority element
even after 40 samples is very high (> 99%). This
allows Adaptive-Consistency to stop sampling at
this point, reducing the cost by 30 samples, while
Self-Consistency would continue to sample all 40
answers. As an inference-time technique requir-
ing no additional training, Adaptive-Consistency
provides a convenient off-the-shelf option for all
pre-trained language models, offering the flexibility
to balance computational cost and performance.

We evaluate Adaptive-Consistency on 17 diverse
tasks and three LLMs of different scales (VICUNA-
13B, CODE-DAVINCI-002 and GPT-3.5-TURBO).
Our experimental results show that Adaptive-
Consistency outperforms Self-Consistency regard-
ing cost efficiency while maintaining comparable
output quality. On CODE-DAVINCI-002, Adaptive-
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Figure 1: An overview of Adaptive-Consistency: Self-Consistency samples a predetermined number of answers,
whereas Adaptive-Consistency iteratively samples until a lightweight Stopping Criteria, decides to report the
majority answer. The figure demonstrates an example where Adaptive-Consistency reduces sampling costs by 4x,
requiring only ten samples to report the majority answer. The bottom-left graph contrasts Adaptive-Consistency
with Self-Consistency across three reasoning categories, showing an average sample budget reduction of 3.3× with
a negligible 0.04% drop in accuracy.

Consistency reduces the number of samples re-
quired by a factor of 3.4×, with no average drop in
accuracy. On VICUNA-13B, it requires sampling
1.9× fewer samples, with almost no drop in accu-
racy. Similarly, on GPT-3.5-TURBO, it samples
4.4× fewer samples, with less than 0.2% drop in
accuracy. In summary, our contributions are:

• We propose Adaptive-Consistency, a cost-
efficient sampling technique for large language
models that dynamically adjusts the number of
samples using a lightweight stopping criterion
based on the stability of the majority element.

• We conduct extensive experiments using three
different LLMs on a diverse set of 17 datasets.
These datasets encompass a wide range of tasks,
including MATH, COMMONSENSE, SYM-
BOLIC reasoning, and CODE GENERATION

tasks. Adaptive-Consistency consistently and
significantly outperforms fixed-budget methods
like Self-Consistency, requiring an average of
3.3× fewer samples with less than 0.1% drop
in accuracy across all datasets and models.

• Our analysis reveals that for a fixed sam-
pling cost, Adaptive-Consistency consistently
achieves better accuracy than Self-Consistency
across all datasets (upto 5% absolute points).
Additionally, we experiment with various stop-
ping criterias and show the efficacy of Adaptive-
Consistency in terms of speed and accuracy.

2 Background

In-Context Few-Shot Prompting In-context
few-shot prompting is a technique employed by
large language models (LLMs) to learn and gener-
alize from a limited number of examples provided
within the input of a given task. The model can
quickly adapt to novel tasks without fine-tuning or
additional training by conditioning the model on
a few examples. Specifically, a prompt p is con-
structed by concatenating multiple input-answer
example pairs < xi, ai >. The prompt is then
prepended to the test input xtest, and the model
generates the corresponding answer atest.
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def adaptive_consistency(max_gens,
stop_criterion):

observations = []
for k in range(1, max_gens):

observations.append(sample_from_llm())
if stop_criterion(observations):

break
return majority(observations)

def stop_criterion(observations, threshold):
# Implement your stopping criterion

def self_consistency(max_gens):
observations = []
for k in range(1, max_gens):

observations.append(sample_from_llm())
return majority(observations)

Listing 1: Comparison of Adaptive-Consistency (top)
and Self-Consistency (bottom). Self-Consistency al-
ways generates a fixed number of samples. In contrast,
Adaptive-Consistency uses a lightweight stopping crite-
rion, allowing it to adaptively halt the sampling process,
which can lead to improved efficiency and performance.

Self-Consistency Wang et al. (2022b) proposed
Self-Consistency which improved performance by
sampling multiple diverse reasoning chains and
aggregating their outputs using a simple major-
ity voting mechanism. However, higher accuracy
is achieved with an increased computational cost,
since the LLM must be prompted multiple times
for the same question.

3 Adaptive-Consistency

Self-Consistency generates a predetermined num-
ber of answers (k) from the language model (LLM)
before returning the majority answer. In contrast,
the Adaptive-Consistency method takes an incre-
mental approach to sampling outputs from the
language model. After generating each sample,
Adaptive-Consistency employs a lightweight stop-
ping criteria to determine whether it should 1.)
generate an additional sample from LLM or 2.)
cease sampling and report the current majority
answer. This flexible strategy enables Adaptive-
Consistency to dynamically adjust the number of
samples generated so far (n) for each input. As
our experiments demonstrate, n is typically less
than k (on average, 3.3× and up to 7.9× less in
some cases), allowing Adaptive-Consistency to of-
fer greater cost-efficiency compared to the fixed
budget approach employed by Self-Consistency.

Adaptive-Consistency differs from Self-

Consistency only in terms of the stopping criteria
(Listing 1). The design of the stopping criteria is
crucial to our method, as it aims to minimize the
average number of samples generated from the
LLM while maximizing accuracy. The simplicity
of our algorithm allows for the use of various
stopping criteria interchangeably, each with its
own advantages and disadvantages. We expand on
a particular choice of stopping function next.

Dirichlet Stopping Criteria Let n be the num-
ber of samples generated from LLM so far, with
m unique samples. Let v = [v1, v2, . . . , vm] be the
counts of each element, and pi =

vi
n be the normal-

ized count. For instance, if n = 10, and m = 3
(10 samples generated, with 3 unique elements), if
v = [8, 1, 1], then we can be more confident that
v1 is the answer. On the other hand, if v = [4, 4, 2],
then more samples need to be generated. Our goal
is to formalize and quantify this intuition.

By convention, let p1 = max(pi). We want to
assess the stability of p1 as the majority element.2

Specifically, we want to ask the following question:
what is the probability that p1 will be the majority
element if we repeat the process of generating n
samples again? Intuitively, if this probability is
higher than some predetermined threshold Cthresh,
then we can be more confident in our decision to
stop sampling and return p1 as the majority ele-
ment:

P (p1 >
m

max
i=2

pi | v) > Cthresh

To answer this question, we establish a connec-
tion with the Dirichlet distribution. Specifically,
we note that the counts v parameterize a Dirichlet
distribution, Dir(V ).3 This connection allows us
to explore the behavior of the sampling process by
drawing more samples from Dir(V ) and observ-
ing the stability of p1 as the majority element. To
compute the probability of p1 being the majority
element, we can integrate the joint probability den-
sity function of the Dirichlet distribution over the
appropriate region of the probability simplex. The
integral can be expressed as follows:

2Note that we overload the notation to use p1 to represent
both the majority element and its probability (usage clear from
context).

3Dirichlet is a distribution over multinomials parameter-
ized by counts V ; each draw from Dirichlet is a multinomial
distribution p. See Details in Appendix D
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P (p1 >
m

max
i=2

pi | V )

=

∫ 1

0

∫

S(p′1)
f(p′1, p2, . . . , pm | V ).

dp2 · · · dpmdp′1,

where

S(p′1) = {(p2, . . . , pm) | p′1 >
m

max
i=2

pi,

m∑

i=2

pi = 1− p′1}.

(1)
In Equation 1, f(p′1, p2, ..., pm|V ) represents the

joint probability density function of the Dirich-
let distribution conditioned on the counts V . The
bounds on the integral for p′1 range from 0 to 1. The
probability simplex S(p′1) is defined for each p′1
value, such that p′1 > maxmi=2 pi, and the remain-
ing pi values sum to 1−p′1. This constraint ensures
that we are considering all possible values of p′1
that would maintain its majority status. Here we as-
sume, that the number of possible unique answers
(m) is known, based on the current set of observa-
tions (V ). In Analysis ((§ 5.3), we further evaluate
a CHINESE RESTAURANT PROCESS (CRP) stop-
ping criteria, which relaxes this assumption by not
requiring the number of possible unique answers
(m) to be known in advance.

Beta Stopping Criteria Since the number of
unique answers in the observation set can be large,
Equation (1) is computationally expensive to solve.
As an approximation, we observe that establishing
the majority of p1 over the next largest probability,
p2, is sufficient for our purpose.

In this setting, the probability in Equation (3)
simplifies to a Beta distribution with parameters
(v1 + 1, v2 + 1), and Equation (1) is replaced by
Equation (2). This approximation, which assumes
a non-informative prior of BETA(1, 1), allows us to
efficiently compute the confidence in p1 being the
majority, enabling early stopping decisions without
incurring substantial computational overhead.

∫ 0.5

0
pv22 · (1− p2)

v1dp2 (2)

Empirically, we show the performance to be sim-
ilar to Dirichlet stopping criteria but significantly
faster (See Section 5.3). Throughout experiments,
we refer to this Beta Stopping Criteria as Adaptive-
Consistency.

Code-Generation We now turn our attention to
CODE GENERATION tasks, which involve generat-
ing programs that can correctly pass multiple test
cases. More details on test case generation can be
found in Appendix A.4.

The configuration of code generation tasks sig-
nificantly impacts the Self-Consistency measure-
ment since different programs might yield varying
outputs for a given set of test cases. This variation
can cause simple majority voting schemes to be
ineffective in evaluating stability. To address this,
we explore two distinct methods for aggregating
answers across multiple test cases.

In the first method, inspired by the approach used
in AlphaCode (Li et al., 2022), we concatenate the
outputs for all test cases into a single vector with
t elements and apply Self-Consistency across the
entire vector. This implies that two programs are
considered identical only if their outputs for all
t test cases match exactly. However, this simple
setup may overestimate the output variance, as dif-
ferent programs can produce distinct outputs for
the set of test cases.

To overcome the limitations of the simple setup,
we propose an alternative method that treats test
inputs as independent entities and applies Adaptive-
Consistency to each test case separately:

t

√√√√
t∏

j=1

P (pj1 >
m

max
i=2

pji | V ) (3)

In this equation, P is computed using Equa-
tion 1. The Adaptive-Consistency method termi-
nates the sampling process when the normalized
probability—expressed as the geometric mean of
P across all t test cases—exceeds a predefined
threshold (e.g., 0.95).

4 Experiments

We evaluate Adaptive-Consistency using 17 di-
verse benchmark datasets and three different lan-
guage models. We use prompts by program-aided
language models, PAL, (Gao et al., 2022), Self-
Consistency (Wang et al., 2022b) and CodeT (Chen
et al., 2022).

Datasets We evaluate our method on a diverse
set of reasoning and coding benchmarks, encom-
passing 17 datasets across 4 distinct categories:
1. Mathematical Reasoning: We use GSM-
8K (Cobbe et al., 2021), SVAMP (Patel et al.,
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2021), and ASDIV (Miao et al., 2020) which as-
sess the mathematical reasoning capabilities of the
LLMs. 2. COMMONSENSE Reasoning Tasks: We
evaluate on 5 datasets: STRATEGYQA (Geva et al.,
2021), DATE UNDERSTANDING, SNARKS, RUIN

NAMES, SALIENT TRANSLATION that measures
different capabilites of LLMs such as multi-hop
reasoning and emotional understanding. 3. SYM-
BOLIC Reasoning Tasks: We further examine
performance on 5 diverse SYMBOLIC reasoning
tasks: TRACKING SHUFFLED OBJECTS, LOGI-
CAL DEDUCTION, BOOLEAN EXPRESSIONS, DIS-
AMBIGUATION QA, PENGUINS. 4. CODE GEN-
ERATION Tasks We also evaluate our method on
coding tasks, which require to generate a work-
ing code given a textual problem description. We
evaluate on 4 datasets of varying difficulty: HU-
MANEVAL (Chen et al., 2021), MBPP (Austin
et al., 2021), APPS (Hendrycks et al., 2021) and
CODECONTESTS (Li et al., 2022). We refer readers
to Appendix A.2 for more details.

Models We evaluate our method on three differ-
ent language models: 1. GPT-3.5-TURBO:4 An
RLHF-finetuned GPT-3 based model (unreleased
number of parameters). 2. VICUNA-13B: (Chi-
ang et al., 2023) an open-source transformer model
fine-tuned on instruction-following dataset (Taori
et al., 2023) from the base Llama series (Touvron
et al., 2023). 3. CODE-DAVINCI-002: A GPT-
3-based publicly available model (Brown et al.,
2020) which is a part of the Codex series (Chen
et al., 2021) and has 175 billion parameters.5

Prompting and Sampling We use similar
prompts as in PAL (Gao et al., 2022) and CHAIN

OF THOUGHT (Wei et al., 2022). Specifically, for
mathematical reasoning and DATE UNDERSTAND-
ING tasks, we use prompts from PAL. For other
commonsense and SYMBOLIC reasoning tasks, we
use COT (Wei et al., 2022).

For sampling, we follow the scheme suggested
in Wang et al. (2022b). Specifically, we use a tem-
perature of 0.7 for sampling and limit the number
of generations to a maximum of 40. For coding
tasks, we follow the exact procedure as used in
CodeT (Chen et al., 2022), with 50 samples for
APPS, 100 samples for HUMANEVAL and MBPP

4https://openai.com/blog/chatgpt
5We have access to Codex models through OpenAI’s re-

searcher access program. Note that we only need access to the
model outputs for this work, and we have released all outputs
in the accompanying repository for reproducibility.

and 1000 samples in CODECONTESTS.

Hyperparameters The only hyperparameters in
Adaptive-Consistency are those related to param-
eters in stopping criteria (Cthresh). We use a high
Cthresh = 0.95 for Adaptive-Consistency. By us-
ing a high threshold, we aim to maintain high ac-
curacy and prevent the algorithm from stopping
too early. For other Stopping Criteria, we tune pa-
rameters on the training set of GSM-8K, and use
the same thresholds across all the datasets. The
impact of the chosen threshold on the performance
of our method is further analyzed in the analysis
section (§ 5.1).

Baselines We compare our method against Self-
Consistency, which is the current state-of-the-art
method. Further, in Section 5.3, we evaluate
Adaptive-Consistency against different stopping
criteria, such as RANDOM stopping and MAJOR-
ITY (stopping at majority), ENTROPY, DIRICHLET

and CRP.

Evaluation Metrics We evaluate the perfor-
mance of our method and the baselines using two
metrics: average generations sampled from the
LLMs, and overall reasoning accuracy. Our results
show that Adaptive-Consistency achieves similar
performance to Self-Consistency while often reduc-
ing sample budget considerably.

4.1 Results

Table 1 presents the main results, and is divided
into two parts showing results across different task
categories (top sub-table) and on various language
models (bottom sub-table). We focus on the poten-
tial tradeoff between efficiency and accuracy.

Results Across Task Categories Our experimen-
tal results demonstrate the significant efficiency
gains achieved by Adaptive-Consistency across dif-
ferent task categories – 3.3× times fewer samples
in mathematical tasks with a 0.1% accuracy drop,
2.9× times fewer samples in commonsense tasks
with a 0.2% accuracy drop, 3.8× times fewer sam-
ples in symbolic reasoning tasks maintaining accu-
racy, and 2.4× times fewer samples in coding tasks
while improving accuracy by 0.4%. These findings
confirm the effectiveness of Adaptive-Consistency
in identifying the majority element early, highlight-
ing its potential across various applications, includ-
ing reasoning and coding.
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Accuracy Num. Generations ∆

Category Self-Consistency Adaptive-Consistency Self-Consistency Adaptive-Consistency Num. Gen. Acc.

MATH 73.2 73.1 40 13.8 3.3× -0.1
COMMONSENSE 66.0 65.8 40 15.8 2.9× -0.2
SYMBOLIC Reasoning 72.8 72.8 40 13.1 3.8× +0.0
CODE GENERATION 35.2 35.6 312.5 173.6 2.4× +0.4

Accuracy Num. Generations ∆

Model Self-Consistency Adaptive-Consistency Self-Consistency Adaptive-Consistency Num. Gen. Acc.

GPT-3.5-TURBO 76.4 76.2 40 10.0 4.4× -0.2
VICUNA-13B 54.0 54.1 40 21.7 1.9× +0.0
CODE-DAVINCI-002 69.7 69.8 104.1 49.4 3.4× +0.0

Table 1: Main results: Adaptive-Consistency achieves a significant reduction in the number of generations, with a
negligible impact on accuracy. The ∆ columns display reductions in generations (Num. Gen.) and accuracy (Acc.)
between Self-Consistency and Adaptive-Consistency. Detailed results are in Table 5.

Results Across Language Models Examining
the results across different language models, we
find that Adaptive-Consistency is model-agnostic,
and consistently reduces the number of generations
with minimal to no impact on accuracy. Adaptive-
Consistency consistently reduces the number of
generations required, with reductions of 4.4× for
GPT-3.5-TURBO, 1.9× for VICUNA-13B, and
3.4× for CODE-DAVINCI-002, highlighting its
cost-effective nature and adaptability to different
scales of models. Moreover, the minimal accuracy
differences and slight improvements showcase the
practical utility of Adaptive-Consistency, empha-
sizing its diverse applicability and model-agnostic
characteristics.

5 Analysis

5.1 Effect of Confidence Threshold in
Adaptive-Consistency

The confidence threshold, Cthresh, is a crucial hy-
perparameter for Adaptive-Consistency, as it deter-
mines when to stop sampling based on the desired
level of confidence in the majority element. While
we set the threshold to a stringent value of 0.95
for all experiments, in this section, we analyze the
impact of varying Cthresh from 0.5 to 1 to under-
stand the trade-offs between model accuracy and
cost-efficiency.

In Figure 2, we present a visualization that ex-
amines the relationship between the confidence
threshold, Cthresh, and the performance of adap-
tive consistency in terms of both accuracy and cost-
efficiency. The x-axis represents the confidence
threshold, varying from 0.5 to 1. The left y-axis

displays the model’s accuracy, while the right y-
axis shows the average number of samples drawn.

The plot (for GSM-8K) shows the expected be-
havior of two curves: the blue curve (accuracy)
increases gradually and then plateaus, while the
red curve (average number of samples) initially
increases linearly and then climbs more steeply.
The plateau in accuracy signifies that the model
has reached its maximum achievable accuracy,
and further sampling will not improve it much.
Meanwhile, the red curve’s climbing rate indi-
cates that the model requires more samples to meet
an increasingly stringent confidence threshold for
stopping, highlighting the trade-off between ac-
curacy and cost efficiency. We refer readers to
Appendix C.4 for more results.

5.2 Adaptive-Consistency vs. Self-Consistency
For Equal Average Sample Costs

Section 4.1 previously demonstrated that Adaptive-
Consistency achieves comparable performance
to Self-Consistency using fewer samples. In
this section, our primary objective is to com-
pare the performance of Adaptive-Consistency
to Self-Consistency across various sampling bud-
gets. For each fixed sampling budget k, we con-
trast the performances of Adaptive-Consistency
and Self-Consistency, where Self-Consistency dis-
tributes sample budget uniformly to each question,
Adaptive-Consistency uses nonuniform allocation,
rather than consistently across all instances.

We evaluate Adaptive-Consistency using vary-
ing thresholds, with each threshold producing a
distinct point (#samples, performance) on the cost-
quality curve. For every specific sample count
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Figure 2: Impact of Confidence Threshold (Cthresh) on
Adaptive-Consistency for GSM-8K: As Cthresh varies,
the accuracy of Adaptive-Consistency increases gradu-
ally, eventually plateauing. Initially, the average number
of generations also increases gradually but then sharply
climbs, reflecting the accuracy-confidence trade-off.

(#samples) generated by Adaptive-Consistency, we
subsequently run Self-Consistency to obtain its cor-
responding performance. The relationship between
the two methods across these data points is visual-
ized in Figure 3 which provides a visual compar-
ison of the performance of Adaptive-Consistency
and Self-Consistency on GSM-8K. Adaptive-
Consistency outperforms Self-Consistency in ac-
curacy across all average sample costs. For exam-
ple, when the average sample cost is 10, Adaptive-
Consistency achieves approximately 3% higher ac-
curacy on GSM-8K. Similar results hold on other
datasets; see Appendix C.1 for full results.

The success of Adaptive-Consistency can be at-
tributed to the fact that it varies the number of
samples based on the complexity of the instance,
using more samples where a clear consensus is hard
to reach and fewer where answers are consistent.
Consequently, Adaptive-Consistency achieves im-
proved overall performance when controlled for
cost budget.

5.3 Evaluation of Different Stopping
Functions

Adaptive-Consistency allows a flexible choice of
stopping criteria, based on intended objective and
requirements. Here, we evaluate six different func-
tions: 1) RANDOM: randomly stopping with a prob-
ability p, 2) MAJORITY: stopping after the most
common answer has a majority above a threshold,
3) ENTROPY: stopping after the entropy of an-
swers is below a threshold, 4) BETA: The main

BETA ENTROPY DIRICHLET CRP

Time (ms) 0.03 0.03 101.3 94.6

Table 2: Time comparison of different stopping criterias,
when evaluated on GSM-8K and DATE UNDERSTAND-
ING datasets. All stopping criterias are significantly
faster than LLM inference, with BETA being 4 orders
of magnitude faster than other variants.

stopping criterion used in Adaptive-Consistency,
based on Equation (2), 5) DIRICHLET: The stop-
ping criterion, based on Equation (1), 6) CHINESE

RESTAURANT PROCESS (CRP): Unlike DIRICH-
LET, CRP makes no assumption on the number of
possible unique answers. Based on the available
observations, we first model the concentration pa-
rameter (α), denoting the probability of getting a
new answer, then perform Monte Carlo simulations
to obtain stability of the current majority (see Ap-
pendix C.3 for more details).

The parameters for all these methods are tuned,
as discussed in Section 4. Figure 4 compares BETA

to ENTROPY and MAJORITY over a range of ex-
pected sampling costs. BETA consistently achieves
higher accuracy than both for the same sampling
cost. Further, we find RANDOM to be the least
effective method as expected, whereas MAJORITY

almost consistently underperforms both BETA and
ENTROPY. While DIRICHLET and CRP have a
similar performance to BETA, they are both about
four orders of magnitude slower than BETA due
to the expensive multivariate integral calculation.
Nonetheless, despite being run on a single cpu core,
even DIRICHLET and CRP have negligible time and
cost compared to LLM inference. The exact tim-
ings are presented in Table 2. The detailed results
are presented in Appendix C.2, Table 7.

In summary, Adaptive-Consistency is particu-
larly effective in two scenarios: (i) when a majority
trend is evident early in the sampling process, such
as in the SVAMP dataset where it achieves com-
parable accuracy to Self-Consistency using fewer
than 5 samples on average per input; and (ii) for
tasks with a limited set of potential answers, such
as the BOOLEAN EXPRESSIONS dataset where
Adaptive-Consistency reduces the computational
budget by 7.9 times without any loss in accuracy.

6 Related Work

Crowdsourcing and Adaptive Consistency
Adaptive-Consistency finds inspiration in tech-
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Figure 4: Comparison of BETA, ENTROPY and MA-
JORITY stopping criterias. BETA consistently beats EN-
TROPY and MAJORITY in terms of accuracy for the
same sampling cost.

niques from crowdsourcing (Lin et al., 2012; Dai
et al., 2013; Weld et al., 2015; Bragg et al., 2016).
Traditionally, crowdsourcing involves aggregating
diverse human judgments, which presents chal-
lenges in managing resource allocation—knowing
when to query additional contributors or stop based
on the consistency of responses (Doan et al., 2011;
Quinn and Bederson, 2011). Early research con-
centrated on probabilistic models estimating the
’true’ answer and worker reliability (Dawid and
Skene, 1979; Whitehill et al., 2009), later consider-
ing factors like worker expertise, task complexity,
and answer quality (Raykar et al., 2010; Welinder
et al., 2010). However, rather than addressing these
issues with multiple human contributors, Adaptive-
Consistency is tailored specifically for LLMs, op-
timizing for computational efficiency and output

accuracy. In line with our vision, (Parameswaran
et al., 2023) have recently proposed declarative
prompt engineering, viewing LLMs like crowd
workers and leveraging multiple prompting strate-
gies.

Architectures for adaptive computation A re-
lated body of work on adaptive computation aims
to preempt computation based on intermediate rep-
resentations (Liu et al., 2020; Zhou et al., 2020;
Schuster et al., 2021; Geng et al., 2021; Xin et al.,
2020). Schuster et al. (2022) present CLAM, a lan-
guage model that performs language generation
adaptively. Hou et al. (2020) propose Dynamic
Bert, which can adapt the depth and width of the
transformer to satisfy various computational con-
straints. Xing et al. (2020) propose a dynamic deep
neural network with an early-exit strategy embed-
ded for enhancing the quality of compressed im-
ages. Another direction of work focuses on pruning
model weights or training sparse weights (Fan et al.,
2019; Jayakumar et al., 2021) to reduce training
and inference time. In contrast to these methods,
our approach completely obviates making any ar-
chitectural modifications.

Inference-time adaptive computation These
methods focus on adaptive computation at infer-
ence time without making architectural modifica-
tions to the models. Schwarzschild et al. (2021b,a)
focus on three different generalization tasks. They
observe that increasing the number of test iterations
(which corresponds to the network depth in their
setting) helps the models in generalizing better to
difficult problems. Madaan and Yang (2022) lever-
age two different networks trained for the same
task, a larger variant (slow) and a smaller variant
(fast). The switch from fast to slow happens during
inference, based on the complexity of generation
at the current step. Xue et al. (2023) train language
models to adaptively read tokens from a tape bank
for each input. Different from these works, our fo-
cus is tasks where the multiple samples are drawn
from a model (vs. iteratively solving a task, which
is a focus of these works). Additionally, recent
works such as (Madaan et al., 2023a; Chen et al.,
2023) have propsed to adaptively selecting models
of varying sizes based on verification signals de-
rived from the output of the smaller model. Our
methods, however, distinguish themselves by not
necessitating the use of an additional verifier, and
without the need of multiple models.
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Adaptive Sampling in Training and Active
Learning Another line of work focuses on
importance-based sampling of input instances dur-
ing training (Bengio and Senecal, 2008; Prabhu
et al., 2019; Berger et al., 2017). In contrast to
the aforementioned methods, our approach centers
on adaptively sampling multiple outputs per input
instance during the inference phase, without so-
liciting additional labels. Our method is crafted
to efficiently obtain reliable predictions from pre-
trained language models by adaptively sampling
their outputs, distinguishing it from both adaptive
sampling in training and active learning, which
focus on the training phase.

7 Conclusion and Future Work

This paper presented Adaptive-Consistency, a cost-
efficient and model-agnostic technique for improv-
ing the correctness of output from large language
models (LLMs) using dynamic sampling. Our ap-
proach builds upon the Self-Consistency method
and introduces a lightweight stopping criterion that
allows for adaptive sampling based on the amount
of agreement in the samples drawn so far. Adaptive-
Consistency is effective across 17 datasets and
three LLMs, on both reasoning and coding tasks. It
reduces the required sample budget by 2 to 4 times,
while maintaining comparable accuracy, with an
average drop of less than 0.1%.

Our work opens up several avenues for future
research. We may develop alternative stopping
criteria, or combining multiple criteria could lead to
even more efficient sampling techniques. Moreover,
in our current approach, the majority decision relies
on using matches to determine the most common
answer. However, this may not always capture the
true majority, e.g., in generative tasks, where the
output can have variations that do not affect the
overall correctness or relevance of the answer. To
foster further research and enable reproducibility,
we have released the code and LLM outputs at
https://sample-step-by-step.info/.
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Limitations

Despite the promising results of our proposed
Adaptive-Consistency method, it bears several lim-
itations and scopes for future improvement.

• Stopping criterion sensitivity: The current
stopping criterion, based on the majority el-
ement’s stability in the sample set, may not
always indicate sample agreement optimally.
Instances may arise where the majority element
lacks stability, yet the criterion triggers, poten-
tially leading to suboptimal decisions. Future
work could explore more robust or alternative
stopping criteria.

• Generalizability: The effectiveness of our
method may vary across tasks or models, de-
spite testing on a diverse range of 17 datasets
and three different LLMs of contrastive scale.
Notably, Adaptive-Consistency is anticipated
to fail where Self-Consistency fails.

• Task-specific adaptations: The task-agnostic
nature of Adaptive-Consistency might limit
its performance on tasks that could benefit
from task-specific adaptations. Specialized
versions of Adaptive-Consistency for specific
tasks or domains could potentially enhance per-
formance. We have initiated this by experi-
menting on CODE GENERATION dataset, but
extending Adaptive-Consistency to other do-
mains may not be as straightforward.

• Reliance on the pretrained LLM: Our
method depends on the pretrained LLM for gen-
erating multiple samples. Consequently, any
limitations or biases in the LLM would per-
sist in the Adaptive-Consistency. Addressing
these issues might require improvements in the
LLM training process itself or the integration
of external knowledge sources.
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A Experimental Setup

A.1 Hyperparameters
The only hyperparameters in Adaptive-
Consistency, are those related to parameters
in stopping criterias (Cthresh). We use a high
Cthresh = 0.95 for Adaptive-Consistency. By
using a high threshold, we aim to maintain high
accuracy and prevent the algorithm from stopping
too early. For other Stopping Criterias, we tune our
parameters on the training set of GSM-8K, and
use the same thresholds across all the datasets. The
impact of the chosen threshold on the performance
of our method is further analyzed in the Analysis
Section (§ 5.1). We further evaluate all methods on
a set of 3 seeds and report the table with standard
deviation in Table 5. We use only a single seed for
GPT-3.5-TURBO because of the cost associated.

A.2 Benchmarks
We evaluate our method on a diverse set of coding
and reasoning benchmark datasets, encompassing
17 datasets across four distinct categories:

1. MATHEMATICAL Reasoning: To assess
mathematical reasoning capabilities, we utilize the
following datasets: GSM-8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), and ASDIV (Miao
et al., 2020). These datasets consist of grade-
school-level algebra word problems necessitating
arithmetic operations and problem-solving based
on contextual information.

2. COMMONSENSE Reasoning Tasks: We
evaluate Adaptive-Consistency on four COMMON-
SENSE reasoning tasks. 1.) STRATEGYQA (Geva
et al., 2021) comprises questions that demand the
model to infer a multi-hop strategy with reason-
ing steps implicitly embedded in the questions. 2.)
DATE UNDERSTANDING entails questions that
require the model to deduce dates from natural
language descriptions and perform arithmetic oper-
ations accordingly. 3.) SALIENT TRANSLATION
is a salient translation error detection task that re-
quires the model to identify the type of error in a
translation. 4.) SNARKS and 5.) RUIN NAMES
both focus on emotional understanding tasks.

3. SYMBOLIC Reasoning Tasks: We examine
the performance of our method on six diverse SYM-
BOLIC reasoning tasks. 1.) TRACKING SHUF-
FLED OBJECTS is a tracking task that necessitates
the model to infer the final state of a system, given
its initial state and a sequence of modifications.
2.) LOGICAL DEDUCTION is a logical deduction

Dataset |N_test| Answer Format
GSM-8K 1319 Numerical
ASDIV 2096 Numerical
SVAMP 1000 Numerical
DATE UNDERSTANDING 369 String
TRACKING SHUFFLED OBJECTS 250 MCQ
LOGICAL DEDUCTION 250 MCQ
STRATEGYQA 2279 Binary
BOOLEAN EXPRESSIONS 250 Binary
SNARKS 250 Binary
RUIN NAMES 178 MCQ
SALIENT TRANSLATION 250 MCQ
DISAMBIGUATION QA 250 MCQ
PENGUINS 146 MCQ
HUMANEVAL 164 Python Code
MBPP 427 Python Code
APPS 5000 Coding
CODECONTESTS 165 Competitive Coding

Table 3: Dataset Statistics. We evaluate on 17 diverse
reasoning datasets, having different difficulty, domains,
answer types, sizes (N_test).

task that demands the model to deduce the order
of a sequence of objects based on a minimal set
of conditions. 3.) BOOLEAN EXPRESSIONS is a
boolean expressions task that evaluates whether a
language model has learned the rules of deductive
reasoning, i.e., formal (zeroth-order) logic asso-
ciated with the words "and," "or," "not," etc. 4.)
DISAMBIGUATION QA is a disambiguation task
that necessitates the model to select the person to
whom the pronoun refers. 5.) PENGUINS describes
a table of penguins and requires the model to an-
swer questions about the penguins’ attributes.

4. CODE GENERATION Tasks: We further
evaluate the performance of our method by con-
ducting experiments on four diverse standard cod-
ing tasks. These tasks encompass a range of pro-
gramming challenges, including both basic human-
written and crowd-sourced Python tasks found in
the 1.) HUMANEVAL (Chen et al., 2021) and 2.)
MBPP (Austin et al., 2021) datasets, as well as
more challenging competition-level coding tasks
from the 3.) APPS (Hendrycks et al., 2021) and
4.) CODECONTESTS (Li et al., 2022) datasets.

A.3 Tools and Framework

For querying GPT-3.5-TURBO and CODE-
DAVINCI-002 models (Chen et al., 2021), we use
the api library provided by OpenAI6. We use the
official code provided for running VICUNA-13B
model (Chiang et al., 2023). We run inference
on VICUNA-13B models on single A100 gpus.
For coding tasks, we use the outputs provided by
CodeT (Chen et al., 2022), where models are zero-
shot prompted with temperature=0.8, and top_p =

6API available at: https://platform.openai.com/

12387

https://platform.openai.com/


0.95. stopping criteria in Adaptive-Consistency are
fast to run, and we use a single-core machine. For
numerical integration, we use the Scipy library in
Python.

A.4 Test-Case Generation
For CODE GENERATION tasks, we generate test
cases in a similar fashion to CodeT (Chen et al.,
2022). Specifically, we prompt the model with
function description and prompt for generation of
assert statements. However, unlike CodeT, we limit
ourselves to only 10 test cases, which are generated
in 1-2 prompts to LLM, thus adding neglible effect
on the code generation itself.

Dataset Statistics are presented in Table 3.

B Results

We present the complete results with standard de-
viation in Table 5. For CODE GENERATION tasks,
results are presented in Table 4

Further in Table 6 we show that improvements by
Adaptive-Consistency are statistically significant
across all datasets. We perform 2 sample t-test on
3 random seeds. While p-value of number of gen-
erations is much less than 0.05 (average: 1.5e-3),
indicating that our method is significantly more ef-
ficient, the p-value of accuracy is much larger than
0.05 (average: 0.50), indicating that the slight accu-
racy difference between baseline and our method
is statistically insignificant.

C Analysis

C.1 Adaptive-Consistency vs.
Self-Consistency For Equal Average
Sample Costs

In Section 5.2, we demonstrate that Adaptive-
Consistency achieve better accuracy over Self-
Consistency when both are operating on same ex-
pected sample cost. In Figure 5 we show the com-
plete results.

Section 4.1 previously demonstrated that
Adaptive-Consistency achieves comparable per-
formance to Self-Consistency using fewer sam-
ples. In this section, we consider a scenario
where Adaptive-Consistency and Self-Consistency
operate with the same average number of sam-
ples. For each fixed sampling budget k of
Self-Consistency, we contrast the performance of
Adaptive-Consistency and Self-Consistency, where
Adaptive-Consistency uses k samples on average,
rather than consistently across all instances.

Figure 3 provides a visual comparison of the
performance of Adaptive-Consistency and Self-
Consistency on GSM-8K: Adaptive-Consistency
outperforms Self-Consistency in accuracy across
all average sample costs. For example, when the
average sample cost is 10, Adaptive-Consistency
achieves approximately 3% higher accuracy on
GSM-8K.

The success of Adaptive-Consistency can be at-
tributed to its adaptive sampling strategy. By vary-
ing the number of samples based on the complexity
of the instance—using more samples where a clear
consensus is hard to reach and fewer where an-
swers are consistent—Adaptive-Consistency man-
ages to secure improved overall performance even
when the average sample cost matches that of Self-
Consistency.

C.2 Stopping Criterias
This section follows from the main discussion in
Section 5.3. We evaluate different stopping cri-
terias for Adaptive-Consistency. We evaluate 6
different functions:

1. RANDOM: randomly stopping with a proba-
bility p, 2.)

2. MAJORITY: stopping after the most common
answer has a majority above a threshold,

3. ENTROPY: stopping after the entropy of an-
swers is below a threshold,

4. BETA: The main stopping criteria used in
Adaptive-Consistency, based on the Equa-
tion (2),

5. DIRICHLET: The stopping criteria, based on
Equation (1).

6. CHINESE RESTAURANT PROCESS (CRP):
The stopping criteria, which models proba-
bility as chinese restaurant process making
no assumption on possible number of unique
answers.

For comparison, we tune the Cthresh in each case
on the training set of GSM-8K dataset. Results are
presented in Table 7. RANDOM and MAJORITY

are inferior to BETA across all datasets and models.
Further, while DIRICHLET and CRP are almost sim-
ilar to BETA, they are relatively very slow. While
Although, from Table 7, ENTROPY looks appears
to be on par with BETA, in Figure 6, we show BETA
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Self-Consistency Adaptive-Consistency ∆

Model Avg. Gen. Accuracy Avg. Gen. Accuracy Gen. Reduc. Acc. Diff. ↑

HUMANEVAL
CODE-DAVINCI-002 100 61.4 23.6 63.4 4.3× +2.0

INCODER-6B 100 19.5 51.2 20.1 2.0× +0.6

CODEGEN-16B 100 34.1 54.7 36.0 1.8× +1.9

MBPP
CODE-DAVINCI-002 100 64.4 36.3 63.9 2.8× −0.5

INCODER-6B 100 30.7 53.8 30.9 1.9× +0.2

CODEGEN-16B 100 49.6 57.8 50.4 1.7× +0.8

APPS CODE-DAVINCI-002 50 11.9 44.4 11.9 1.1× 0.0

CODECONTESTS CODE-DAVINCI-002 1000 3.0 590.2 3.0 1.6× 0.0

Table 4: Comparison of Adaptive-Consistency with Self-Consistency on 4 diverse code generation datasets. The
table presents the accuracy of Self-Consistency, the average number of generations (Avg. Gen.) for Adaptive-
Consistency, and the accuracy of Adaptive-Consistency. Self-Consistency always draws a fixed number of samples.
The ∆ columns display the reduction in generations (Gen. Reduc.) and the difference in accuracy (Acc. Diff.)
between Self-Consistency and Adaptive-Consistency. For CODECONTESTS, Self-Consistency uses 1000, APPS
use 50, while HUMANEVAL and MBPP use 100 generations each.

beats ENTROPY given the same expected sampling
cost.

Finally, BETA has additional key advantages:
BETA incorporates a measure of uncertainty, which
makes it more robust to variations in data order,
mitigates the influence of noise, and offers a quan-
titative measure of confidence in the majority out-
come. Consider an extreme case where the first
two generated solutions are identical. The major-
ity voting strategy would instantly halt the process,
potentially missing out on better solutions. In con-
trast, BETA will keep sampling as the confidence
for stopping has not yet reached.

C.3 Chinese Restaurant Process

In the DIRICHLET stopping criteria, we assume that
the number of unique answers that can be gener-
ated by the LLM is known in advance (and equal to
the number of unique answers in the current obser-
vation set). However, this assumption may not hold
for datasets such as GSM-8K, where numerical an-
swers are expected. The CHINESE RESTAURANT

PROCESS (CRP) is a generalization of the DIRICH-
LET process that addresses this limitation by not
making any assumption on the number of unique
answers.

In CRP, we consider a list of same answers as a
cluster, denoted by ci, where i is the index of the
cluster. Let ni be the number of elements in cluster
ci, and n be the total number of elements across all
clusters. The probability of a new answer belong-

ing to an existing cluster ci is directly proportional
to the size of the cluster, and is given by:

P (ci) =
ni

n+ α
, (4)

whereas the probability that a new unseen answer
will form a new cluster is given by:

P (cnew) =
α

n+ α
, (5)

where α is the concentration parameter, which pa-
rameterizes the probability of generating a new
answer.

Our goal is to calculate the probability that the
current majority cluster in observations will remain
the same even with more generations. The first task
is to estimate the concentration parameter α. We
use the approximation proposed by (West, 1992) to
model the α as

p(α|k, n) ≈ G(a+ k − 1, b+ γ + log(n)), (6)

where k is the number of unique answers (clusters)
in the current observation, n is the total number of
answers, a and b are priors and both set equal to 1,
and γ is Euler’s constant and G(α; a+ k − 1, b+
γ+log(n)) denotes the probability density function
of the Gamma distribution with shape parameter
a+ k − 1 and rate parameter b+ γ + log(n).

We sample α multiple times (100), and for each
sample, we run Monte-Carlo Simulation (1000 sim-
ulations) based on the CRP probability modeling.
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Each simulation starts from from current set of ob-
servations, and performed till 40 generations are
sampled. The probability that the current majority
cluster remains the majority is then given by:

P (majority) =
1

NαNMCS

Nα∑

i=1

NMCS∑

j=1

I(majority40n ),

(7)
where Nα is the number of times we sample α,
NMCS is the number of Monte-Carlo Simulations,
and I(majority40n ) is an indicator function that
equals 1 if the current majority remains the ma-
jority after 40 generations, and 0 otherwise.

C.4 Effect of Confidence Threshold on
Adaptive-Consistency

We follow the discussion in Section 5.1, and present
complete results on all datasets for CODE-DAVINCI-
002.

D Derivation of DIRICHLET stopping
criteria

Consider for a given input (I), the model can
generate one of m distinct answers A :=
{a1, a2, . . . am}. Define the probability of generat-
ing an answer given input as pi := P (ai | I). Now,
consider an observation set (O) with counts of each
of ai as vi, such that

∑m
i=1 vi = n. Now, with-

out loss of generality, consider p1 > maxmi=2 pi.
Now, based on Equation (3), we need to find the
probability:

P (p1 >
m

max
i=2

pi | O)

.
However, here the pis are latent variables, and

only O is available to us. We next make the follow-
ing
Assumption 1: The vector p⃗ = {p1, p2 . . . pm} is
sampled from uniform distribution over (m− 1)-
simplex.
Thus, p1 = 1−∑m−1

i=1 pi. Since the observation set
follows a multinomial distribution with parameters
p⃗, conditional joint probability distribution of O
given p⃗ can be written as:

P (O | p⃗) = n!∏m
i=1(vi!)

m∏

i=1

pvii = Dir(v1+1, v2+1 . . . vm+1)

, where Dir represents the dirichlet distribution
with vi + 1, as its parameters. Applying Baye’s

Rule,

P (p⃗ | O) =
P (O | p⃗) · P (p⃗)

P (O)

. Here P (O) is a normalizing constant and can
be omitted for computation. From Assumption 1,
since p⃗ is sampled from uniform distribution,

P (p⃗) =
m∏

i=2

dpi

Thus conditional joint probability distribution of p⃗
given O can be written as:

P (p⃗ | O) = Dir(v1 + 1, v2 + 1, . . . , vm + 1)

dpmdpm−1 . . . dp2 (8)

Now we can integrate the above equation over
a subset of (m − 1)-simplex, such that p1 >
maxmi=2 pi. This gives us the equation:

P (p1 >
m

max
i=2

pi | O)

=

∫ 1

0

∫

S(p′1)
P (p⃗ | O)

dp2 · · · dpmdp′1,

where

S(p′1) = {(p2, . . . , pm) | p′1 >
m

max
i=2

pi,

m∑

i=2

pi = 1− p′1}.

(9)
We note that the integration has no closed-form

solution, and we use numerical approximation to
compute the above integral.

Defining region of integration: S(p′1) Next,
for computation of Equation (9), we need to pre-
cisely calculate the limits of each integration such
that they represent the region S(p′1). We do so
by noting the following constraints on pi: 1.)
The pi = 0 is valid ∀2 ≤ i ≤ m, 2.) Given
{pm, pm−1 . . . pi+1 are fixed and in region S(p′1),
pi <

1−∑m
j=i+1 pj
2 as else pi ≥ p1 which is

not allowed, 3.) Since p1 > maxmj=i+1 pj , so
pi < 1−∑m

j=i+1 pj −maxmj=i+1 pj , as else the p⃗,
will lie outside the (m − 1)-simplex, which is in-
valid. The first condition makes the lower limit for
each integration 0, and the minimum of condition
2 and condition 3 gives the upper bound (limit) on
each of the integrations.
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BETA stopping criteria Due to m − 1 dimen-
sions integrations involved, with m often getting
larger than 10, computing Equation (9) is not ef-
ficient. Instead, we observe that establishing the
majority of p1 over the next largest probability, p2,
is sufficient for our purpose. Then, pdf simplifies
to BETA distribution with parameters v1+1, v2+1,
and Equation (9) simplifies to:

∫ 0.5

0
pv22 · (1− p2)

v1dp2 (10)

We use Scipy library in Python numerically com-
pute the above equation.
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Self-Consistency Adaptive-Consistency ∆

Accuracy Avg. Gen. Accuracy Gen. Reduc. Acc. Diff. ↑

GSM-8K
VICUNA-13B 31.6(±3.0) 26.8(±2.2) 31.5(±3.0) 1.4× −0.1

CODE-DAVINCI-002 81.1(±0.3) 13.8(±0.0) 81.0(±0.3) 2.9× −0.1

GPT-3.5-TURBO 82.7 9.2 82.7 4.3× 0.0

SVAMP
VICUNA-13B 63.0(±0.3) 18.8(±0.1) 62.8(±0.4) 2.1× −0.2

CODE-DAVINCI-002 85.1(±0.3) 9.5(±0.1) 85.0(±0.3) 4.2× −0.1

GPT-3.5-TURBO 85.1 9.5 85.0 4.2× −0.1

ASDIV
VICUNA-13B 64.0(±0.3) 16.5(±0.2) 64.0(±0.3) 2.4× 0.0

CODE-DAVINCI-002 83.2(±0.2) 10.0(±0.0) 83.2(±0.2) 4.0× 0.0

GPT-3.5-TURBO 83.0 10.0 83.0 4.0× 0.0

DATE UNDERSTANDING
VICUNA-13B 59.8(±0.3) 17.3(±0.3) 60.2(±0.4) 2.3× +0.4

CODE-DAVINCI-002 80.3(±0.1) 10.7(±0.3) 79.5(±0.3) 3.7× −0.8

GPT-3.5-TURBO 77.5 9.1 77.0 4.4× −0.5

TRACKING SHUFFLED OBJECTS
VICUNA-13B 31.8(±1.0) 20.3(±0.0) 32.0(±1.2) 2.0× +0.2

CODE-DAVINCI-002 77.2(±1.3) 9.7(±0.1) 77.1(±1.6) 4.1× −0.1

GPT-3.5-TURBO 85.2 6.2 85.6 6.4× +0.4

LOGICAL DEDUCTION
VICUNA-13B 51.2(±0.8) 18.1(±0.2) 51.4(±0.6) 2.2× +0.2

CODE-DAVINCI-002 89.4(±0.2) 8.5(±0.1) 89.4(±0.2) 4.7× 0.0

GPT-3.5-TURBO 86.8 7.5 86.8 5.3× 0.0

STRATEGYQA
VICUNA-13B 65.8(±0.5) 16.3(±0.1) 65.8(±0.4) 2.5× 0.0

CODE-DAVINCI-002 79.0(±0.2) 11.9(±0.2) 78.8(±0.1) 3.4× −0.2

GPT-3.5-TURBO 68.1 11.8 67.9 3.4× −0.2

BOOLEAN EXPRESSIONS
VICUNA-13B 79.2(±0.6) 16.2(±0.3) 78.4(±0.3) 2.5× −0.8

CODE-DAVINCI-002 94.5(±0.4) 6.6(±0.1) 94.5(±0.4) 6.0× 0.0

GPT-3.5-TURBO 93.2 5.0 92.8 7.9× −0.4

SNARKS
VICUNA-13B 73.2(±1.0) 23.2(±0.7) 73.6(±0.8) 1.7× +0.4

CODE-DAVINCI-002 74.0(±1.0) 12.7(±0.4) 74.0(±1.5) 3.1× 0.0

GPT-3.5-TURBO 65.7 8.8 65.2 4.5× −0.6

RUIN NAMES
VICUNA-13B 43.6(±2.1) 33.8(±0.6) 43.6(±2.1) 1.2× 0.0

CODE-DAVINCI-002 78.0(±0.9) 17.2(±0.1) 78.0(±0.6) 2.3× 0.0

GPT-3.5-TURBO 74.8 13.1 74.0 3.1× −0.8

SALIENT TRANSLATION
VICUNA-13B 28.9(±2.4) 28.7(±2.5) 28.7(±2.5) 1.2× −0.3

CODE-DAVINCI-002 64.3(±0.2) 11.8(±0.5) 64.3(±0.2) 3.4× 0.0

GPT-3.5-TURBO 56.8 11.1 56.8 3.6× 0.0

DISAMBIGUATION QA
VICUNA-13B 63.7(±0.7) 22.8(±1.0) 63.5(±1.1) 1.8× −0.3

CODE-DAVINCI-002 74.9(±0.8) 13.5(±0.6) 75.1(±0.7) 3.0× +0.1

GPT-3.5-TURBO 62.5 13.9 62.5 2.9× 0.0

PENGUINS
VICUNA-13B 46.8(±1.8) 22.9(±0.7) 47.3(±1.9) 1.7× +0.5

CODE-DAVINCI-002 83.8(±0.9) 11.0(±0.4) 84.0(±0.6) 3.6× +0.2

GPT-3.5-TURBO 71.9 14.2 71.9 2.8× 0.0

Average 70.3(±0.8) 14.1(±0.5) 70.2(±0.8) 3.2× -0.07

Table 5: Comparison of Adaptive-Consistency with Self-Consistency on 17 diverse coding & reasoning datasets.
Self-Consistency always draws 40 samples. The table shows accuracy, average generations (Avg. Gen.). The ∆
columns display reductions in generations (Gen. Reduc.) and accuracy (Acc. Diff.) between Self-Consistency
and Adaptive-Consistency. Adaptive-Consistency achieves a 3.2× reduction in sample budget (Gen. Reduc.) with
minimal average accuracy drop of 0.07% (Acc. Diff.).12392



Dataset Model P-Value (Accuracy) P-Value (Num Gens)
GSM-8K VICUNA-13B 0.5 0.0056
GSM-8K CODE-DAVINCI-002 0.42 2.09E-06
SVAMP VICUNA-13B 0.07 3.47E-06
SVAMP CODE-DAVINCI-002 0.42 7.40E-06
ASDIV VICUNA-13B 1 0.0005
ASDIV CODE-DAVINCI-002 1 0.0023
DATE UNDERSTANDING VICUNA-13B 0.057 7.68E-05
DATE UNDERSTANDING CODE-DAVINCI-002 0.04 4.63E-05
TRACKING SHUFFLED OBJECTS VICUNA-13B 0.5 0.00002
TRACKING SHUFFLED OBJECTS CODE-DAVINCI-002 0.67 9.88E-06
LOGICAL DEDUCTION VICUNA-13B 0.5 0.0007
LOGICAL DEDUCTION CODE-DAVINCI-002 - 0.0016
STRATEGYQA VICUNA-13B 0.90 1.16E-05
STRATEGYQA CODE-DAVINCI-002 0.24 0.0005
BOOLEAN EXPRESSIONS VICUNA-13B 0.32 8.52E-05
BOOLEAN EXPRESSIONS CODE-DAVINCI-002 - 4.98E-06
SNARKS VICUNA-13B 0.18 0.0007
SNARKS CODE-DAVINCI-002 1 0.0001
RUIN NAMES VICUNA-13B - 0.0049
RUIN NAMES CODE-DAVINCI-002 1 8.72E-06
SALIENT TRANSLATION VICUNA-13B 0.18 0.0211
SALIENT TRANSLATION CODE-DAVINCI-002 1 0.0001
DISAMBIGUATION QA VICUNA-13B 0.53 0.0015
DISAMBIGUATION QA CODE-DAVINCI-002 0.42 0.0002
PENGUINS VICUNA-13B 0.18 0.0009
PENGUINS CODE-DAVINCI-002 0.42 7.79E-05
Average 0.503 0.0002

Table 6: P-values using 2 sample t-test over 3 seeds on multiple datasets and models. The p-value for ’number of
generations’ is significantly less than 0.05 (average: 1.5e-3), confirming our method’s efficiency, while the p-value
for accuracy is much larger than 0.05 (average: 0.50), indicating that the slight accuracy difference is statistically
insignificant.
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Figure 5: Comparison of Adaptive-Consistency with Self-Consistency on various average sampling costs. Adaptive-
Consistency is able to consistently beat Self-Consistency, especially when the sampling cost is low. Moreover,
Cthresh = 0.95 is a good indication of saturation in accuracy indicating the value works out-of-box for most
configurations considered.
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Figure 6: Comparison of BETA, MAJORITY and ENTROPY stopping criterias. In the two representative datasets,
BETA consistently beats ENTROPY and MAJORITY for the same sampling cost. This shows in practice BETA
performs better than both for the desirable range of accuracy and sampling cost.

RANDOM MAJORITY ENTROPY BETA (Adaptive-Consistency) DIRICHLET CRP

Average ↓ Accuracy ↑ Average ↓ Accuracy ↑ Average ↑ Accuracy ↑ Average ↑ Accuracy ↑ Average ↑ Accuracy ↑ Average ↑ Accuracy ↑Generations Generations Generations Generations Generations Generations

GSM-8K VICUNA-13B 26.0 30.1 28.7 31.5 26.3 31.5 26.8 31.5 28.2 31.7 25.6 31.5

CODE-DAVINCI-002 13.8 76.9 16.6 80.9 15.3 81.0 13.8 81.0 15.2 81.1 13.2 81.1

ASDIV VICUNA-13B 28.0 63.2 14.8 63.7 15.8 63.9 16.5 64.0 17.7 64.0 16.9 64.0

CODE-DAVINCI-002 13.8 81.9 9.2 83.1 11.5 83.3 10.0 83.2 10.7 83.1 10.7 83.1

SVAMP VICUNA-13B 28.0 61.3 17.1 62.5 17.7 62.6 18.8 62.8 19.7 62.9 18.2 62.8

CODE-DAVINCI-002 13.4 83.3 8.4 84.8 10.7 85.1 9.5 85.0 10.3 85.1 9.8 85.0

DATE UNDERSTANDING
VICUNA-13B 28.0 58.3 15.3 59.5 16.0 59.9 17.3 60.2 18.5 59.9 16.9 59.9

CODE-DAVINCI-002 13.2 76.4 9.7 78.7 11.6 79.9 10.7 79.5 11.9 80.5 10.7 79.8

TRACKING SHUFFLED OBJECTS
VICUNA-13B 27.9 31.8 15.0 33.0 18.4 32.0 20.3 32.0 23.3 32.0 19.6 31.8

CODE-DAVINCI-002 13.5 76.3 7.0 76.8 11.5 76.9 9.7 77.1 11.5 77.2 10.2 77.1

LOGICAL DEDUCTION
VICUNA-13B 27.9 50.5 12.9 51.2 15.8 51.4 18.1 51.4 20.9 51.2 18.3 51.4

CODE-DAVINCI-002 13.7 88.3 5.9 89.6 10.1 89.6 8.5 89.4 10.2 89.2 9.3 89.4

STRATEGYQA VICUNA-13B 28.1 65.1 11.7 65.5 14.5 65.8 16.3 65.8 18.7 65.8 17.0 65.7

CODE-DAVINCI-002 13.4 76.6 7.2 77.8 14.9 78.5 11.9 78.8 14.5 78.9 11.4 78.9

BOOLEAN EXPRESSIONS
VICUNA-13B 27.6 78.0 10.4 76.8 14.8 78.3 16.2 78.4 19.1 78.8 17.0 78.5

CODE-DAVINCI-002 13.1 93.4 4.3 94.3 8.2 94.5 6.6 94.5 8.2 94.5 7.9 94.4

SNARKS
VICUNA-13B 28.4 70.3 18.1 72.1 20.3 73.0 23.2 73.6 25.8 73.6 22.9 73.6

CODE-DAVINCI-002 13.6 71.6 10.5 74.0 12.1 74.0 12.7 74.0 14.2 73.4 12.3 73.2

RUIN NAMES
VICUNA-13B 28.3 40.6 30.4 43.9 31.9 43.7 33.8 43.6 34.0 43.6 32.0 44.0

CODE-DAVINCI-002 13.8 71.7 17.5 77.7 18.6 78.1 17.2 78.0 17.6 76.8 16.4 78.1

SALIENT TRANSLATION
VICUNA-13B 24.9 27.7 24.6 28.5 26.3 28.0 28.7 28.7 29.4 28.8 26.9 28.9

CODE-DAVINCI-002 14.0 62.5 9.9 64.7 13.1 64.3 11.8 64.3 13.7 64.1 11.7 64.3

DISAMBIGUATION QA VICUNA-13B 27.9 62.9 18.3 63.5 20.1 63.1 22.8 63.5 25.4 63.9 22.1 63.3

CODE-DAVINCI-002 13.7 72.1 10.4 73.9 15.9 74.9 13.5 75.1 16.3 75.2 13.2 75.2

PENGUINS
VICUNA-13B 27.9 45.6 19.7 46.3 20.7 47.3 22.9 47.3 25.1 47.3 22.1 47.3

CODE-DAVINCI-002 13.3 81.4 9.0 83.3 13.1 83.8 11.0 84.0 12.9 84.0 11.0 84.5

Table 7: Comparison of various Stopping Criterias in Adaptive-Consistency. In general, BETA outperforms
RANDOM and MAJORITY by decent margins across all datasets. BETA has comparable performance to DIRICHLET,
but the latter is much slower. ENTROPY performs similarly to BETA but lacks human-interpretable stopping
rationale.
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(a) GSM-8K
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(b) ASDIV
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(c) SVAMP
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(d) DATE UNDERSTANDING
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(e) TRACKING SHUFFLED OBJECTS
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(f) LOGICAL DEDUCTION
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(g) STRATEGYQA
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(h) BOOLEAN EXPRESSIONS
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(i) SNARKS
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(j) RUIN NAMES
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(k) SALIENT TRANSLATION
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(l) DISAMBIGUATION QA
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(m) PENGUINS

Figure 7: Impact of Confidence Threshold (Cthresh) on Adaptive-Consistency: As Cthresh varies, the accuracy of
Adaptive-Consistency increases gradually, eventually plateauing. Initially, the average number of generations also
increases gradually but then sharply climbs, reflecting the accuracy-confidence trade-off. The trend is observed
almost consistently across all datasets.
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