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Abstract

Imagine a developer who can only change their
last line of code—how often would they have
to start writing a function from scratch before
it is correct? Auto-regressive models for code
generation from natural language have a similar
limitation: they do not easily allow reconsid-
ering earlier tokens generated. We introduce
CODEFUSION, a pre-trained diffusion code gen-
eration model that addresses this limitation by
iteratively denoising a complete program con-
ditioned on the encoded natural language. We
evaluate CODEFUSION on the task of natural
language to code generation for Bash, Python,
and Microsoft Excel conditional formatting
(CF) rules. Experiments show that CODEFU-
SION (75M parameters) performs on par with
state-of-the-art auto-regressive systems (350M–
175B parameters) in top-1 accuracy and outper-
forms them in top-3 and top-5 accuracy, due to
its better balance in diversity versus quality.

1 Introduction

Auto-regressive code generation models (Wang
et al., 2021; Brown et al., 2020; Scholak et al.,
2021; Feng et al., 2020; Fried et al., 2022) can-
not easily reconsider tokens generated earlier in
the decoding process. This limitation can lead to
lower diversity generations (Lin et al., 2023) in
the related domain of text. To balance diversity
and quality of candidates generated, prior work
has explored decoding strategies such as grouped
beam search (Vijayakumar et al., 2018) or nucleus
sampling (Holtzman et al., 2019).

Diffusion models, which have shown remark-
able performance in image generation (Dhariwal
and Nichol, 2021), have recently been extended
to generate diverse text (Li et al., 2022; Lin et al.,
2023). These approaches use an embedding layer
to convert discrete tokens to continuous embed-
dings, where Gaussian noise can be added and pre-
dicted, to imitate the diffusion process. To map
denoised embeddings back to discrete text, these

approaches then select the vocabulary token with
the closest embedding. In the code domain, where
there are many syntactic and semantic constraints
between tokens, independently projecting embed-
dings back to tokens can yield invalid programs.

We propose CODEFUSION, a natural language
to code (NL-to-code) model that combines an
encoder-decoder architecture (Raffel et al., 2020)
with a diffusion process. The encoder maps the
NL into a continuous representation, which is used
by the diffusion model as an additional condition
for denoising random Gaussian noise input. To
generate syntactically correct code, we then feed
the denoised embeddings to a transformer decoder,
with full self-attention and cross attention with the
embedded utterance, to obtain probability distribu-
tions over code tokens. Finally, we select the token
with the highest probability at each index.

To pre-train CODEFUSION for code generation,
we extend the continuous paragraph denoising
(CPD) task introduced in Lin et al. (2023) to the
code domain. Specifically, we only apply noise
to tokens that correspond to identifiers in code or
to built-in keywords in the target language. This
denoising task allows the model to learn relations
between critical code tokens (like variable names,
function names and control flow built-ins).

We find that CODEFUSION yields more diverse
code (higher n-gram fraction, lower embedding
similarity, and higher edit distance) than auto-
regressive models (see Table 2). The CPD objec-
tive, which biases the model towards learning to
remove noise in a context-aware fashion, paired
with a decoder that has access to the full denoised
representation, jointly lead CODEFUSION to pro-
duce 48.5% more syntactically correct generations
(averaged over three languages) when compared to
GENIE, a text diffusion model (Table 3).

We evaluate CODEFUSION on NL-to-code for
three different languages: Python (Yin et al., 2018),
Bash (Lin et al., 2018), and conditional formatting
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rules in Microsoft Excel (Singh et al., 2022). Our
results show that CODEFUSION’s (75M parameters)
top-1 results are comparable or better than much
larger state-of-the-art systems (350M–175B param-
eters). In top-3 and top-5, CODEFUSION performs
better than all baselines.

This work makes the following contributions:

1. We propose CODEFUSION, the first diffusion-
based NL-to-code model.

2. We adapt continuous paragraph denoising
(CPD) to code and show that it substantially
improves the results of CODEFUSION.

3. We compare CODEFUSION to auto-regressive
code models and text diffusion models on the
NL-to-code task in three languages.

2 Related Work

NL-to-code is a popular and challenging sequence
to sequence problem. Previous techniques for NL-
to-code have used RNNs (Brunner and Stockinger,
2021) and semantic parsers (Lee et al., 2021).
Attention-based transformer models (Vaswani et al.,
2017) have been adapted for the code domain,
and include CodeBERT (Feng et al., 2020) (en-
coder only), T5 (Raffel et al., 2020) (encoder-
decoder) and GPT-3 (Brown et al., 2020) (decoder
only). More recently, large scale transformer-based
models like CodeGen (Nijkamp et al., 2023) and
TransCoder (Sun et al., 2023) have shown promis-
ing results. Instruction-tuning has also been used
to further improve performance with models like
StarCoder (Li et al., 2023a) and WizardCoder
(Luo et al., 2023). These models can decode in
an auto-regressive and non-auto-regressive fash-
ion (Su et al., 2021). Recent surveys have dis-
cussed these models in more detail (Xu and Zhu,
2022; Niu et al., 2023; Xu et al., 2022).

Diffusion models have been popularly applied
to unsupervised (Dhariwal and Nichol, 2021) and
text conditioned image generation tasks (Saharia
et al., 2022a,b; Ramesh et al., 2021). More recently,
similar approaches have been extended to work in
discrete domains such as text (Li et al., 2022; Lin
et al., 2023; Li et al., 2023b; Reid et al., 2023).

3 Methodology

Figure 1 shows CODEFUSION’s architecture. This
section describes each component and our training
and inference procedures.

3.1 Architecture
The input to CODEFUSION is a natural language
utterance s = {s1, s2, · · · , sk} and the output is a
predicted code snippet ŷ = {ŷ1, ŷ2, · · · , ŷs}. Both
input and output are padded to a fixed dimension
n. CODEFUSION has three main transformer-based
components (an encoder E, a denoiser N , a de-
coder D) and a classification head H .

The transformer-based encoder transforms the
tokenized utterance s into a vector representation
Es = E(s) = {e1, e2, · · · , en}.

Conditioned on the encoded utterance Es and
the time t, the denoiser (N ) predicts and removes
noise ϵt from the noisy program embedding xt to
obtain a predicted denoised program embedding
x̂0 = N(xt, t, Es). N is a transformer block with
cross-attention between xt and Es and full self-
attention over xt.

Before projecting the denoised embeddings back
to discrete code tokens, we use a decoder (D),
this time applying cross-attention to x̂0 and Es,
with full self-attention over x̂0, to compute a final
hidden representation Ds = {d1, d2, · · · , dn} =
D(x0, Es). As opposed to prior text diffusion
approaches, where tokens are generated indepen-
dently, full self-attention allows each hidden di-
mension (di) to be generated with full information
about the other dimensions.

Finally, Ds is projected to actual code tokens
with a classification head H that computes a dis-
tribution over code tokens p(y|di). We do not
perform a search over these tokens and select
ŷi = argmaxy p(y|di) for each i.

3.2 Training
We train CODEFUSION in two phases: unsupervised
pre-training of the denoiser and decoder on code
snippets, and supervised fine-tuning of encoder,
denoiser and decoder on (utterance, code snippet)
pairs. Following prior work on diffusion for text,
we use a trainable embedding layer L to embed a
code snippet y into a continuous space where we
can add (and remove) noise ϵt at timestep t.

We take inspiration from prior work on diffusion
for text and adapt the loss from GENIE (Lin et al.,
2023) to CODEFUSION by incorporating the hidden
representation Ds from the decoder. At time step t,
the loss is computed as

Lt = ∥ϵ̂t − ϵt∥+ ∥Ds − L(y)∥ − log p(y|Ds)

and consists of three parts.
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Figure 1: Architecture diagram for CODEFUSION showing the Encoder (E), Denoiser (N) and the Decoder (D) units.

1. We minimize the error between the predicted
noise ϵ̂t and the actual noise ϵt to train N .

2. We minimize the error between the Ds and
embedded code to train D and L.

3. We apply a standard cross-entropy loss over
the outputs of the classification head, which
produces predicted code tokens given Ds, and
the ground truth code snippet y.

The loss function allows us to train the three main
components of our model (denoiser, decoder and
classification head) with a diffusion objective.

To pre-train the denoiser (N ) and decoder (D)
over a corpus of code snippets, we use two tasks:
unsupervised code generation and our adaptation of
continuous paragraph denoising (CPD) (Lin et al.,
2023) for code. This code-specific CPD task only
masks tokens associated with identifiers or built-in
keywords from the target language. We randomly
sample from these two tasks during pre-training.

Both pre-training and fine-tuning tasks use Lt.
Because there is no natural language utterance in
pre-training, there is no input Es to the denoiser
N . In the unsupervised code generation task, Es is
replaced with Gaussian noise sampled at every de-
noising time step. In the CPD task, Es is computed
by passing the masked code y through encoder E.

3.3 Inference

During inference, we initialize xt with Gaus-
sian noise and iteratively remove a (scheduler-
determined) proportion of the noise over T time
steps to obtain x̂0 (Ho et al., 2020). During this it-
erative denoising, we do not use the decoder. After
this iterative procedure, the decoder produces the
final predicted code ŷ. We post-process ŷ to select
the tokens up to the first pad token.

4 Evaluation Setup

We briefly describe training, baselines, benchmarks
and metrics. We provide further details for training
and baselines in the Appendix.

4.1 Benchmarks

We evaluate CODEFUSION on NL-to-code for lan-
guages with varying complexity: Python, Bash,
and conditional formatting (CF) rules in Microsoft
Excel. The CoNaLa dataset (Yin et al., 2018)
for Python consists of complex, multi-statement
StackOverflow code snippets and associated NL
questions. The Bash dataset (Lin et al., 2018) has
complex, single-line Bash commands annotated
with NL descriptions. The CF dataset (Singh et al.,
2022) consists of Excel CF rules, which are single
line programs of low complexity, annotated with
NL. These benchmarks (and pre-training data—see
next section) are made publicly available.1

4.2 Training

For our experiments, we instantiate the encoder
(E) as a pre-trained CodeT5 encoder (Wang et al.,
2021) (embedding dimension is 512), the denoiser
(N ) as a 10 layer transformer block, the decoder
(D) as 6 transformer decoder layers, and the classi-
fication head (H) as a single fully connected layer.

In the training and pre-training phase, we use
a square root noise schedule with 1200 diffusion
steps (Wu et al., 2023). We use the tokenizer and
vocabulary from CodeT5 (Wang et al., 2021) and
target code length of 128 tokens. We use AdamW
optimizer without weight decay (Loshchilov and
Hutter, 2019) and a learning rate of 5e-4.

We pre-train the diffusion and decoder model
on code snippets only. For Excel, we use a public
corpus of 450K conditional formatting rules (Singh
et al., 2022). For Python and Bash, we scrape

1https://github.com/microsoft/
prose-benchmarks/tree/main/CodeFusion
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Table 1: Comparison of CODEFUSION with baselines on the task of NL to code generation for Python, Bash and CF
rules. We report top-1, top-3 and top-5 predictions. Model denotes the underlying base model’s checkpoint name.
#P denotes the number of model parameters. We note the metric used for each language in parentheses.

System description Python (CodeBERT) Bash (template) CF Rule (execution)

System Model #P top-1 top-3 top-5 top-1 top-3 top-5 top-1 top-3 top-5

T5 t5-large 770M 80.4 82.3 84.8 67.1 68.9 70.3 71.1 73.4 74.6
CodeT5 codet5-large 770M 80.5 83.1 85.0 67.6 69.3 70.5 72.7 75.3 75.8
GPT-3 text-davinci-003 175B 82.5 83.7 85.8 66.9 67.7 68.4 70.3 72.4 72.8
ChatGPT gpt-3.5-turbo Unknown 80.6 82.5 83.9 66.1 66.9 67.8 70.8 73.1 74.5
StarCoder starcoder 15.5B 79.2 82.0 84.1 64.5 65.3 66.5 70.6 72.8 74.5
CodeT5+ codet5p-16b 16B 79.6 82.1 84.5 65.7 66.1 67.2 70.5 72.9 74.3
CodeGen codegen-350m 350M 80.1 81.8 83.7 67.2 69.2 70.3 71.4 73.7 75.0

Diffusion-LM Custom 50M 70.4 74.3 76.5 59.4 61.6 62.0 62.4 65.5 68.2
GENIE Custom 93M 73.2 77.1 80.3 60.0 61.5 62.3 62.9 66.8 68.7
CODEFUSION Custom 75M 80.7 86.3 90.3 66.7 70.2 72.0 72.8 76.7 78.5

GitHub notebooks and StackOverflow posts with
tags python, bash and powershell, using a regex
extractor to detect code (Lin et al., 2018).

4.3 Baselines

We use a combination of transformer and text diffu-
sion models as baselines: T5 (Raffel et al., 2020),
GPT-3 (text-davinci-003) (Brown et al., 2020),
ChatGPT (gpt-3.5-turbo) (OpenAI, 2023), CodeT5
(Wang et al., 2021), StarCoder (Li et al., 2023a),
CodeT5+ (Wang et al., 2023), CodeGen (Nijkamp
et al., 2023), Diffusion-LM (Li et al., 2022), and
GENIE (Lin et al., 2023). Out of these GPT-3,
ChatGPT, StarCoder, CodeT5+ are used in an in-
context learning setting with five examples dynam-
ically selected using SentenceBERT (Reimers and
Gurevych, 2019) similarity of NL utterance, the
others are fine-tuned on our datasets. Diffusion-LM
and GENIE are also pre-trained on our corpus.

4.4 Metrics

We evaluate Bash generation using the tem-
plate match metric—which performs some basic
normalization—provided with the dataset. We eval-
uate Python using CodeBERTScore (Zhou et al.,
2023), which has been shown to be a high quality
non-execution-based code matching metric. We
evaluate CF using execution match (Singh et al.,
2022) by executing a rule on the data column and
comparing to the expected output.

To evaluate generation diversity, we measure (1)
count of distinct token n-grams in the generated
code divided by number of tokens (Vijayakumar
et al., 2018), (2) summary statistics over pairwise
similarities of CodeBERT encodings (Perlitz et al.,
2023), and (3) summary statistics over pairwise

string edit distances (Perlitz et al., 2023).

5 Evaluation

We investigate the following questions. Q1. Does
CODEFUSION generate correct and diverse code?
Q2. How do different design decision impact per-
formance? Q3. How does the latent representation
evolve during the diffusion steps?

5.1 Performance and Diversity (Q1)

Table 1 summarizes performance in top-1, top-3
and top-5 settings for CODEFUSION and baselines.

In top-1, CODEFUSION performs on par with
or even better than (much larger) auto-regressive
models. For Python, only GPT-3 (175B) performs
better than CODEFUSION (75M). In top-3 and top-
5, CODEFUSION outperforms all baselines, consis-
tent with previous observations that auto-regressive
models with high top-1 performance sacrifice di-
versity in their generations (Poesia et al., 2022).

Table 2 shows diversity results averaged across
all benchmark tasks, over the top-5 generations for
each model, for CODEFUSION and auto-regressive
(T5, CodeT5, StarCoder, CodeGen, GPT-3) base-
lines. CODEFUSION produces generations of higher
diversity compared to auto-regressive models.

Like CODEFUSION, other diffusion methods
(Diffusion-LM and GENIE) improve for top-3 and
top-5 relative to top-1. They fall short of CODEFU-
SION as a result of generating syntactically invalid
programs. Table 3 shows the fraction of syntacti-
cally valid generations for CODEFUSION and dif-
fusion baselines. CODEFUSION generations are
more often syntactically valid compared to diffu-
sion models not designed for code: 33.8% more
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Table 2: Comparison of diversity in top-5 code generations for CODEFUSION and baselines for Python, Bash and
CF rules. We report fraction of distinct token-level n-grams, pairwise similarities of CodeBERT embedding of
outputs, and statistics over pairwise string normalized edit distance of outputs.

Models N-grams (↑ better) Embedding similarity (↓ better) Edit distance (↑ better)

1 2 3 4 Min Max Mean Min Max Mean

T5 0.29 0.45 0.54 0.6 0.93 0.99 0.97 0.08 0.58 0.36
CodeT5 0.27 0.41 0.46 0.51 0.94 0.99 0.97 0.08 0.56 0.32
GPT-3 0.24 0.36 0.42 0.48 0.97 0.99 0.99 0.00 0.28 0.21
StarCoder 0.32 0.48 0.56 0.61 0.89 0.98 0.96 0.11 0.61 0.39
CodeGen 0.28 0.41 0.49 0.55 0.94 0.99 0.97 0.09 0.52 0.34
CODEFUSION 0.53 0.65 0.74 0.81 0.83 0.97 0.91 0.21 0.83 0.57

Table 3: % of top-1 generations that are syntactically-
valid for CODEFUSION and text diffusion-based base-
lines. CODEFUSION generates more valid candidates.

System Python Bash CF Rules

Diffusion-LM 19.5 40.4 74.3
GENIE 24.2 54.2 78.6
CODEFUSION 67.6 73.4 94.5

versus Diffusion-LM and 26.2% more versus GE-
NIE averaged across all three languages.

5.2 Ablations (Q2)
Table-4 shows the results of CODEFUSION with
various changes. Removing either pre-training task
significantly reduces performance (-10.9% for code
generation and -4.6% for CPD on average across
the three languages). Results by replacing D and
H with grounding (pick closest vocabulary token
at last denoising step) or clamping (pick closest
vocabulary token at each denoising step) highlights
the benefit of using a decoder before rounding.

Table 4: Ablations for CODEFUSION (M). “–” means the
component is removed. Full model beats all ablations.

Model Python Bash CF Rule

M – Code Generation 70.9 52.3 64.2
M – CPD Objective 76.7 61.1 68.2

M with Grounding 73.5 60.5 63.2
M with Clamping 77.1 63.2 64.4

M (CODEFUSION) 80.7 66.7 72.8

5.3 Gradual Refinement (Q3)
We study how CODEFUSION gradually reached the
final result. For this experiment, we stop the denois-
ing at a timestep t ∈ [0, T ], and generate a code
snippet for the current state. We measure the nor-
malized string edit distance obtained at each time
step (in increments of 100 steps). Figure 2 shows
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Figure 2: Average normalized edit distance for CODEFU-
SION generations against increasing diffusion timesteps.

Figure 3: Successive stages of denoising by CODEFU-
SION on an example from the Python benchmarks.

that the edit distance decreases with t. The drop
is much faster for CF rules as these are simpler to
generate than full programs and bash commands.
An example visualizing this is shown in Figure 3.

6 Conclusion

We propose CODEFUSION, the first diffusion nat-
ural language to code (NL-to-code) generation
model. With a decoder and code-focused pre-
training, CODEFUSION generates more syntacti-
cally correct programs than existing text diffusion
models and more diverse programs than existing
auto-regressive code models. Our evaluation shows
that CODEFUSION competes with state-of-the-art
transformer code generation models on Python,
Bash and Excel conditional formatting rules.
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7 Limitations

CODEFUSION is not a global system as we only
consider natural language utterances in English.
Furthermore, natural language specifications can
be provided at varying levels of detail – utterances
with less detail may result in worse performance.
We consider various programming languages, but
more complex languages may result in worse per-
formance. We also find that CODEFUSION strug-
gles when tasked with generating longer code snip-
pets or programs that have long-ranged syntactic
dependencies. Because diffusion-based models de-
noise iteratively, inference latency is substantial,
rising quadratically with target generation length.
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A Implementation

We first describe the environment used to conduct
experiments and then describe parameters for each
component and training in detail.

A.1 Hardware Specifications
All experiments and studies have been carried out
on Python software (version 3.8.7). The system
used to run the experiments uses an Intel Core i7
processor (base at 1.8 GHz) along with 4 V100
GPU units, a 64-bit operating system, and 56 GB
RAM. CODEFUSION took 8 hours to pre-train and
3 hours to fine-tune on average for each dataset.

A.2 Training Parameters
In the training and pre-training phase, we use a
square root noise schedule with 1200 diffusion
steps (Wu et al., 2023). We use the tokenizer and
vocabulary from CodeT5 (Wang et al., 2021). We
use a learning rate of 5e-4m with a batch size of 64
and a target length of 128. Further, we use AdamW
optimizer without weight decay (Loshchilov and
Hutter, 2019).

A.3 Pre-training Data
Table 5 shows the breakdown of the number of sam-
ples used for pre-training along with their average
length in terms of number of tokens.

Table 5: Summary of dataset used to pre-train CODE-
FUSION. We report the number of samples and average
length of each code snippet for all languages.

Language Samples Avg Length

Python 56K 78.4
Bash 35K 45.3
Conditional Formatting Rules 100K 23.4

B Baselines

We describe imeplementation details of baseline
systems.

B.1 T5, CodeT5 and CodeGen
T5 is the base model of CODEFUSION and uses an
encoder-decoder architecture. CodeT5 uses T5 as
the base model and pre-trains it on code genera-
tion and understanding tasks. We train both T5
and CodeT5 to generate code from the input utter-
ance. The input to T5 is same as that of CODEFU-
SION fine-tuning (section-3.2). The models are op-
timized on standard cross-entropy loss with Adam

optimizer at 1e − 4 learning rate for 100 epochs.
We find that CodeT5 performs better than T5. This
is due to CodeT5 being pre-trained for code gen-
eration. These are trained on the train split of the
datasets and evaluated on the test split. For decod-
ing, we use beam search with beam size of 5.

B.2 GPT-3, ChatGPT, StarCoder and
CodeT5+

We use the pre-trained version of GPT-3 (Text
DaVinci 003), ChatGPT (gpt-3.5-turbo),
StarCoder (bigcode/starcoder) and CodeT5+
(codet5p-16b) models without fine-tuning in a few
shots setting. We use 5 examples in the prompt.
The few-shot examples are selected from the train-
ing corpus based on cosine similarity of sentence-
BERT (Reimers and Gurevych, 2019) embedding
of the query. For GPT-3 and ChatGPT, we experi-
ment with temperature values between 0 to 1 with
a step of 0.1 and report the best result with all other
parameters at default value. For StarCoder and
CodeT5+ we use beam search with beam size 5.

B.3 GENIE

We implement GENIE as described in (Lin et al.,
2023). We set the diffusion timestep T = 1200,
embedding dimension to 256 and encoding and
generation length to 128. We choose these parame-
ters to be consistent with CODEFUSION. We also
pretrain on the same corpus used to pretrain CODE-
FUSION. For sampling top-k candidates, we use the
same inference algorithm highlighted by authors in
(Lin et al., 2023).

B.4 Diffusion-LM

We implement Diffusion-LM as described in (Li
et al., 2022). We set the diffusion timestep T =
1200, embedding dimension to 256 and encoding
and generation length to 128, similar to GENIE. We
use the controlled generation classifier to convert
the text-to-code generation to a completion task.
We simply extend the infilling task, the authors
propose for text generation (Li et al., 2022).

C Further Results

In this section we describe additional results and
examples from our corpus.

C.1 Exact Match Results

We also show the exact match accuracy for CODE-
FUSION and baselines on the benchmarks. Table 6
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Table 6: Comparison of CODEFUSION with baselines on the task of text to code generation for Python, Bash and CF
rules. We report top-1, top-3 and top-5 exact code match of the predictions. “Model” column denotes the underlying
base model’s checkpoint name. #P denotes the number of model parameters.

System description Python Bash CF Rule

System Model #P top-1 top-3 top-5 top-1 top-3 top-5 top-1 top-3 top-5

T5 t5-large 770M 5.2 6.1 6.7 13.5 14.7 15.2 63.1 65.2 67.6
CodeT5 codet5-large 770M 5.5 6.4 7.1 14.1 14.9 15.5 63.2 65.7 67.8
GPT-3 text-davinci-003 175B 7.5 8.2 8.8 12.9 13.7 14.4 60.8 61.4 62.7
ChatGPT gpt-3.5-turbo Unknown 5.6 6.2 6.5 12.0 12.6 12.9 62.9 65.0 67.6
StarCoder starcoder 15.5B 4.8 6.0 6.4 12.1 12.5 13.4 62.6 64.8 66.9
CodeT5+ codet5p-16b 16B 4.9 6.1 6.6 12.3 12.8 13.9 62.8 64.9 67.0
CodeGen codegen-350m 350M 5.0 5.9 6.3 13.6 14.9 15.2 63.3 65.4 67.7

DiffusionLM Custom 50M 1.4 2.3 2.8 7.4 8.6 9.0 48.8 50.4 53.1
GENIE Custom 93M 1.7 2.5 3.0 8.0 9.5 10.3 49.5 52.4 54.6
CODEFUSION Custom 75M 5.1 7.2 9.0 13.5 15.3 16.4 63.4 67.6 69.1

Figure 4: Figure showing the various stages of denoising in CODEFUSION on an example from the Python
benchmarks where CODEFUSION succeeds. CODEFUSION starts from pure noise and gradually denoises to generate
the target code.

shows these results. CODEFUSION performs com-
parable to transformer based models and better than
other diffusion based text generation approaches
for top-1 accuracy. For top-3 accuracy, CODEFU-
SION outperforms all baselines. This is consistent
with the results in Table 1 and show that CODEFU-
SION produces better and more diverse candidate
programs for a variety of tasks.

C.2 Visualizing Diffusion

CODEFUSION iteratively denoises the latent repre-
sentation to construct the final target. This can be
visualized by mapping the representation at each
time step to discrete tokens. We follow the setup
as explained in Section-5.3. Figure 4 shows a suc-
cess example from the Python benchmarks where
CODEFUSION is able to generate the correct code.
The figures shows the input query, the target code

and the reconstructed output from CODEFUSION

at timesteps t = {200, 400, 600, 800, 1000, 1200}.
We can see how CODEFUSION gradually denoises
and generates the correct code. Figure 5 shows
a failure case where CODEFUSION is unable to
generate the correct code. The user asks to re-
move the directory tree ’folder_name/’. CODEFU-
SION’s generation is incorrect as os.removedir
is not a valid function, the correct function name
is os.removedirs. Further, this function only re-
moves empty directories while the user wanted to
remove the directory tree which includes files.

C.3 Effect of Diffusion Time Step

The number of diffusion timesteps is directly re-
lated to the generation quality as shown in (Sa-
haria et al., 2022a). We explore how CODE-
FUSION is affected by the number of timesteps
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Figure 5: Figure showing the various stages of denoising in CODEFUSION on an example from the Python
benchmarks where CODEFUSION fails. CODEFUSION starts from pure noise and gradually denoises to generate
the target code. The final generation is incorrect here as the correct function name is os.removedirs and also this
function only removes empty directories while the user wanted to remove directory with files.
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Figure 6: Plot showing the top-1 CodeBERT score
for CODEFUSION for Python against increasing diffu-
sion timesteps. Performance improves with increasing
timesteps and stabilizes at T = 1000

for Python. We try different timestep values,
T = {200, 400, 600, 800, 1000, 1200} and plot the
CodeBERT score corresponding to each variation.
Figure 6 show the CodeBERT score against in-
creasing timesteps. We see that the dependence
of quality with timesteps is true for CODEFUSION

as well. Adding timesteps has a diminishing gain
as we see the plot flatten at t = 1000. It should
be noted that adding timesteps also increases the
inference latency and memory requirements of the
model.

C.4 Latency and Memory
Diffusion models are known to be complex with
millions of parameters, and have higher latency
and memory requirements than transformer based
models. This is due to repeated sampling and se-
quential denoising operations. CODEFUSION has
75 Million parameters and requires a disk space of
544 Mega Bytes. The average inference latency on

the benchmarks was found to be 2318 milliseconds.
The average GPU memory used was 928 Mega
Bytes and the maximum GPU memory used was
1042 Mega Bytes.

D Background

D.1 Transformer based Sequence Generation
Transformer based language models (Vaswani et al.,
2017) are conditional generative models imple-
mented through auto-regressive (AR) decoding.
These models predict the likelihood of the target
token yt using the conditional input encoding and
previously generated tokens y1, y2, · · · , yt−1. The
likelihood of the generated sequence is given by:

P(y|x) =
N∏

i=1

p(yi|y1:i−1;x) (1)

D.2 Diffusion Model
Diffusion processes are a discrete-time Markov pro-
cess. The process starts with an initial state x0 at
timestep t = 0, where x0 is from the original data
distribution. The process moves forward by grad-
ually adding Gaussian noise to x0 in accordance
to the variance schedule β1, · · · , βT . Since the for-
ward process only adds noise based on a schedule,
at any timestep t + 1, xt+1 can be expressed in
terms of xt as

q(xt+1|xt) = N
(
xt+1;

√
1− βt+1xt, βt+1I

)
(2)

During training, a diffusion model learns to per-
form the inverse diffusion process, wherein it pre-
dicts the noise at the current state, xt at timestep t.
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By using the predicted noise, we can generate the
previous state, xt−1 by subtracting the noise from
xt and rescaling the mean. Thus, the distribution of
xt−1 given xt is simply a Gaussian with mean µt−1

θ

and variance σt−12

θ where, θ are the parameters of
the neural network.

The diffusion model is trained by minimizing
the mean squared error between the true mean µt−1

θ

and the predicted mean µ̂t−1
θ .

D.3 Diffusion Models for Text Generation
Recent works in text generation have started ex-
ploring diffusion models. (Li et al., 2022) proposes
a system which uses embeddings to convert dis-
crete tokens in text to continuous representations
which form the target distribution. The diffusion
model is then trained to denoise random Gaussian
noise gradually to generate a sample from the tar-
get distribution. (Lin et al., 2023) extends this to
conditional text generation by encoding the input
and concatenating it with the diffusion state. (Wu
et al., 2023) introduces clamping to force the model
to follow the target distribution at each timestep, to
improve performance.
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