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Abstract

Selective rationalizations improve the explain-
ability of neural networks by selecting a sub-
sequence of the input (i.e., rationales) to ex-
plain the prediction results. Although exist-
ing methods have achieved promising results,
they still suffer from adopting the spurious
correlations in data (aka., shortcuts) to com-
pose rationales and make predictions. Inspired
by the causal theory, in this paper, we de-
velop an interventional rationalization (Inter-
RAT) to discover the causal rationales. Specit-
ically, we first analyse the causalities among
the input, rationales and results with a causal
graph. Then, we discover spurious correla-
tions between the input and rationales, and
between rationales and results, respectively,
by identifying the confounder in the causali-
ties. Next, based on the backdoor adjustment,
we propose a causal intervention method to
remove the spurious correlations between in-
put and rationales. Further, we discuss rea-
sons why spurious correlations between the se-
lected rationales and results exist by analysing
the limitations of the sparsity constraint in the
rationalization, and employ the causal inter-
vention method to remove these correlations.
Extensive experimental results on three real-
world datasets clearly validate the effective-
ness of our proposed method. The source code
of Inter-RAT is available at https://github.
com/yuelinan/Codes-of-Inter-RAT.

1 Introduction

The remarkable success of deep neural networks
(DNNS5) in natural language processing tasks has
prompted the interest in how to explain the results
of DNNs. Among them, the selective rationaliza-
tion task (Lei et al., 2016; Yu et al., 2019, 2021)
has received increasing attention, answering the
question “What feature has a significant impact
on the prediction results of the model?”. Specifi-
cally, the goal of rationalization is to extract a small
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Figure 1: Conventional framework of rationalization
presented in this paper. In the charge prediction, the in-
put X represents the case fact and the result Y denotes
the charge.

subset of the input (i.e., rationale) to support and
explain the prediction results when yielding them.
Existing methods often generate rationales with a
conventional framework consisting of a selector
(aka., rationale generator) and a predictor (Lei
et al., 2016). As shown in Figure 1, giving the
input X, the selector and the predictor generate
rationales R and prediction results Y cooperatively
(i,e., P(Y|X) = P(Y|R)P(R|X)). Among them,
the selector (P(R| X)) first extracts a subsequence
of input R. Then, the predictor (P(Y|R)) yields
results based only on the selected tokens, and the
selected subsequence is defined as the rationale.
Despite the appeal of the rationalization meth-
ods, the current implementation is prone to exploit
spurious correlations (aka., shortcuts) between the
input and labels to yield the prediction results and
select the rationales (Chang et al., 2020; Wu et al.,
2022). We illustrate this problem with an exam-
ple of the charge prediction'. Considering Fig-
ure 1, although this case is corresponding to the
Manslaughter, a DNNs model readily predicts the
charge as Intentional homicide. Specifically, as
Intentional homicide occurs more frequently than
Manslaughter? and is often accompanied by tokens
denoting violence and death, DNNs do not need to
learn the real correlations between the case facts
and the charge to yield the result. Instead, it is
much easier to exploit spurious correlations in data

!Charge prediction: predicting the charge such as Robbery
and Theft based on the case fact. Detailed definition of charge
prediction is described in section 4.3.
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to achieve high accuracy (i.e., predicting the charge
as Intentional homicide directly when identifying
the tokens about violence and death.). As a re-
sult, when facing the cases such as the example
in Figure 1, the effectiveness of such DNNs tends
to degrade (e.g., the underlined tokens in Figure 1
denoting the offence is negligent will be ignored
in rationales extraction and the charge will be mis-
judged.). Therefore, these type DNNs depending
on spurious correlation in data fail to reveal truly
critical subsequence for predicting labels.

To solve that, (Chang et al., 2020) propose an
environment-invariant method (INVRAT) to dis-
cover the causal rationales. They argue that the
causal rationales should remain stable as the envi-
ronment shifts, while the spurious correlation be-
tween input and labels vary. Although this method
performs well in selecting rationales, since the en-
vironment in rationalization is hard to observe and
obtain, we argue that this “causal pattern” can be
further explored to improve the rationalization.

Along this research line, in this paper, we pro-
pose an interventional rationalization (Inter-RAT)
method which removes the spurious correlation
by the causal intervention (Glymour et al., 2016).
Specifically, motivated by the causal inference the-
ory, we first formulate the causal relationships
among X, R and Y in a causal graph (Pearl et al.,
2000; Glymour et al., 2016) as shown in Fig-
ure 2(a). Then, we identify the confounder C in
this causal graph, which opens two backdoor paths
X <+ (C— Rand R < C — Y, making X and
R, R and Y spuriously correlated. Next, we ad-
dress the above correlations, respectively. For spu-
rious correlations between X and R, we assume
the confounder is observed and intervene the X
(i.e., calculating P(R|do(X)) instead of P(R|X))
to block the backdoor path and remove the spu-
rious correlations based on the backdoor adjust-
ment (Glymour et al., 2016). Among them, the
do-operation denotes the pursuit of real causality
from X to R. For spurious correlations in R and Y,
since by the definition of R (rationales are the only
basis for yields prediction results), we argue that
there should be no spurious correlations between
R and Y. However, in practice, we discover the
sparsity constraint commonly defined in rational-
ization (Lei et al., 2016; Cao et al., 2020; Chang
et al., 2020; Yu et al., 2019), ensuring the selec-
tor to extract short rationales, results in the spu-
rious correlations between R and Y. Therefore,

we further analyse this discovery and employ the
causal intervention to remove these correlations.
Our experiments are conducted on three real-world
datasets, and the experimental results validate the
effectiveness of removing spurious correlation with
causal interventions.

2 Framework of Rationalization

This section formally defines the problem of ra-
tionalization, and then presents the details about
the conventional rationalization framework consist-
ing of the selector and predictor, where these two
components are trained cooperatively to generate
rationales and yield the prediction results.

2.1 Problem Formulation

Considering a text classification task, only the text
input X = {x1,x9,...,x,}, where z; represents
the i-th token, and the discrete ground truth Y are
observed during training, while the rationale R is
unavailable. The goal of selective rationalization
is first adopting the selector to learn a binary mask
variable M = {mi,ma,...,m,}, where m; €
{0,1}, and further select a subsequence of input
R = M@X = {ml-xl,mg-xg,...,mn‘xn},
and then employing the predictor to re-recode the
mask input R to yield the results. Finally, the whole
process of rationalization is defined as:

P(Y|X) = P(Y|R) P(R|X). )

predictor selector

2.2 Selector

The selector divides the process of generating ra-
tionales into three steps. First, the selector sam-
ples each binary value m; from the probability
distribution P(M|X) = {p1,p2,-..,Pn}, where
p; represents the probability of selecting each x;
as the part of the rationale. Specifically, p; is cal-
culated as p; = P(mj|z;) = softmax(We fe(z;)),
where the encoder f.(-) encodes the token x; into
a d-dimensional vector and W, € R2*?_ Then,
to ensure the sampling operation is differentiable,
we adopt the Gumbel-softmax method (Jang et al.,
2017) to achieve this goal:

__exp((log (py) +9;) /7)
7 exp ((log (pr) + 1) /7)’

where 7 is a temperature hyperparameter, g; =
—log (—log (u;)) and u; is random sampled from
the uniform distribution U (0, 1). Finally, the ra-
tionale can be selected as R = M © X =

2

11405



{mi-xz1,mg - x2,...,my - x,}. Therefore, we
conclude that the probability of generating ra-
tionales P(R|X) is calculated as: P(R|X) =
P(M & X|X) = P(M|X).

2.3 Predictor

Based on selected rationale tokens R, the predic-
tor outputs the prediction results (i.e., calculating
P(Y|R) = P(Y|M ® X)), and then R can be seen
as an explanation of Y. Specifically, after obtaining
R from the selector, we adopt the neural network
fp(+) to re-encode the rationale into d-dimensional
continuous hidden states to yield results. The ob-
jective of the predictor is defined as:

Liosk =E xy~p, LY, Wpfp (Mo X)),
M~P(M|X)
3)

where Dy, denotes the training set, £(-) represents
the cross-entropy loss function, W), € RN*4 is the
trained parameter and N is the number of labels
(e.g., N = 2 in the binary classification).

2.4 Sparsity and Continuity Constraints

Since an ideal rationale should be a short and co-
herent part of original inputs, we add the sparsity
and continuity constraints (Lei et al., 2016):

n

1
Lre =M\ nz;mja +)\22’m]‘*m]',1|,

Jj= Jj=2
“4)
where the first term encourages the model to se-
lect short rationales and « is a predefined sparsity
level at the scale of [0, 1], and the second term en-
sures the coherence of selected tokens. Finally, the

overall objective of the rationalization is defined as:
L= Ligsk + Lre.

3 Interventional Rationalization

In this section, we first reveal how the confounder
C causes spurious correlations in rationalization
with a causal graph. Then, we remove these corre-
lations by using a causal intervention method.

3.1 Causal Graph in Rationalization

As shown in Figure 2(a), we formulate the causali-
ties among the text input X, rationale R, ground-
truth label Y and the confounder C' with a causal
graph (Pearl et al., 2000; Glymour et al., 2016),
where the link between two variables represents a
causal relationship. In this paper, we only show

T/

2
N
O,

(a) Causal graph for (b) Causal graph for (c) Intervention on (d) Causal graph for
rationalization. the selector. the selector. the predictor.

Figure 2: (a) Causal graph for rationalization. (b)
Causal graph for the selector, which offers a fine-
grained causal relationship between R and C' with a
mediator K. (c) Intervention on the selector, where
C — X is cut off and the confounder C is stratified
into pieces C' = {c1,ca,...,¢/c}. (d) Causal graph
for the predictor, which describes a fine-grained causal
relationship between Y and C with a mediator H.

the endogenous variables we are interested in, fol-
lowing the settings in (Fan et al., 2022). In the fol-
lowing, we introduce the causal graph with these
variables at a high-level:

C — X. The confounder C' in rationalization
can be seen as the context prior, determining which
tokens can be “put” into the text input X. Among
them, in practice, the context prior consists of unob-
served prior and observed prior (e.g., we consider
the entire label set as the partially observed con-
founder in the text classification. See section 3.2
for details.) We take the Figure 1 as an example
to further illustrate C' — X. Specifically, both
observed Intentional homicide and Manslaughter
priors decide where the tokens denoting violence
and death appear ; the Manslaughter prior deter-
mines where the tokens representing manslaughter
appear ; the unobserved prior decides where other
tokens that are meaningless appear.

X — R « C. Besides the selector extracts
a subsequence of X as the rationale R, making
X — R holds, R is also affected by the context
prior C. Figure 2(b) offers a fine-grained causal
relationship between R and C' with a mediator K.
Specifically, in X — K <« C, K denotes the
context-specific representation which is a weighted
representation of the prior knowledge associated
with X in C. In X — R < K, R is affected by
the context prior C' through K indirectly. For ex-
ample, in Figure 1, the underlined tokens denoting
negligent are ignored in rationalization, since the
context prior in C' misleads the model to focus on
the violence and death feature in X by the mediator
K. Detailed examples about explanations for this
causal graph can be found in Appendix A.1.

C — Y « R. As the predictor yields the
result based on the rationale, R — Y holds. Mean-
while, in the ideal situation, since the rationale is
defined as a subsequence of X sufficient to pre-
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dict the Y, there should be no direct causal rela-
tionship between C' and Y. However, in practice,
rationales I? are commonly extracted with shortcut
tokens (we will introduce it later in section 3.3),
making C' — Y exists. Figure 2(d) describes a
fine-grained causal graph between Y and C' with a
mediator [/, where H is the context-specific repre-
sentation of R by using the context prior C. More
detailed descriptions of this causal graph are pre-
sented in Appendix A.2.

From the graph, we find that X and R, R and
Y are confounded by the context prior C' with two
backdoor paths X «+— C — R (or X « C —
K — R for elaboration) and R < C — Y (or
R+ C — H — Y). The above backdoor paths
result in spurious correlations among the text input
X, rationale R, and label Y. Based on this, we
propose a causal intervention method to remove the
confounding effect by cutting off the link C' — X
and C' — R, respectively.

3.2 Backdoor Adjustment

To pursue the real causality from X to R (or R to
Y’), we adopt the causal intervention P(R|do(X))
instead of P(R|X) (or P(Y|do(R)) instead of
P(Y|R)) to remove the effects of confounder C.
Next, we introduce the causal intervention method
by taking P(R|do(X)) as an example, and
P(Y|do(R)) is similar. Specifically, since adopt-
ing the randomized controlled trial to intervene
X is impossible, which requires the control over
causal features, we apply the backdoor adjustment
(Glymour et al., 2016) to achieve P(R|do(X)) by
cutting off C' — X (Figure 2(¢)):

IC|

P(Rldo(X)) = Y [P (RIX, K = g, (X, ¢;)) P ()]

i=1

(&)
where the confounder C' is stratified into pieces
C = {ca,¢c2,...,¢c¢|}» P(c;) denotes the prior
distribution of ¢;, which is calculated before train-
ing, and gs(+) is a function achieving X — K «+
C. However, the confounder C' is commonly hard
to observe. Fortunately, based on the existing
researches (Wang et al., 2020; D’ Amour, 2019),
we can consider the entire label set as the par-
tially observed children of the unobserved con-
founder. Therefore, we approximate it by de-
signing a dictionary D, = {cl, €2,y c|N|} as
an N X d matrix, where IV represents the num-
ber of labels and d is the hidden feature dimen-
sion. As described in section 2.2, we conclude

P(R|X) = P(]\AJ\X) Therefore, we can achieve
P(R|do(X)) = P(M|do(X)). Specifically, to
calculate the probability of each token z; selected
as the rationale, the implementation is defined as:

[N

P(injldo(X)) = S [P (| fo(aj, k) P (ci)]
=1
[N

= Z [softmax ( fs(x;, ki) P (¢;)] .

i=1
(6)

Among them, f4(-) is the function achieving
X — R « K, k; € K is defined as the
content-specific representation by using the con-
text prior ¢;, we express it as k; = gs(zj,¢) =
X\ici, where \; € A. Besides, A\ € RY is
the set of the normalized similarity between x;
and each ¢; in the confounder set C (i.e., A\ =
softmax(f.(x;)DI')). Furthermore, since Eq (6)
requires sampling of C' and this sampling is ex-
pensive, we try to find an alternative function that
would be easy to compute to approximate it. Empir-
ically, based on the results in (Xu et al., 2015; Wang
et al., 2020; Yue et al., 2020), we can adopt the
NWGM approximation (Xu et al., 2015) to move
the outer sum into the softmax: P(m;|do(X)) ~
softmax(IM £, (s, ki) P ().

In this paper, we adopt the linear model
fs(xj, ki) = Wife(zj) + Waky = Wife(z;) +
WaAic; to fuse the information of the input X and
the confounder C'. Then, the final implementation
of the intervention is formulated as:

P(mj|ldo(X)) = softmax(W fe(z;)

[N|
(7
+ W2 Z /\Z'CZ'P (Cz))
i=1

3.3 Limitations on the Predefined Sparsity

In this section, we discuss why C' — Y in Figure
2(a) holds in detail. Since rationales are defined
as the subsequence of inputs, being sufficient to
yield results, C' — Y should not exist. However,
unfortunately, in practical implementation, the spar-
sity constraint (denoted by «-constraint) in the first
term of Eq (4) may result in spurious correlations
between the extracted rationale and the predicted
result. Specifically, the a-constraint encourages
the selector to extract o of tokens from the orig-
inal text input. When the predefined number of
extracted tokens is greater than the length of the
practical rationale, a few tokens corresponding to
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shortcuts of Y may still be selected. For exam-
ple, as a converges to 1, all tokens in the input
will be extracted, including the rationales tokens
and shortcuts tokens (more examples are shown
in Appendix B.1). Then, the shortcuts tokens will
hurt the prediction performance. To alleviate this
situation, we first construct a fine-grained causal
graph (Figure 2(d)) between the selected rationale
R and the prediction results Y. Among them, R
represents the rationale generated by a-constraint,
H denotes the context-specific representation of I
based on the context prior C. As mentioned be-
fore, from the graph, we find that as there exists
abackdoorpath R <~ C - H - Y, Rand Y
are confounded. Then, based on the above obser-
vation, the predictor adopts the causal intervention
methods described in section 3.2 (i.e., calculating
P(Y|do(R)) =~ softrnax(z:y;”1 fr(R,hi)P (c;))
to remove the spurious correlations and further
yield prediction results, where f,.(-) is the func-
tion to obtain R — Y « H, and h; = g,(R, ¢;)
represents the process of R — H < C. Detailed
descriptions of the graph at a high-level and the
derivation are shown in Appendix A.2.

4 Experiments

In this section, we validate the effectiveness of
our method on three real-world tasks including the
beer reviews sentiment analysis, movies reviews
prediction and the legal judgment prediction.

4.1 Beer Reviews Sentiment Analysis

Beer Reviews Sentiment Analysis aims to predict
the ratings (at the scale of [0, 1]) for the multiple
aspects of beer reviews (e.g., appearance, aroma
and palate). We use the BeerAdvocate (McAuley
et al., 2012) as our dataset, which is commonly
used in the rationalization. As there is high senti-
ment correlation in different aspects in the same
beer review (Lei et al., 2016), which may confuse
the model training, several researches (Lei et al.,
2016; Bastings et al., 2019) adopt the de-correlated
sub-datasets (i.e., a part of BeerAdvocate) in the
training stage. However, a high correlated dataset is
more conducive to validating our Inter-RAT which
is designed to remove the spurious correlations in
data. Although (Chang et al., 2020) also conduct a
correlated sub-dataset, the data split and processing
are not available. For a fair comparison, different
from the previous study which makes experiments
on the sub-dataset, we train and validate models

on the original BeerAdvocate. Besides, following
the setup of (Chang et al., 2020), we consider the
beer review prediction as a binary classification
where the ratings < 0.4 as negative and > 0.6 as
positive. Then, the processed BeerAdvocate is a
non-balanced dataset. For example, the label dis-
tribution in the appearance is positive:negative ~
20:1. For testing, we take manually annotated ra-
tionales as our test set, detailed statistics are shown
in Appendix C.1.

4.1.1 Experimental Setup

In this section, we first present the comparison
methods with Inter-RAT including RNP (Lei et al.,
2016), HardKuma (Bastings et al., 2019), A2R
(Yu et al., 2021), INVRAT (Chang et al., 2020),
IB (Paranjape et al., 2020) and DARE (Yue et al.,
2022). Among them, RNP is an original ratio-
nalization method which generates rationales by
yielding the Bernoulli distribution of each token
and sampling from it. HardKuma, A2R, IB and
DARE all achieve promising results in rationaliza-
tion. INVRAT is our main baseline to directly com-
pare with, which is also a method of removing the
spurious correlation in data. The difference with
our Inter-RAT is that INVRAT learns environment
invariant representations by obtaining multiple en-
vironments from the training set.

For training, we use the pre-trained glove em-
beddings (Pennington et al., 2014) with size 100,
and implement the encoder in both f(-) and f,(-)
as the bidirectional GRU (Cho et al., 2014) with
hidden size 100. We optimize the objective of ra-
tionalization using Adam (Kingma and Ba, 2014)
with mini-batch size of 256 and an initial learning
rate of 0.001. Besides, we consider the o in Eq (4)
as {0.1, 0.2, 0.3}, respectively. For testing, we
report the token precision, recall and F1-score to
evaluate the quality of selected rationales. Among
them, token precision is defined as the percentage
of how many the selected tokens are in annotated
rationales, and token recall is the percentage of an-
notated rationale tokens that are selected by model.

. 2xprecisionxrecall
The token F1-score is calculated as “precisionrecall -

4.1.2 Experimental Results

To demonstrate the effectiveness of our Inter-RAT,
we briefly compare it with baselines (e.g. RNP
and DARE) in Table 1, where Inter-RAT outper-
forms them consistently in finding correct ratio-
nales. Specifically, Inter-RAT surpasses baselines
on all three aspects (i.e, appearance, aroma and
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Table 1: Precision, Recall and F1 of selected rationales for the three aspect, where « is the predefined sparsity level.

M | | Appearance | Aroma | Palate
ethods «
| | Precision Recall F1 | Precision Recall F1 | Precision Recall F1
RNP 0.1 32.440.5 18.6+0.3 23.6+04 | 44.8+0.4 324407 37.6+0.5 24.6+0.5  23.5+0.5 24.0+0.5
HardKuma 0.1 53.6+0.1 28.7£0.1 37.440.1 29.3+14 259+3.8 27.3£2.1 7.7+0.1 6.0+0.1 6.840.1
INVRAT 0.1 42.6+0.7 31.5+£0.6  36.2+0.6 | 41.24+0.3 39.1+2.8 40.1+1.6 | 349+1.5 4564+02  39.5+1.0
1B 0.1 50.5+0.2  29.7+0.5 37.4+04 | 43.5+0.3 39.2+0.5  41.34+0.1 29.9+0.2 342407  31.94+0.2
DARE 0.1 63.940.1 42.840.2  51.3£0.1 50.5+0.1 44.840.2  47.5+0.2 33.1+04  45.8+0.1 38.44+0.2
Inter-RAT 0.1 66.0+04  46.5+0.8 54.6+0.7 | 55.4+0.9 47.5+0.6 51.1+0.8 34.6+0.8  48.2+04  40.2+0.5
RNP 0.2 39.4+04 44.9+0.1 42.04+0.2 37.5+0.1 51.9+0.7 43.5+0.3 21.6+0.4 38.9£0.5 27.8+0.4
HardKuma | 0.2 64.9+0.9 69.2+1.0 67.0+£0.8 37.0+1.3 55.8+1.9  44.5+1.5 14.6+0.3  22.3+0.8 17.7+0.4
INVRAT 0.2 58.9+04  67.242.3 62.8+1.1 29.3+1.0 521406  37.5+0.6 24.0+1.3 552423 33.5+1.6
1B 0.2 59.3+04  69.0+0.2  63.8+£0.2 38.6+0.1 55.5+40.7  45.6+0.1 21.6+0.2  48.5+04  29.9+0.2
DARE 0.2 63.7+0.2  71.840.8  67.5+£0.5 41.0+£0.2  61.5£0.2  49.3+0.3 24.440.1 54.9+0.8  33.8+0.1
Inter-RAT 0.2 62.0+£0.5 76.7+1.7  68.6+:0.4 | 44.2+0.1 65.4+0.2 52.8+0.1 26.3+0.6  59.1+0.8  36.4+0.7
RNP 0.3 242404  41.2+0.8  30.5+0.5 27.1+£0.3 55.7+£0.8  36.4+0.4 154404 422409  22.6+0.5
HardKuma | 0.3 42.14+0.3 82.4+14  55.74+0.5 24.6+0.1 57.74£0.6  34.5+0.2 21.7+0.1 49.740.4  30.2+0.1
INVRAT 0.3 41.5+04  74.84+0.3 53.440.3 22.841.6  65.1+1.7 33.8+1.8 20.9+1.1 71.6+04  32.3+1.3
1B 0.3 40.2+0.1 81.5+0.2 539402 | 279402  59.240.3  37.9+0.1 19.1+£0.7  59.0+0.9  28.9+0.6
DARE 0.3 4554+0.2  80.6+£0.2  58.1+0.1 327402 682403  44.240.1 19.7£0.6  70.5+04  30.84+0.7
Inter-RAT 0.3 48.1+0.7  82.7+0.5 60.8+0.4 | 37.9+0.7 72.0+0.1  49.6+0.7 | 21.8+0.1 66.1+0.8  32.84+0.1

palate) by a large margin in most metrics. Besides,
although INVRAT has shown helpful in discover-
ing the de-confounded rationales, Inter-RAT still
performs better than it, improving 10.5, 14.0 and
1.4 on the average token F1-score across three as-
pects, and Inter-RAT has a lower variance illus-
trating our method is more stable than INVRAT.
Such observations strongly demonstrate that Inter-
RAT can remove the spurious correlation in data to
select rationales effectively.

As discussed in section 3.3, we propose the
causal intervention method to alleviate the prob-
lem, where several tokens corresponding to spuri-
ous correlations in data may be selected and further
mislead the prediction with an increasing «.. Here,
we conduct an experiment to validate the effective-
ness of the causal intervention. Since there is only
about 1,000 beer reviews in the test set, we report
the binary classification F1-score® with different o
in the dev set which contains about 30,000 reviews.
As shown in Figure 3(a), we make experiments
on the palate aspect, and Inter-once is a variant
of Inter-RAT, which yields the rationales based
on P(R|do(X)) but predicts the results based on
P(Y|R), rather than P(Y |do(R)). From the obser-
vation, we can conclude that when « is small (i.e.,
the length of selected rationales is smaller than real
rationales), the difference between Inter-RAT and
Inter-once is minor. However, as « increases, Inter-
RAT steadily improves, while the Inter-once grows
slowly and even degrades. The above observation
illustrates that our causal intervention method can
alleviate the spurious correlations problem between
R and Y caused by the a-constraint.

As mentioned in section 4.1, we make experi-

3Different from token F1, Fl-score is commonly adopted
to evaluate the performance of binary classification.

74{ —— Inter-RAT
—&— Inter-once

01 02 03 04 05 06 07 08 09 10
Predefined Sparsity (v
(a) Fl-score on the Palate with an increasing o .

Predefined Sparsity (v
(b) Token F1 on the Appearance with different prior.

Figure 3: (a): Fl-score on the Palate with an increasing
a. (b): The token F1 for rationales on the appearance
aspect with different prior distributions.

ments on the non-balanced dataset, which is dif-
ferent from the previous study (Chang et al., 2020,
2019; Huang et al., 2021) adopting the balanced
datasets. Therefore, there exists a research ques-
tion we need to answer:“Does the information of
label distributions (or prior distributions) somehow
influence Inter-RAT to yield better rationales in-
stead of the causal intervention ?”. For instance,
as the label distribution in the appearance aspect is
positive:negative ~ 20:1, we conduct experiments
on the appearance dataset with P (c;) = 22 and
P (c3) = 5, where P (c;) in Eq (5) represents the
prior distribution of ¢;, ¢; is the positive label and
¢y is the negative one. The above non-balanced
label distribution might be inducing the model to
“better rationalize” for the majority class (i.e., the
positive), further reflecting the improvement of
Inter-RAT over the whole dataset. Therefore, we
compute token-F1 scores for positive and negative
examples separately for a safer evaluation, where
we denote the evaluation of Inter-RAT on positive
examples as Inter-RAT(+) and on the negative ones
as Inter-RAT(-). Figure 3(b) summarizes the re-
sults on the appearance aspect. From the result,
we find that the performance of extracting positive
rationales is better than extracting the negative, al-
though the difference between the two types results
is not significant, and the scores for the negative
are still high (better than INVRAT). Therefore, to
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Table 2: Results on Movie, where several results of
baselines are quoted from A2R (Yu et al., 2021).

Methods ‘ Movie
| Precision Recall F1

RNP 35.6 21.1 24.1

Bert_RNP 43.4 26.1 32.6

HardKuma 31.1 28.3 27.0

A2R 48.7 31.9 34.9

INVRAT 33.9 24.3 28.3
Inter-RAT 35.74+0.2 35.84+1.7 35.74+0.8
Bert_Inter-RAT 31.7£0.1 43.1+1.1 36.5+0.3

further validate the effect of label distribution, we
add the analysis as follows: we re-run the exper-
iments with P (c1) = P (c2) = 3 (i.e., assuming
this is a balanced dataset with uniform label dis-
tributions) and denote the corresponding model as
Inter-RAT-balance. We report experimental results
in Figure 3(b). From the figure, we find adopt-
ing the true prior distribution P (¢;) (Inter-RAT)
performs better than the assumed one (Inter-RAT-
balance), demonstrating the prior distribution is
critical for the backdoor adjustment. Besides, it is
interesting to see that with a balanced label distribu-
tion, the results of the minority label (i.e., negative)
are worse than using the true label distribution,
which suggests Inter-RAT is not simply “paying
more attention” to instances of the majority class.

4.2 Movies Reviews Prediction

Besides the beer reviews sentiment analysis task,
we also make experiments on another binary classi-
fication task (i.e., movie review prediction (Zaidan
and Eisner, 2008)) in the ERASER benchmark
(DeYoung et al., 2020), which contains token-level
human annotations. We follow the same experi-
mental setups in 4.1.1 and report the experimental
results with & = 0.2 in Table 2. Detailed descrip-
tion of the dataset is shown in Appendix C.1. As
shown in the table, Inter-RAT performs better than
baselines on most metrics, which further validates
the effectiveness of Inter-RAT. Furthermore, to val-
idate Inter-RAT is agnostic to the structure of the
selector and predictor, we adopt Bert (Devlin et al.,
2019) to replace bi-GRU in f.(-) and f,(-) in both
RNP and Inter-RAT, and denote them as Bert RNP
and Bert_Inter-RAT. From the result, we observe
that Bert_Inter-RAT still outperforms Bert RNP,
illustrating the effectiveness of Inter-RAT.

4.3 Legal Judgment Prediction

Since there are only two categories (positive and
negative) in both beer and movie reviews predic-
tion, we further generalize our Inter-RAT to the
multi-classification task. Specifically, we focus on

the Legal Judgment Prediction (LJP) task, which
yields the judgment results such as the charges
based on the case fact. We conduct experiments on
the publicly LJP datasets CAIL (Xiao et al., 2018)
which contains criminal cases consisting of the fact
description and corresponding charges, law articles,
and terms of penalty results. For data processing,
referring to (Yue et al., 2021), we remove several in-
frequent and multiple charges cases, and divide the
terms into non-overlapping intervals. The detailed
statistics of the datasets can be found in (Yue et al.,
2021). Figure 1 shows an example of LJP, which
predicts the charge according to the case fact.

4.3.1 Experimental Setup

In addition to comparing RNP, HardKuma and IN-
VRAT, we also compare our method with some
classical baselines in the LJP task, including Top-
Judge (Zhong et al., 2018), Few-Shot (Hu et al.,
2018), LADAN (Xu et al., 2020) and NeurJudge
(Yue et al., 2021). All the above baselines are
trained by exploiting legal particularities. where
NeurJudge is the state-of-the-art model in LJP.
Meanwhile, it employs a label embedding method
to enhance the prediction. We conduct experiments
on one of versions of CAIL containing 134,739
cases (Yue et al., 2021). For testing, as there are no
annotated rationales, we first employ the accuracy
(Acc), macro-precision (MP), macro-recall (MR),
and macro-F1 (F1) to evaluate the performance
of yielding judgment results. Then, we provide
a human evaluation for selected rationales in LJP.
Detailed description of comparison methods and
experimental setups can be found in Appendix C.2.

4.3.2 Experimental Results

To evaluate the performance of our model on LJP,
we show the experimental results from two aspects.
First, Table 3 shows that our Inter-RAT still per-
forms better than the rationalization methods when
generalizing to the multi-classification task. Mean-
while, compared with the LJP approaches (e.g. Top-
Judge and NeurJudge), even though our model is
trained on the three subtasks separately, while these
LJP approaches explore the dependencies between
tasks and are trained with a multi-task learning
framework, our model still achieves promising per-
formance. However, Inter-RAT does not perform
better than NeurJudge. A potential reason is that
NeurJudge is designed only for LJP, exploiting the
legal particularities well. In contract, our Inter-
RAT is designed for general text classification tasks.
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Table 3: LJP results on CAIL. Among them, the underline scores are the state-of-the-art performances in LJP but
lacking explainability, and the results in bold perform second only to NeurJudge but with an explainable rationale.
Results of LIP baselines are quoted from (Yue et al., 2021).

Methods | Charges ‘ Law Articles | Terms of Penalty
| Acc MP MR FI | Ac MP MR FI | Ac MP MR Fl
TopJudge 86.5 84.2 78.4 80.2 87.3 85.8 76.3 78.2 38.4 35.7 322 31.3
Few-Shot 88.2 87.5 80.6 82.0 88.4 86.8 7179 79.5 39.6 37.1 30.9 31.6
LADAN 88.3 86.4 80.5 82.1 88.8 85.2 79.5 81.0 38.1 34.0 31.2 30.2
NeurJudge | 89.9 87.8 86.8 81.0 90.4 87.2 85.8 86.1 41.7 40.4 372 313
RNP 85.1+0.2 82.2+0.3 78.1+£0.5 79.0+0.5 | 86.5+0.1 82.1+£0.3 77.7+0.7 78.8+0.6 | 37.1+0.2 30.1+£0.3 30.3+0.4 27.7+0.3
HardKuma | 86.2+0.2 84.7£1.2 79.0+0.8 80.6+0.4 | 86.8+0.8 83.3+1.7 77.3+0.8 78.94+0.9 | 35.8+0.1 34.3+1.3 27.3+03 25.8+04
INVRAT | 854402 83.3+0.1 78.7+0.3 80.2+0.3 | 85.1+0.1 83.1+0.1 76.240.1 78.14+0.2 | 38.5+0.3 34.5+0.7 33.0+£0.2 32.0+0.5
Inter-RAT | 89.4+0.2 87.5+0.3 85.3+0.3 85.9+0.3 | 89.5+0.1 86.3+0.1 83.5+0.3 84.6+0.3 | 39.6+0.1 36.3+0.4 34.3+0.3 32.840.3

Table 4: Human evaluation on charge prediction.

Methods | U C F Avg.
RNP 3.85 3.28 3.34 3.49
INVRAT 3.88 342 341 3.57
HardKuma 3.78 3.33 3.39 3.50
DARE 4.57 3.89 4.19 422
ChatGPT 4.01 4.08 4.34 4.14
Inter-RAT | 4.52 4.10 4.25 4.29

Therefore, the performance of Inter-RAT does not
surpass NeurJudge. Furthermore, different from
the NeurJudge and other LJP baselines, our Inter-
RAT can provide an intuitive explanation (i.e., ra-
tionales) when yielding the judgment results while
LJP baselines fail to produce them. The above ob-
servation provides strong validation of adopting the
causal intervention method to remove spurious cor-
relation in data for predicting results. Interestingly,
we find there exists a minor difference between
Inter-RAT and NeurJudge on yielding the charge
and law article. We argue a potential reason is the
label embedding method in NeurJudge can be ap-
proximated as the causal intervention method. We
further discuss it in Appendix D.2 in detail.

Second, as CAIL does not provide annotated ra-
tionales like BeerAdvocate, we make a human eval-
uation to evaluate the selected rationales. Specifi-
cally, we sample 100 examples and ask three anno-
tators who are both good at computer science and
law to evaluate rationales in the charge prediction.
Besides, following (Sha et al., 2021), we employ
three metrics with an interval from 1 (lowest) to 5
(e.g. 2.0 and 3.2) to evaluate rationales, including
usefulness (U), completeness (C), and fluency (F).
Appendix C.3 describes detailed scoring standards
for human annotators. The human evaluation re-
sults are shown in Table 4. It is worth noting that
a similar human evaluation is provided in DARE,
but its is set differently from ours, where DARE
sets « to 0.14 and our Inter-RAT is set to 0.2. For
consistency, we replicate DARE with o« = 0.2.

From the results, we can find Inter-RAT outper-
forms RNP, INVRAT, HardKuma and DARE in all
metrics, further demonstrating our causal interven-
tion method can select more sufficient rationales
for yielding results. Besides, considering the suc-
cess of Large Language Models (LLMs), we addi-
tionally add ChatGPT (OpenAl, 2023) for human
evaluation (the prompt for ChatGPT is shown in
Appendix C.4). As shown in Table 4, we observe
that ChatGPT achieves competitive results on both
Completeness and Fluency. But it does not perform
well on Usefulness. Because even though we ask
ChatGPT to extract short tokens and sentences as
rationale, it still tends to extract longer sentences,
which is beneficial for the Fluency metric. How-
ever, for the Usefulness metric, some redundant
tokens will be extracted as well. Therefore, Chat-
GPT does not perform well on the Usefulness.

5 Related Work

Rationalization. Deep neural networks (DNNs)
have achieved remarkable success in various do-
mains (Seo et al., 2016; Devlin et al., 2019; Liu
et al., 2023c; Gao et al., 2023). However, the
predicted results are still unreliable. To improve
the explainability of DNNs, the rationalization
has attracted increasing attention (Lei et al., 2016;
Treviso and Martins, 2020; Bastings et al., 2019;
Chang et al., 2019; Liu et al., 2023a,b). Specifi-
cally, (Lei et al., 2016) first proposed a rationaliza-
tion framework which consists of a selector and
a predictor. Following this framework, multiple
variants were proposed to improve rationalization.
Among them, to replace the Bernoulli sampling dis-
tribution in (Lei et al., 2016), (Bastings et al., 2019)
introduced a HardKuma distribution for reparam-
eterized gradient estimates. Additionally, another
fundamental direction is adding external compo-
nents to enhance the original framework. (Yu et al.,
2019) employed an introspective selector which in-
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corporated the prediction results into the selection
process. Some researchers (Huang et al., 2021; Sha
et al., 2021; Cao et al., 2020) proposed an external
guider to reduce the difference between the distribu-
tions of rationales and input. However, few consid-
ered spurious correlations in data which degraded
the rationalization. Among them, (Chang et al.,
2020) discovered the causal rationales with envi-
ronment invariant methods by creating different en-
vironments. (Wu et al., 2022) extracted rationales
from graphs to study the explainability of graph
neural networks by intervention distributions.
Causal Inference. Causal inference (Glymour
et al., 2016) has been widely explored in various
fields, including medicine (Richiardi et al., 2013)
and politics (Keele, 2015), which aims to empower
models the ability to achieve the causal effect. Re-
cently, several researches (Deng and Zhang, 2021;
Dong et al., 2020; Yue et al., 2020; Niu et al., 2021;
Vosoughi et al., 2023) introduced causal inference
into machine learning with causal intervention to re-
move the spurious correlations in data. Especially,
it has inspired several studies in natural language
understanding such as Named Entity Recognition
(Zhang et al., 2021), Topic modeling (Wu et al.,
2021), and Entity Bias problem (Zhu et al., 2022;
Wang et al., 2023).In this paper, we focus on im-
proving the rationalization with causal intervention.

6 Conclusion

In this paper, we proposed a causal intervention
method (Inter-RAT) to improve rationalization. To
be specific, we first formulated the causalities in
rationalization with a causal graph and revealed
how the confounder hurt the performance of select-
ing rationales with opened backdoor paths. Then,
we introduced a backdoor adjustment method to
remove spurious correlations between inputs and
rationales. Besides, we further discussed the po-
tential bias between selected rationales and pre-
dicted results caused by the sparsity constraints,
and adopted the above causal intervention method
to yield de-confounded prediction results. Experi-
mental results on real-world datasets have clearly
demonstrated the effectiveness of Inter-RAT.

Limitations

To achieve the causal intervention, we adopt the
backdoor adjustment to calculate P(R|do(X)) and
P(Y|do(R)) with the observed label as the con-
founder set. However, in some cases, observable

labels are still difficult to obtain. For example, if
we take the beer review prediction as a text regres-
sion task like (Bastings et al., 2019), rather than a
classification task, then we will fail to obtain the
observed label, where the ratings of beer reviews
are continuous. Therefore, to achieve the causal
intervention, we argue that a promising approach is
to adopt other intervention methods, such as the in-
strumental variable (Yuan et al., 2022; Singh et al.,
2019) that is implemented with the unobserved con-
founder. We will leave these for the future work.
Besides, since our approach focuses on how to im-
prove the explainability of neural networks and is
a model-agnostic approach, we will also study in
the future how to employ rationalization methods
to improve the Large Language Models (LLMs),
considering the recent remarkable success of LLMs
(OpenAl, 2023; Touvron et al., 2023).
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A Instantiated Causal Graph

A.1 Causal graph for the selector

In this section, we describe causal graph for the
selector (Figure 2(b)) in detail with examples:

C — X. The context prior C determines which
tokens can be “put” into the text input X. Among
them, the context prior consists of unobserved prior
and observed prior (such as the label set). For
example, in Figure 1, both observed Intentional
homicide and Manslaughter priors decide where
the tokens denoting violence and death appear ; the
Manslaughter prior determines where the tokens
representing manslaughter appear ; the unobserved
prior decides where other tokens that are meaning-
less appear.

X — K < C. K denotes the context-specific
representation which is a weighted representation
of the prior knowledge associated with X in C.
Taking Figure 1 as an example, we assume that
the label set consisting of Intentional homicide,
Manslaughter, and Theft is the observed prior.
Then, we can get the context prior which consists
of four parts (i.e., the Intentional homicide prior cy,
the Manslaughter prior ca, the Theft prior c3 and
the unobserved prior c4). Next, we calculate the
association between X and C, and obtain the cor-
responding scores, assuming a; = 0.3, ag = 0.6,
a3z = 0.0, ag = 0.1, where Manslaughter prior co
and X are the most relevant, and the Theft prior
c3 and X are the least relevant. Finally, we can
calculate the K as ajcy + ascy + ages + agcy =
0.3¢c1 + 0.6¢9 + 0.1c¢4.

X — R < K. As the rationale R is a subse-
quence of X, X — R holds. Besides, K — R
represents the contextual constitution of the text
that affects the composition of rationales. Taking
the previous example as an example, since K is cal-
culated as 0.3¢; + 0.6¢9 + 0.1c4, tokens in R will
be more inclined with the Manslaughter prior ca.

A.2 Causal graph for the predictor

In this section, we describe the detailed causal re-
lationship (Figure 4(a)) between the selected ra-
tionales R and the results Y in the predictor at a
high-level:

C — R. Based on Eq (5) in section 3.2, we can
conclude that the context prior C' determines which
tokens are corresponding to rationales.

R — H + C. H represents the context-specific
representation of R by using the context prior C.
R —Y < H. Asrationales R are selected by a-

Ol

¥ \
(——()
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Figure 4: Causal graph for the predictor.

constraint and consist of real rationales and short-
cuts tokens, we argue that R — Y holds. Besides,
the context prior C' affects the label Y by the me-
diator H. The reason is similar to K — R in
Appendix A.1.
From the graph, we can clearly see the context
prior C' is the confounder between R and Y, which
opens the backdoor path R +— C — H — Y.
Therefore, to remove the spurious correlations be-
tween I? and Y, we adopt the causal intervention
method to calculate P(Y'|do(R)) by cutting the
link C — R (Figure 4(b)):
|V

P(Y|do(R)) = 3_ [P (Y|R, H) P (c;)]
i=1
|N|

- Z[P (Y| fr (R, 1)) P (c:)]

V|

=" [softmax(f. (R, hi))P (c:)],

i=1

3
where f,.(+) is the function achieving R — Y «+
H, h; = g;(R,¢;) = Bici, B; € B. B € RN
is the set of the normalized similarity between
R and each ¢; in the confounder set C (i.e.,
B_softmax(f,(R)DL)). Among them, f,(-) en-
codes R into a d-dimensional vector, and the dic-
tionary D, = {cl, €2y € N|} is approximated
as the observed confounder.

Besides, we also adopt the NWGM approxi-
mation to Eq (8) and set f.(R,h;) as a linear
model (i.e., fr(R,hi) = Waf,(R) + Wah; =
W3 fp(R) + Wypic;). Then, the final objective of
intervention is formulated as:

[N
P(Y|do(R)) = Z [softmax (f, (R, h;))P (c;)]
i=1
NI
~ softmax(z fr(R,h)P ()
i=1
= softmax(Ws f,,(R)
N
+ WY BiciP (ci)).
i=1

©)
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Table 5: Detailed statistics of the processed BeerAdvocate and MovieReview.

Dataset ‘ Train ‘

Dev ‘ Test

‘ #Pos #Neg # Avg.Tokens‘ #Pos # Neg # Avg.Tokens‘# Pos # Neg # Avg.Tokens # Avg.Rationale

BeerAdvocate (appearance)|202,385 12,897 153.86 28,488 1,318 151.33 955 14 126.80 22.61
BeerAdvocate (aroma) 172,299 30,564  154.80 (24,494 3396 15246 | 913 31 126.62 18.38
BeerAdvocate (palate) |176,038 27,639  153.98  |24,837 3,203  151.77 | 940 24 126.02 13.46

MovieReview 800 800 847.25 100 100  835.03 99 100  835.03 54.40
A.3 Why there is no need to perform B.2 Discussions on a-constraint

interventions on the front-door path?

In this paper, we only block the backdoor pathways
in Figure 2, unable to eliminate front-door pathway.
The reason why we do not perform interventions
on the front-door path is as follows:

1. Firstly, from the causal graph, we find the
backdoor path X + C — K — R causes the
spurious correlation. Meanwhile, the increased
likelihood of R given X is due to “X causes R” via
X — Rand X — K — R (the mediation path).

2.In X — K — R, K is a projection of X in
the context prior C. Therefore, we argue that the
X — R path can be removed if X can be fully
represented by K, where X also requires a neural
network representation to achieve X — R. There-
fore, X — K — R is beneficial for prediction.

3. In our paper, we aim to use the do-operation
which implements the de-confounded training of
the rationalization to remove the spurious correla-
tion. Meanwhile, we retain the mediation path to
keep the beneficial things for prediction.

B Explanations for a-constraint

B.1 Examples for a-constraint

As mentioned in section 3.3, in the practical, a
higher predefined sparsity level oo may bring short-
cuts tokens which hurt the prediction performance,
an extreme example being that all tokens in the text
input will be selected. Below, we take a beer review
as an example to further illustrate this problem,
where this example is adopted to predict scores of
the smell aspect.

The original text:

He thinks this beer smells great and tastes terrific .

Rationales: smells great

Rationales with shortcuts tokens, where « is
set to 0.5: smells great and tastes terrific. Among
them, “and tastes terrific” can be considered as
shortcuts tokens.

Although several rationalization methods do not
set a-constraint to extract rationales, we believe
that their methods of constraining the short ratio-
nales extraction can be considered a variant of a-
constraint, and our intervention method in section
3.3 will still be effective on these methods. Specif-
ically, we argue that these methods should set hy-
perparameters to encourage the model to select
short rationales. However, if the hyperparameters
are not set properly, it is possible that more short-
cuts tokens will be extracted, making R and Y
confounded. For example, for several methods
(Chen and Ji, 2020; Paranjape et al., 2020) adopt-
ing the information bottleneck to ensure the model
extracts short rationales, there exists a KL diver-
gence between the posterior distribution P (m;|x;)
and the prior distribution r(m;), where r(m;) =
Bernoulli() for some constant 7 € (0, 1). For in-
stance, if we set 7 as 0.1, it means we encourage the
model to extract 10% of the input text. Therefore,
we consider 7 as a variant of « proposed by us.

C Setting Details

C.1 Statistics of BeerAdvocate and
MovieReview

In this section, we show the detailed statistics
of BeerAdvocate and MovieReview in Table 5.
Among them, BeerAdvocate contains three aspects,
including appearance, aroma and palate. From the
Table 5, we can observe that the processed Beer-
Advocate is a non-balanced dataset. In the train-
ing set, the prior distribution is positive:negative
~ 20:1 in appearance, positive:negative ~ 17:3 in
aroma, positive:negative ~ 17:3 in palate. Mean-
while, MovieReview is a balanced dataset with
positive:negative = 1:1.

C.2 Comparison methods and experimental
setups for LJP

In addition to comparing RNP (Lei et al., 2016),
HardKuma (Bastings et al., 2019) and INVRAT
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(Chang et al., 2020), we also compare our method
with some classical baselines in the LJP task:

* TopJudge (Zhong et al., 2018) explores the de-
pendencies among the three subtasks in LJP.

* Few-Shot (Hu et al., 2018) utilizes the charge
attributes to identify the confusing charges.

* LADAN (Xu et al., 2020) learns the distin-
guished law articles representations for LIP pre-
diction.

* NeurJudge (Yue et al., 2021) is a circumstance
aware approach adopting different crime circum-
stances to yield corresponding results. Mean-
while, it employs a label embedding method to
enhance the prediction.

For training, we adopt the word2vec (Mikolov
et al., 2013) for word embedding pre-training with
size 200, and set the encoder in f.(-) and f,(-)
as Bi-GRU. Besides, we implement the learning
rate of 0.0002 with batch size 256, and take «
as 0.2. For evaluating, we employ the accuracy
(Acc), macro-precision (MP), macro-recall (MR),
and macro-F1 (F1) to evaluate the performance of
yielding judgment results.

C.3 Scoring standards for human evaluation

Following (Sha et al., 2021), we evaluate the ratio-
nales with three metrics: usefulness (U), complete-
ness (C), and fluency (F) in the charge prediction.
Among them, each scored from 1 (lowest) to 5. Be-
low, we introduce scoring standards for the above
metrics in brief. Detailed standards for human an-
notators can be found in (Sha et al., 2021).

C.3.1 Usefulness
Q: Do you think the selected rationales can be use-

ful for explaining the predicted labels?

* 5: Exactly. Selected rationales are useful for me
to get the correct label.

 4: Highly useful. Although several tokens have
no relevance to correct label, most selected to-
kens are useful to explain the labels.

* 3: Half of them are useful. About half of the
tokens are useful for getting labels.

¢ 2: Almost useless. Almost all of the tokens are
useless.

¢ 1: No Use. The selected rationales are useless
for identifying labels.

Figure 5: The token precision and recall for rationales
on the appearance aspect with o = 0.3.

C.3.2 Completeness

Q: Do you think the selected rationales are enough
for explaining the predicted labels?

 5: Exactly. Selected rationales are enough for me
to get the correct label.

* 4: Highly complete. Several tokens related to the
label are missing.

¢ 3: Half complete. There are still some important
tokens that have not been selected, and they are
in nearly the same number as the selected tokens.

» 2: Somewhat complete. The selected tokens are
not enough.

* 1: Nonsense. None of the important tokens is
selected.

C.3.3 Fluency

Q: Do you think the selected rationales are fluent?

* 5: Very fluent.

4: Highly fluent.

L]

3: Partial fluent.

2: Very unfluent.

¢ 1: Nonsense.

C.4 Prompt for ChatGPT for human
evaluation

This is our prompt for ChatGPT:

Suppose you are a data tagging assistant and
I will provide you with some case facts. Please
follow the following prompts to make your predic-
tions:

1. Please predict the charge of the given case
facts.

2. Please extract one or more consecutive sen-
tences and tokens from the case facts to support
your prediction and keep the extracted sentences
and tokens as short as possible. Please note that
you must only extract from the given case facts.

3. Only output a python dictionary format
to me, e.g. {‘label’:intentional homicide, ‘ratio-
nale’:extract sentence}.
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CAIL - Charge Label - Manslaughter

The defendant and the victim were both students, after the dormitory relocation, in the new dormitory, the defendant and the victim for
sleeping in the lower bunk bed dispute, the defendant picked up a bottle and forcefully hed the victim's head, resulting in the
victim's head injury, then the defendant sent the victim to hospital. The victim died in hospital treatment failed. The forensic medical

The defendant and the victim were both students, after the dormitory relocation, in the new dormitory, the defendant and the victim for
sleeping in the lower bunk bed dispute, the defendant picked up a bottle and forcefully hed the victim's head, resulting in the
victim's head injury, then the defendant sent the victim to hospital. The victim died in hospital treatment failed. The forensic medical

The defendant and the victim were both students, after the dormitory relocation, in the new dormitory, the defendant and the victim for
sleeping in the lower bunk bed dispute, the defendant picked up a bottle and forcefully hed the victim's head, resulting in the
victim's head injury, then the defendant sent the victim to hospital. The victim died in hospital treatment failed. The forensic medical
appraisal showed the injury to the victim's face was a pre-existing injury and the degree of injury was minor. The victim's death was

Figure 6: Examples of selective rationalization on the charge prediction. Among them, RNP wrongly predicts
the charge as Intentional homicide. Meanwhile, both INVRAT and Inter-RAT predict the charge correctly, but
Inter-RAT extracts more plausible rationales to yield results.

D More Experimental Results

D.1 Changes with Training Epochs

Besides, comparing with INVRAT, we investigate
the model performance by showing the changes
in token precision and recall with training epochs.
Figure 5 shows the experiments on the appearance
aspect with o = 0.3. From the observation, we can
conclude that Inter-RAT significantly outperforms
INVRAT in both precision and recall with lower
variance from the training onwards, which proves
the effectiveness of our proposed method.

D.2 A Causal View on NeurJudge

In this section, from the causal view, we discuss the
reason why the difference between Inter-RAT and
NeurJudge on the charge and law article prediction
is not significant. Here, we explain the observa-
tion by taking the charge prediction as an example,
and the article prediction is similar. Specifically,
NeurJudge adopts a label embedding method to
incorporate the semantics of charge into the case
fact to yield the corresponding result. We argue
that this method can be approximated as the causal
intervention method. To illustrate this discovery,
we assume Figure 2(d) is the causal graph of the
charge prediction task, and consider the case fact
as R (i.e., a=1) and the charge label set as C'. Then
the process of label embedding can be formulated
as R — H < Cand R — Y < H. The objective
of NeurJudge is written as:
|N]
P(Y|R) = softmax() _ fneru(R,1i)),  (10)

1=

1
where h; = gneru(R, ¢;). We can find the differ-
ence between the Eq (10) and our causal interven-

tion method is that Eq (10) ignores the prior distri-
bution P(¢;). It is worth noting that although Neur-
Judge ignores P(¢;), it performs slightly better than
our model. A potential reason is that NeurJudge
exploits the dependencies among LJP tasks well,
while our model is trained on the independent task.

D.3 Visualization

We provide several visualization cases in the CAIL
dataset as shown in Figure 6, which are selected by
RNP, Inter-RAT and INVRAT. Among them, an-
notated rationales are underlined. RNP, INVRAT
and Inter-RAT rationales are highlighted in yel-
low, green and pink colors, respectively. From
the Figure 6, we can find that RNP fails to predict
the charge and considers it as Intentional homicide
with capturing the tokens denoting violence and
death. On the contrary, both Inter-RAT and IN-
VRAT predict the charge correctly, but Inter-RAT
can extract more comprehensive rationales (i.e.,
The victim’s death was consistent with an acute
heart attack), which support the victim’s death was
due to the negligence. This observation further
demonstrates our causal intervention method can
select more sufficient rationales for yielding results.
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