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Abstract

In this paper, we study multimodal corefer-
ence resolution, specifically where a longer de-
scriptive text, i.e., a narration is paired with
an image. This poses significant challenges
due to fine-grained image-text alignment, in-
herent ambiguity present in narrative language,
and unavailability of large annotated training
sets. To tackle these challenges, we present
a data efficient semi-supervised approach that
utilizes image-narration pairs to resolve corefer-
ences and narrative grounding in a multimodal
context. Our approach incorporates losses for
both labeled and unlabeled data within a cross-
modal framework. Our evaluation shows that
the proposed approach outperforms strong base-
lines both quantitatively and qualitatively, for
the tasks of coreference resolution and narrative
grounding.

1 Introduction

In linguistic processing, coreference resolution
is a standard task that aims to identify referring
expressions such as noun phrases and pronouns
that refer to the same entity. It is fundamental
to many standard problems including question an-
swering (Kwiatkowski et al., 2019; Das et al.,
2017), sentiment analysis (Cambria et al., 2017;
Medhat et al., 2014), summarization (Gupta and
Lehal, 2010; Shi et al., 2021) and machine transla-
tion (Lopez, 2008; Bahdanau et al., 2014; Wu et al.,
2016). In this work, we focus on a multimodal
coreference resolution (MCR) scenario where the
coreferences occur in a narration paired with an
image and also link to an image region as shown
in Figure 1. Here resolving coreferences is chal-
lenging, as mentions referring to different entities
can be very similar when encoded by a language
model, e.g., one boy, the other boy, the boy. Hence
it demands a fine-grained understanding of each
modality and as well as across them. In particular,
it requires simultaneously grounding instances by

we can see two small boys are sitting on a
white color mat and in that one boy is crying
and he is wearing a yellow color t-shirt and
grey color short. The other boy is wearing

white color t-shirt and cream color short and
he is also holding some object in his hand.
On the head of the boy we can see a white

color sticker and on their t-shirts we can see
some text and designs also.

Figure 1: Example image-narration pair from the Coref-
erenced Image Narratives dataset (Goel et al., 2022).
Phrases marked in the same color corefer to the same
entity which are also grounded in the image. We do not
show singletons for brevity.

identifying fine-grained visual details (e.g., disam-
biguating them by recognizing the action ‘crying’,
spotting ‘white color t-shirt and cream color short’
or ‘a white color sticker on the head’), and captur-
ing long-range dependency across sentences (e.g.,
two small boys and their).

MCR has recently gained increasing attention,
with several notable studies (Ramanathan et al.,
2014; Huang et al., 2018; Cui et al., 2021; Parcal-
abescu et al., 2021; Das et al., 2017; Guo et al.,
2022; Goel et al., 2022; Hong et al., 2023). How-
ever, many of them focus on images with sim-
ple short sentences, such as ‘A woman is driving
a motorcycle. Is she wearing a helmet?’ (Das
et al., 2017; Parcalabescu et al., 2021), or are lim-
ited to identifying movie characters or people (Ra-
manathan et al., 2014; Cui et al., 2021). More
recently, Goel et al. (2022) introduced a challeng-
ing and unconstrained MCR problem (see Figure 1)
including a dataset, Coreferenced Image Narratives
(CIN), with both people and objects as referents
with long textual descriptions (narrations). As man-
ually annotating a large dataset with coreferenc-
ing and grounding labels is expensive, the authors
provide annotations only for evaluation purposes.
They also propose a weakly supervised method
that learns to jointly ground mentions in images
and use them as anchors along with prior linguistic
rules (Lee et al., 2011) to group coreferring men-
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tions from only image and narration pairs without
the annotations. The method has multiple short-
comings: (1) weakly supervised grounding fails to
disambiguate multiple instances of the same object
class, boy (one boy, the other boy), (2) language
rules such as exact match of phrases are either too
strict or too generic, e.g., pronoun match, linking
pronouns to one antecedent (one boy, he, he, his)
and, (3) they require an additional modality, mouse
traces to learn coreferences which can be expensive
to obtain.

Motivated by these limitations, we argue that it
difficult to successfully resolve coreferences from
only image-narration pairs in cases where multiple
instances of the same object category are present;
this situation is common coincides with a men-
tion in the narration. Since full manual annota-
tions of coreference chains and bounding boxes
is expensive, we propose to resolve coreferences
and ground mentions in a semi-supervised setting
where only a few data samples are labeled. Our ap-
proach involves a customized multi-modal fusion
model that combines image region features and
mention features from narrations through cross-
attention (Vaswani et al., 2017; Li et al., 2021).
We investigate different task-specific losses for
training on labeled and unlabeled data, and show
that naively combining training on the labeled and
pseudo-labeled data suffers from severe overfit-
ting (Arazo et al., 2020). Hence, we propose a
robust loss function and thresholding-based train-
ing scheme to effectively learn from the unlabeled
set. This novel approach results in consistent per-
formance improvements with the inclusion of unla-
beled data during training.

Our main contributions are (1) a vision-language
framework for MCR trained on a small labeled
and an unlabeled dataset, (2) novel task-specific
losses (on both labeled and pseudo-labeled data) for
learning joint multi-modal embeddings for coref-
erence resolution while simultaneously improving
narrative grounding, (3) extensive evaluation of our
proposed method on the CIN dataset and ablation
studies to validate our design choices, showing con-
sistent performance gains compared to baselines
on coreference resolution and narrative grounding.

2 Related work

Multimodal coreference resolution. MCR in-
volves comprehending the contextual information
in language and establishing connections with spe-

cific regions in an image. Recently, consider-
able efforts have been dedicated to developing
datasets that can effectively address this intricate
task. Parcalabescu et al. (2021) introduced the
VALSE dataset, which encompasses various coref-
erence scenarios. However, this dataset focuses
on the downstream task of visual question answer-
ing without evaluating coreference resolution or
grounding. Hence, we evaluate our method on CIN
dataset (Goel et al., 2022) that contains coreference
chains and grounding annotations. Another ap-
proach to MCR datasets involves linking people’s
names mentioned in the text to corresponding im-
ages and resolving pronouns that connect to those
specific names (Ramanathan et al., 2014; Cui et al.,
2021; Hong et al., 2023). However, our main fo-
cus is to resolve coreferences in a generic scenario
(with visual complexity) unlike the others that are
either limited to only people names/characters (Ra-
manathan et al., 2014; Cui et al., 2021; Hong et al.,
2023) or have simple sentences (Das et al., 2017;
Parcalabescu et al., 2021).

Vision-language learning. Existing work on vi-
sion and language understanding employs either
pre-trained object detector features (He et al., 2017;
Ren et al., 2015) as an image encoder, ViT (Doso-
vitskiy et al., 2020) or a CNN (Simonyan and Zis-
serman, 2014) combined with a transformer-based
text encoder (Devlin et al., 2018). To model cross-
modal interaction between the image and text en-
coders, UNITER (Chen et al., 2020), ALBEF (Li
et al., 2021) and VinVL (Zhang et al., 2021b) em-
ploy a multimodal encoder. They are pre-trained on
large-scale image-caption pairs such as COCO (Lin
et al., 2014), Conceptual captions (Sharma et al.,
2018; Changpinyo et al., 2021), Visual Genome
(Krishna et al., 2017). The pre-training objectives
are implemented with image-text contrastive loss,
masked language modeling, and image-text match-
ing loss. Our method is inspired by these architec-
tures and is trained using a set of self-supervised
and task-based objectives in a semi-supervised
learning fashion.

Semi-supervised learning. There is a large body
of work in semi-supervised learning (Zhai et al.,
2019; Van Engelen and Hoos, 2020; Ouali et al.,
2020). These methods typically exploit unlabeled
data via either pseudo-labeling with small amounts
of labeled data (Lee et al., 2013; Arazo et al., 2020;
Rizve et al., 2021; Sohn et al., 2020; Zhang et al.,
2021a) or by enforcing consistency regularization
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(Berthelot et al., 2019; Abuduweili et al., 2021) on
the unlabeled data to produce consistent predictions
over various perturbations of the same input by
applying several augmentation strategies (Zhang
et al., 2017; Cubuk et al., 2018, 2020). Our method
draws inspiration from pseudo-labeling literature
and uses a robust loss function and thresholding to
counter overfitting to pseudo-labels.

3 Method

3.1 Task Overview
Our goal is (1) to group mentions (i.e., referen-
tial words or phrases) in the narration that core-
fer to the same entity and, (2) to ground each
mention to a region in an image. Formally, let
N = {m1,m2, . . . ,m|N |} denote a narration with
|N | mentions for an image I with |I| regions where
I = {r1, r2, . . . , r|I|}. We wish to learn an embed-
ding function f that takes in an image I and its
narration N , parsed to contain a set of mentions,
and outputs a score for a mention pair (m,m′):

f(m) · f(m′)
|f(m)||f(m′)| (1)

The mention pair m and m′ corefers if the score in
Equation (1) is high, otherwise they do not.

For grounding of the mention m on the image
region r, we also learn another function g that out-
puts a score for the mention m being located at
region r in image I . Next, we describe in detail our
methodology to learn the two functions f and g.

3.2 Model Architecture
In Figure 2, we illustrate our model architecture.
Each image is parsed into a set of regions through a
pre-trained object detector (Ren et al., 2015), where
each region r is represented by a d-dimensional
joint embedding vr ∈ Rd including its visual, se-
mantic and spatial features. In particular, the visual
encoder fv is instantiated as a transformer block
that takes in a joint feature embedding vr for the
object region r and outputs a D dimensional em-
bedding, i.e., fv(vr) : Rd → RD.

Furthermore, we encode the words in each nar-
ration N using a tokenizer (Devlin et al., 2018) to
get a set of tokens for the words w ∈ RV where V
is the vocabulary size. The text encoder ft which
is also a transformer block that takes in the word
token w and outputs a D dimensional embedding,
i.e., ft(w) : RV → RD. The mention embeddings
are computed by averaging its corresponding word
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unlabeled data
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Figure 2: Illustration of our model architecture and
training methodology. The pre-extracted image regions
are fed into the visual encoder, the narrations are fed
into the text encoder and both modalities are fused using
a multimodal encoder. The model is optimized using
self-supervised objectives (in grey) and specialized task-
based losses on both the labeled data (in yellow boxes)
and the pseudo-labeled data (in green boxes).

representations as: ft(m) = 1
|m|

∑
w∈m ft(w)

where, |m| indicates the mention length in words,
and the embeddings ft(m) have the same dimen-
sionality as the visual features.

Next, the multi-modal encoder f fuses the visual
features from the visual encoder fv(vr) with the
mention features from the text encoder ft(m). Sim-
ilar to the cross-modal architectures (Li et al., 2021;
Zhang et al., 2021b), the embeddings from the text
encoder are first encoded using self-attention lay-
ers (Vaswani et al., 2017). Then, a multi-head
cross attention module integrates the textual and
visual features. In the cross-attention module,
the self-attended mention embeddings ft(m) are
treated as the query, while the image representa-
tions fv(vr) are treated as keys and values. The
attention weights between the mention m and the
region r are given as:

g(m, r) =
exp(ft(m)T .fv(vr)√

d
)

∑
r′∈I exp(

ft(m)T .fv(vr′ )√
d

)
(2)

where the softmax is computed over the image
regions for each mention. This attention matrix
(or the grounding function) g from the multi-head
cross attention learns fine-grained mention to re-
gion alignment scores. Finally, the vision-aware
mention embedding is represented as:

f(m) = g(m, r).fv(vr) (3)
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where, f(m) ∈ RD. This weighted embedding
is then passed to a feed-forward module (Li et al.,
2021) with an MLP and layer normalization. All
the transformer encoders/blocks are based on the
architecture proposed by (Li et al., 2021). It is im-
portant to note that compared to Goel et al. (2022),
our model fuses vision and text features with a
multimodal encoder, unlike theirs.

3.3 Semi-supervised Learning
Concretely, we aim to learn the parameters of the
modules fv, ft and f given a training dataset D
with |D| samples of image-narration pairs. Specifi-
cally, we use a small labeled set Ds = {xi, yi}|Ds|

i=1

where xi = {I,N} is the image-narration input
pair and yi = ∀m∈N{P (m), A(m), bm} is the la-
bel for the input pair. In particular, the label for
each mention m in the narration is given as: P (m)
and A(m), the set of positive and negative men-
tions respectively for the mention m and bm, the
bounding-box coordinates of the region correspond-
ing to the mention m.

Due to the unavailability of a large labeled train-
ing set, we leverage the unlabeled data Du = D\Ds

where, Du = {xi}|Du|
i=1 with only image-narration

pairs as inputs. Our overall training objective is the
joint loss function as follows:

∑

(x,y)∈Ds

1

|Ds|
Ls(x, y) +

∑

x∈Du

1

|Du|
Lu(x) (4)

where, Ls is the supervised loss and Lu is the un-
supervised loss. First, we discuss how to formulate
task-based supervised losses on the dataset Ds.
(S1) Coreference loss (CR) Specifically, we pro-
pose to learn the similarity between the mention
embeddings using a supervised contrastive loss
(Khosla et al., 2020) which is defined as:

Lcr =
∑

m∈N

−1

|P (m)|
∑

p∈P (m)

log
exp(f(m).f(p)/τ)∑

a∈A(m) exp(f(m).f(a)/τ)

(5)

where τ is the temperature. This loss helps to clus-
ter embeddings for coreferring mentions together
and push the embeddings of non-referrants away
from each other.
(S2) Grounding loss (GD) To align the mention m
and region r, we use the grounding function g de-
fined in Equation (2). In particular, we first define
the ground-truth binary alignment on the labeled

training set Ds. For the ground-truth bounding box
bm for a mention m we compute the intersection
over union (IoU) between this bounding-box and
the R pre-extracted image regions. This is crucial
because we don’t have the exact region-mention
match for the detections from the object detector.
Following this, we get the binary alignment func-
tion h(m, r), which is 1 for the mention m and
the detected image region r if the region r has
the maximum IoU overlap with the ground-truth
bounding box bm, and 0 otherwise. Once we have
the ground-truth alignment h(m, r), we compute
the cross-entropy loss as:

Lgd = −
∑

m∈N

∑

r∈I
h(m, r)log(g(m, r)) (6)

(S3) Bounding box regression loss (BBR) We fur-
ther propose to add additional supervision to re-
fine the object proposals from the detector for a
mention. For each mention m, the ground-truth
bounding box localization is represented as bm =
(x, y, w, h). To learn refinements, we predict the
box deltas from the model as δm = (δx, δy, δw, δh)
for each mention m. We then take the highest scor-
ing region for a given mention m as:

rm = argmax
r∈I

g(m, r). (7)

Our goal is to learn a transformation that maps a
proposed box rm to a ground-truth box bm. We
then apply the smooth-L1 loss following Ren et al.
(2015), denoted as Lbbr. Further details about this
loss are given in the appendix.

Next, we discuss how to train on the unlabeled
subset of the dataset by generating pseudo-labels
for the coreference and grounding tasks.
(U1) Pseudo coreference loss (PCR) Given the un-
labeled dataset Du, we compute the pseudo corefer-
ring pairs for the mentions in N . More specifically,
we compute pseudo-positives P̂ (m) and pseudo-
negatives Â(m) for a mention m by computing
the cosine similarity between the embeddings as in
Equation (1). For each mention m, if the similarity
with another mention m′ is greater than a threshold
then we label it as a positive otherwise a negative.
Finally, we compute the triplet loss as:

Lpcr =
∑

m∈N
max(||f(m)− 1

|P̂ (m)|
∑

p∈P̂ (m)

f(p)||2

−||f(m)− 1

|Â(m)|
∑

a∈Â(m)

f(a)||2 + α, 0)

(8)
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where α is the margin, f(m) is the embeddings
for the query mention m, 1

|P̂ (m)|
∑

p∈P̂ (m) f(p) is
the mean of embeddings of the pseudo-positive
labels P̂ (m) and 1

|Â(m)|
∑

a∈Â(m) f(a) is the mean

of embeddings of the pseudo-negative labels Â(m).
The key intuition behind using the mean in a

triplet loss formulation is to reduce overfitting to
the noise in the pseudo labels. This works bet-
ter in practice compared to the contrastive loss
formulation in Equation (5) or mining a random
positive/negative label for the standard triplet loss,
especially when dealing with pseudo labels.
(U2) Pseudo grounding loss (PGD) Furthermore,
we compute the pseudo grounding loss on the un-
labeled training dataset. Specifically, we impute
the pseudo-labels from the grounding function,
g(m, r). We only consider samples whose ground-
ing score is greater than a confidence threshold t,
which is set to 0.9 in our experiments. The high
threshold value ensures that we consider only con-
fident samples in the unlabeled set and eliminates
learning from noisy samples. We denote this label
after binary thresholding as ĥ(m, r). The pseudo
grounding alignment loss is:

Lpgd =
∑

m∈N

∑

r∈I
−ĥ(m, r)log(g(m, r)) (9)

Apart from the above mentioned task-based
losses, we combine the standard image-text pre-
training losses (Vaswani et al., 2017; Li et al., 2021).
These losses help to learn better unimodal repre-
sentations before fusion.
(U3) Image-Text contrastive loss (ITC) Following
Goel et al. (2022), we incorporate the contrastive
loss to align the image and narration pairs to learn
better representations before fusion. This loss is
defined as:

Litc =
∑

m∈N
− log

( exp(fv(vr)ft(m))∑
r′∈I exp(fv(vr′)ft(m)))

)

(10)
where fv(vr)ft(m) is the mention-region match-
ing score from the visual and text representations
before fusing in the multi-modal encoder and vr
are the raw features for the highest scoring region
for a mention m.
(U4) Masked language modeling loss (MLM) To
fine-tune the pretrained BERT model (Devlin et al.,
2018) on the image-narration data, we also use
the pre-trained task of masked language modeling.
In particular, the input word tokens are randomly

masked and are replaced by a special masking to-
ken. The model needs to predict the mask token
based on the unmasked words. This task is trained
with a cross-entropy loss, Lmlm.

Hence, our overall training objective in Equa-
tion (4) is a combination of specialized task losses
on the labeled training set Ds (Lcr, Lgd and Lbbr)
and the unlabeled training set Du (Lpcr and Lpgd)
and global pre-training objectives on the entire
training dataset D (Litc and Lmlm).

3.4 Inference

To obtain the coreference scores, we form chains
by measuring the cosine similarity between the
mentions as described in Equation (1), considering
the pairs with similarity higher than a predefined
threshold as positives. When evaluating narrative
grounding, we extract the cross-attention scores
from the last layer of the multimodal encoder. For
each mention, we identify the region with the high-
est softmax score as the positively referred region.

4 Experiments

Datasets. We evaluate our proposed method on
the CIN dataset (Goel et al., 2022) that consists
of 1000 test and 880 validation image-narration
pairs from the Flickr30k split of the Localized Nar-
ratives dataset (Pont-Tuset et al., 2020) annotated
with coreference chains and bounding boxes. We
use the test split of the CIN dataset to report the
performance on CR and narrative grounding. The
annotations from the validation split are used as
the small labeled set during training. The unla-
beled dataset is the Flickr30k training subset of
the Localized Narratives dataset, which consists of
50k image-narration pairs but is not annotated with
bounding boxes or coreference chains.
Implementation details. For the image regions,
we extract bounding box regions, visual features
and object class labels using the Faster-RCNN ob-
ject detector (Ren et al., 2015) as in Goel et al.
(2022). We use a 4-layer transformer architecture
for the text encoder and the multi-modal encoder
similar to the ALBEF (Li et al., 2021) framework.
The weights of the transformer encoders are initial-
ized with the first four layers of BERT (Devlin et al.,
2018). The visual encoder is a stack of two trans-
former encoder layers. Each transformer encoder
layer includes a multi-head self-attention layer and
an FFN. There are two heads in the multi-head at-
tention layer, and two FC layers followed by ReLU
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Method
Modality MUC B3 CEAFϕ4 CoNLL

Text Image R P F1 R P F1 R P F1 F1

Neural Coref (Lee et al., 2017)†∗ ✓ ✗ 0.11 0.17 0.13 - - - - - - -

longdoc (Toshniwal et al., 2021)∗ ✓ ✗ 7.79 8.43 7.24 62.27 76.10 67.69 48.77 84.95 61.02 45.31

VisualBERT (Su et al., 2019)∗ ✓ ✓ 18.17 6.08 8.06 69.01 36.08 41.03 21.25 57.10 28.67 25.92

UNITER (Chen et al., 2020)∗ ✓ ✓ 16.92 7.15 8.83 68.34 44.29 50.22 28.12 72.78 38.91 32.65

VinVL (Zhang et al., 2021b)∗ ✓ ✓ 16.76 8.60 9.75 68.49 62.32 61.30 42.88 80.81 53.69 41.58

MAF (Wang et al., 2020) ✓ ✓ 19.07 15.62 15.65 - - - - - - -

WS-MCR (Goel et al., 2022) ✓ ✓ 24.87 18.34 19.19 - - - - - - -

Ours
✓ ✗ 13.30 14.12 12.55 67.91 79.48 72.41 56.05 86.20 67.05 50.67

✓ ✓ 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table 1: Coreference resolution results on the CIN dataset (Goel et al., 2022) from our proposed method and other
state-of-the-art unimodal and multi-modal baselines. † indicates the use of predicted mentions, while the other
results rely on ground-truth mentions during inference. ∗ means zero-shot performance.

activation layers in the FFN. Training details are in
the appendix.
Evaluation. We report results for coreference reso-
lution and narrative grounding. For the former, we
use the standard CoNLL F1 score which is the aver-
age of three coreference-based metrics: MUC, B3

and CEAFϕ4. For the latter, we follow Goel et al.
(2022) and report the grounding accuracy for both
noun phrases and pronouns. More precisely, if the
overlap between the ground-truth box and the pre-
dicted box is greater than 0.5, then it is considered
to be a correct prediction.

5 Results and Discussion

5.1 Coreference Resolution

Table 1 reports the coreference resolution perfor-
mance on the CIN dataset (Goel et al., 2022) for
our method and the baselines. Further details about
the baselines are given in the appendix. The text-
based baselines Neural Coref (Lee et al., 2017) and
longdoc (Toshniwal et al., 2021) are evaluated in
a zero-shot way on the task. Their low CoNLL
F1 scores indicate the incapability of the model to
generalize to new domains which is in line with
what has been evaluated extensively in the coref-
erence literature (Toshniwal et al., 2021; Xia and
Van Durme, 2021; Gandhi et al., 2023).

We further compare to strong multi-modal base-
lines by directly evaluating the VLMs in a zero-
shot way on the CIN dataset. Interestingly, all
three methods: VisualBERT (Su et al., 2019),
UNITER (Chen et al., 2020) and VinVL (Zhang
et al., 2021b) perform better in MUC and B3 com-
pared to the text-based baseline, longdoc (Toshni-

wal et al., 2021), but drop in performance on the
average CoNLL F1 scores. These results show the
inability of these models to effectively find sin-
gletons, hence leading to poor performance in the
precision scores. Moreover, we can conclude that
the vision and language pre-trained models fail to
generalize for MCR.

We also compare to two weakly supervised meth-
ods that are trained on the CIN dataset, MAF
(Wang et al., 2020) and WS-MCR (Goel et al.,
2022). Goel et al. (2022) present results on the
MAF model as a baseline and their proposed
method, WS-MCR. MAF is a weakly supervised
grounding method trained with ITC that is evalu-
ated for CR and WS-MCR (Goel et al., 2022) learns
weakly-supervised grounding and CR combining
the ITC loss and prior linguistic rules. Both of these
methods improve significantly in MUC scores com-
pared to other zero-shot unimodal and multi-modal
baselines.

Finally, we compare with the text-only variant
(without any images) of our method. This method
improves over the baselines on the CoNLL F1
scores. The significant gains in performance of our
final method, with both text and image, combined
with label supervision shows the importance of
carefully tuning the model with a small amount of
labeled data and large amounts of pseudo-labeled
data.

5.2 Narrative Grounding

In Table 2, we present a comprehensive comparison
between the baselines and our proposed approach
on the task of narrative grounding. This task is both
challenging and crucial, as it evaluates the precise
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alignment between image regions and phrases in
textual data. Notably, our proposed method goes
beyond the traditional alignment of noun phrases
and also addresses the grounding pronouns, which
is vital for multimodal coreference resolution. We
measure noun phrase grounding, pronoun ground-
ing, and overall accuracy to measure performance
(Goel et al., 2022).

Remarkably, our proposed method exhibits supe-
rior performance compared to weakly supervised
baselines, showing a margin of improvement if
approximately 2% and 2.5% in noun phrase and
pronoun grounding accuracy, respectively. Further-
more, when compared to our unsupervised base-
line, namely “Ours (ITC + MLM)”, the inclusion of
labeled and pseudo-labeled data yields a significant
performance boost of approximately 6%. These re-
sults demonstrate the significance of training with
both grounding alignment and coreference resolu-
tion loss, highlighting the mutual benefits derived
from this approach.

Method Noun Phrases Pronouns Overall

MAF (Wang et al., 2020) 21.60 18.31 20.91
WS-MCR (Goel et al., 2022) 30.27 25.96 29.36

Ours (ITC + MLM) 27.44 22.77 26.45
Ours (Full) 32.58 28.45 31.71

Table 2: Comparison of narrative grounding perfor-
mance on the CIN dataset (Goel et al., 2022).

5.3 Ablation Study
Varying labeled and unlabeled data. We study
the impact of labeled data on the learning process,
allowing us to showcase the strengths of our ap-
proach. In Table 3, we measure the model’s perfor-
mance on CoNLL F1 scores at different proportions
of labeled data (20% and 50%). Remarkably, de-
spite the limited amount of labeled data samples,
the model demonstrates consistently high perfor-
mance without any significant drop. This highlights
the exceptional ability of our model to effectively
learn from a small labeled set, without relying on a
large number of annotated training samples.

Furthermore, to validate the efficacy of our pro-
posed method, we also investigate the influence of
unlabeled data samples during training. Following
the same data split as in the supervised experiments,
we observe the changes in performance indicated
by row 2 in Table 3. As the quantity of unlabeled
samples increases, the model exhibits enhanced
coreference resolution performance. This result

Data type % Samples CoNLL F1

Labeled
20% 60.04
50% 61.24

Unlabeled
20% 56.82
50% 59.11

Table 3: CR performance by changing the amount of
labeled and unlabeled data during training.

reinforces the ability of our proposed method to
leverage and effectively learn from pseudo-labeled
data. Detailed results are in the appendix.
Impact of different loss functions. In Table 4,
we assess the performance of coreference resolu-
tion by incorporating various losses proposed in
Section 3. Throughout the training process, the
model consistently integrates the self-supervised
objectives of ITC and MLM, see first row of Table 4.

Integrating the supervised contrastive corefer-
ence resolution loss, CR, in addition to ITC and MLM,
results in a significant performance drop. Due to
the limited availability of labeled data, the model
struggles to effectively generalize for coreference
resolution, leading to overfitting and consequently
lower F1 scores. However, by progressively incor-
porating the bounding box regression loss, BBR, and
the grounding alignment loss GD, we get a much
stronger training signal even with a small labeled
set. This multi-task training objective contributes
to an improvement of approximately 1.5% in the
CoNLL F1 score.

Subsequently, we investigate the impact of incor-
porating loss on pseudo-labeled data. By introduc-
ing the pseudo coreference loss, denoted as PCR,
we observe a remarkable improvement of approx-
imately 2% in the CoNLL F1 scores. This result
highlights the significance of leveraging pseudo
clusters and underscores the effectiveness of our
proposed robust triplet loss, which computes the
triplet loss using the mean of positive and negative
embeddings. Notably, this approach successfully
incorporates pseudo-labeled data without leading
to overfitting while achieving substantial perfor-
mance gains. Consequently, our final proposed
method, which integrates the pseudo grounding
loss, PGD, exhibits the most superior overall perfor-
mance, validating the potency of pseudo-labels for
both coreference resolution and grounding.
Choice of coreference resolution loss. In Table 5,
we examine the impact of different types of coref-
erence resolution losses. We present a compari-
son of the following loss combinations: (1) Binary
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Losses MUC B3 CEAFϕ4 CoNLL

PCR(U1) PGD(U2) ITC(U3) MLM (U4) CR (S1) GD (S2) BBR (S3) R P F1 R P F1 R P F1 F1

✗ ✗ ✓ ✓ ✗ ✗ ✗ 23.81 25.83 23.12 69.32 85.87 76.41 61.00 89.69 72.05 57.19

✗ ✗ ✓ ✓

✓ ✗ ✗ 22.70 21.40 20.23 69.05 80.03 73.66 55.52 87.09 67.20 53.70

✓ ✗ ✓ 23.86 24.52 22.31 69.31 84.15 75.67 59.50 89.15 70.80 56.26

✓ ✓ ✓ 27.68 29.04 26.66 69.93 85.43 76.61 60.92 90.61 72.26 58.51

✓ ✗
✓ ✓ ✓ ✓ ✓

30.66 32.82 30.31 70.70 86.09 77.33 62.64 92.92 74.27 60.64

✓ ✓ 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table 4: Ablation study on our proposed method with the combination of the proposed losses.

CR Loss MUC B3 CEAFϕ4 CoNLL

on Ds on Du R P F1 R P F1 R P F1 F1

BCE BCE 23.63 23.55 21.57 69.50 81.94 74.47 57.68 88.01 68.95 55.00

CR CR 28.20 22.47 23.08 70.10 76.29 72.40 52.32 87.22 64.71 53.40

CR RTC 29.24 32.41 29.46 70.37 86.71 77.45 63.14 92.59 74.55 60.49

CR PCR 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table 5: Performance comparison with the choice of
coreference resolution loss on the labeled dataset Ds

and the unlabeled dataset Du.

cross-entropy loss (BCE) applied to both Ds and Du,
(2) Supervised contrastive loss (CR) applied to both
Ds and Du, and (3) Supervised contrastive loss (CR)
on Ds and random triplet mining loss (RTC) on Du.

We observed a significant performance drop
when training with the BCE loss, compared to uti-
lizing the supervised contrastive loss. We hypothe-
size that the supervised contrastive loss provides a
better clustering of mentions by contrasting them
in the embedding space directly than the binary
cross-entropy loss. Consequently, the embeddings
become more robust for CR, contributing to im-
proved performance.

Interestingly, when applying the supervised con-
trastive loss to Du (row 2), we observed a drop in
performance. Our hypothesis is that the contrastive
loss tends to overfit in the presence of noisy pseudo
labels, leading to a degradation in performance. In
contrast, our pseudo triplet loss formulation PCR
is softer in penalizing noisy pseudo labels. This
allows the model to gradually adapt and become
more resilient to such noise, resulting in more effi-
cient clustering of mentions. We also compare to
another ablation where instead of taking the mean
of the embeddings for pseudo-positive labels and
pseudo-negative labels, we sample a random pos-
itive and negative label (results in row 3) abbrevi-
ated as RTC. Randomly sampling the labels gener-
alizes better than the other ablations but the mean
cluster embeddings outperforms than randomly se-
lecting samples.

in this image i can see people sitting in train
and the front man is sleeping and a man

standing and the background is blurry.

Ours

in this image i can see people sitting in train
and the front man is sleeping and a man

standing and the background is blurry.

WS-MCR (Goel et al., 2022)

Figure 3: Visualization for grounding and coreference
resolution. The colored boxes in image correspond to
the mentions with the same color in the sentence.

5.4 Qualitative Results

In Figure 3, we qualitatively visualize the perfor-
mance of our method and compare it with the
weakly supervised baseline from Goel et al. (2022).
Our model correctly separates the mentions the
front man and the the man both during CR and
grounding, whereas the WS-MCR (Goel et al.,
2022) method incorrectly assigns the mention the
man to the the front man and grounds it incorrectly
too (denoted by the blue dotted line). Hence, our
method can effectively learn to disambiguate the
instances based on the visual details which is also
helpful for coreference resolution.

6 Conclusion

In conclusion, this paper addresses the challenging
task of multimodal coreference resolution where
an image is accompanied by a longer descriptive
text. We propose a data efficient semi-supervised
approach that incorporates task-based losses for
both labeled and unlabeled data, operating within
a cross-modal framework. Our method achieves
remarkable results for CR and narrative grounding
tasks on the CIN dataset, showcasing its effective-
ness in handling the complexities of MCR. In the
future, we plan to investigate how the power of
pre-training combined with semi-supervised fine-
tuning can be fully utilized for the task of MCR.
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Limitations

Here, we outline limitations that are important con-
siderations for future work.

First, the current model’s performance in coref-
erence resolution and grounding is limited by the
use of a pre-trained object detector. The detectors
pretrained for object detection task have a limited
object category vocabulary and lack in fine-grained
properties including adjectives, human actions and
the open vocabulary found in narrations. This
forces the model to rely on a predetermined set
of regions and object classes, preventing it from
directly learning region coordinates for a mention
on an image. To improve performance, we envi-
sion the development of an end-to-end approach
that eliminates this reliance on pre-defined regions.

Second, our model currently depends on ground-
truth mentions to resolve coreferences and ground
them. In the future, one promising direction would
be to detect mentions simultaneously with corefer-
ence resolution and grounding. This would signif-
icantly improve the applicability of our proposed
method and reduce dependence on off-the-shelf
mention detectors or ground-truth annotations.

Ethics Statement

All datasets used in this work have been previ-
ously released. The use of the CIN dataset (Goel
et al., 2022) in our paper is consistent with their
intended use. The detail of the dataset is descri-
bied in Goel et al. (2022). Multimodal datasets
frequently include social biases, and we expect the
models trained on them to reflect the biases in these
datasets. It is important to note that multimodal
models have both beneficial and harmful applica-
tions. Beneficial applications include advanced
image and video retrieval, visual description sys-
tems to assist the visually impaired, and user in-
terfaces that enhance interaction with smart home
devices. However, harmful applications, such as
non-consensual surveillance or fine-tuning models
to retrieve inappropriate content, must be carefully
addressed and mitigated.
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Appendix

A Baselines

We consider the following baselines to fairly com-
pare and evaluate our proposed method:
(a) Text-only CR: For all these methods, we di-
rectly evaluate the coreference chains using the
narration only without the image. (1) Neural-Coref
(Lee et al., 2017): This method is trained end-to-
end using a neural network on a large corpus of
wikipedia data to detect mentions and coreferences.
For this baseline, we use the predicted mentions
instead of the gold mentions. (2) longdoc (Tosh-
niwal et al., 2021): This is a strong transformer
based method using Longformer-Large as the back-
bone for coreference resolution, trained on multiple
datasets. We use the gold mentions to predict coref-
erence chains for this model.
(b) Multi-modal CR: We evaluate strong vision
and langauge models for the task on coreference
resolution on the CIN dataset. (1) VisualBERT (Su
et al., 2019), UNITER (Chen et al., 2020), VinVL
(Zhang et al., 2021b): All these three baselines are
strong vision language models trained on image-
caption data and shows improvements on a variety
of downstream tasks such as VQA, NLVR etc. To
test it for CR, we compute the cosine similarity
for the multi-modal mention embeddings in a zero-
shot way. (2) MAF (Wang et al., 2020): MAF is a
weakly supervised phrase grounding method, orig-
inally trained on the Flickr30k-Entities (Plummer
et al., 2015). Goel et al. (2022) train this model
on narrations data and evaluate it for CR. (3) WS-
MCR (Goel et al., 2022): This is a strong weakly
supervised method for multimodal coreference res-
olution on the CIN dataset (Goel et al., 2022). In
this method, they train a vision and text encoder
with an image-text contrastive loss and weak prior
linguistic rules as a regularizer.

B Bounding box regression loss (BBR)

We define the smmoth-L1 loss (Ren et al., 2015)
for the bounding box transformation as follows:

Lbbr =

{
0.5(bm − b′m)2/β, if |bm − b′m| < β

|bm − b′m| − 0.5 ∗ β, otherwise
(11)

where β is set to 1 following previous work (Gir-
shick, 2015; Ren et al., 2015), b′m are the trans-
formed bounding box coordinates after applying
the delta transformation δm on the maximum re-
gion proposal rm similar to (Girshick, 2015).

C Training details

The whole architecture is trained end-to-end with
the AdamW (Loshchilov and Hutter, 2017) opti-
mizer. The initial learning rate of the model is
1e-5. The learning rate is gradually warmed up
for 2 epochs with a unit multiplier and then de-
cayed following a step scheduler with step size of
10 epochs and gamma of 0.95. We use a batch size
of eight and weight decay of 0.01. The model is
trained for 30 epochs and we choose the best per-
forming model based on the test set. The model
is trained on 4 V100 GPUs with data parallelism.
All code and models will be made available at
https://github.com/VICO-UoE/CIN-SSL.

D Further Ablations

Pre-trained weights from ALBEF (Li et al.,
2021). In Table 6, we show CR results by replac-
ing the text-encoder and the multi-modal encoder
in our model from the ALBEF (Li et al., 2021)
framework with 6 transformer blocks in each en-
coders. Moreover, we use the pre-traiend weights
from ALBEF (Li et al., 2021) and then fine-tune
using our semi-supervised training strategies. De-
spite strong pre-training from ALBEF, the model
does not fine-tune and transfer well to the task of
MCR compared to our method which is initialized
with BERT weights.
Varying the threshold for pseudo-grounding loss.
In Table 7, we compare the results with differ-
ent grounding thresholds for the pseudo grounding
loss. Including all the pseudo predictions (thresh-
old of 0.0) leads to a significant drop in perfor-
mance showing the importance of thresholding-
based training strategy. Furthermore, as presented
in the results the threshold of 0.9 works the best
compared to 0.5 and 0.7.
Varying the amount of labeled and unlabeled
data. In Table 8 and Table 9, we present detailed
results from the discussion in Section 5.3 on differ-
ent CR metrics by varying the amount of labeled
and unlabeled data.

E Qualitative Results

In Figure 4 and Figure 5, we present detailed qual-
itative visualizations. Figure 4 shows the corefer-
ence chains predicted by our proposed method and
the baseline, WS-MCR (Goel et al., 2022). The
baseline model misses the instances of his to re-
late it to the the man (row 2, column 2) which is
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Method MUC B3 CEAFϕ4 CoNLL

R P F1 R P F1 R P F1 F1

Weights from ALBEF (Li et al., 2021) 31.70 25.97 26.47 70.78 78.35 73.77 54.58 89.02 66.94 55.73

Ours (Weights from BERT (Devlin et al., 2018)) 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table 6: CR performance with ALBEF (Li et al., 2021) as pre-trained weights.

Grounding MUC B3 CEAFϕ4 CoNLL

threshold R P F1 R P F1 R P F1 F1

0.0 28.20 22.47 23.08 70.10 76.29 72.40 52.32 87.22 64.71 53.40

0.5 31.18 30.04 28.92 70.80 82.67 75.76 59.68 92.18 71.77 58.82

0.7 30.48 33.34 30.58 70.63 86.74 77.58 63.30 93.22 74.85 61.01

0.9 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table 7: Performance of our proposed method by varying the grounding threshold t to include samples above this
threshold in Equation (9).

% Ds

MUC B3 CEAFϕ4 CoNLL

R P F1 R P F1 R P F1 F1

20% 26.40 31.18 27.26 69.83 88.26 77.75 64.25 92.02 75.11 60.04

50% 28.65 34.13 29.91 70.26 88.83 78.27 64.55 92.56 75.53 61.24

100% 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table 8: CR performance by varying the number of
labels in the labeled dataset.

% Du

MUC B3 CEAFϕ4 CoNLL

R P F1 R P F1 R P F1 F1

20% 30.96 27.09 27.20 70.84 79.36 74.23 56.49 90.79 69.04 56.82

50% 30.87 29.97 28.83 70.75 83.58 76.23 60.24 92.02 72.27 59.11

100% 31.11 35.25 31.86 70.63 87.85 78.06 63.99 93.44 75.47 61.79

Table 9: CR performance by varying the number of
labels in the unlabeled dataset.

correctly clustered by our method. Moreover, WS-
MCR (Goel et al., 2022) cannot relate big orange
color building to the building (row2, column 4) un-
like our method. This highlights that our method is
able to learn fine-grained correlations between the
image regions and text to effectively resolve such
ambiguities. Despite significant advantages, our
method still fails to resolve cases like some other
people by clustering them into the same chain. We
believe that the model needs more complex visual
understanding (localize different instance of some
other people) and contextual knowledge from text
(people standing on road vs people standing on
footpath) for these specific cases.

In Figure 5, we show grounding of the corre-
sponding mentions on the image from our proposed
method and the baseline WS-MCR (Goel et al.,

2022). Compared to the baseline, our method suc-
cessfully grounds entrance door, some other people
and two women. Hence our method clearly exhibits
strong coreference resolution and grounding capa-
bilities compared to previous work.
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in this image we can
see a man is dancing
on a road, and the
man is wearing white
color shirt and black
color pant.

we can also see a red and
white color cloth in 
his hand, and the man is
also wearing a orange and
black color belt around his
chest

 on the road we can see a
grey color car is parked,
and we can also see some
other people also standing
on the road
by holding flags

on the footpath we can see two women are
sitting and talking with each other, and in that
one woman is holding a baby, and we can also
see some other people are also standing on
the footpath, and in the background we can see a
big orange color building with white color glass
windows, and we can also see the entrance door
of the building.

in this image we can
see a man is dancing
on a road, and the
man is wearing white
color shirt and black
color pant.

we can also see a red and
white color cloth in 
his hand, and the man is
also wearing a orange and
black color belt around his
chest

 on the road we can see a
grey color car is parked,
and we can also see some
other people also standing
on the road
by holding flags

on the footpath we can see two women are
sitting and talking with each other, and in that
one woman is holding a baby, and we can also
see  some other people are also standing on
the footpath, and in the background we can see a
big orange color building with white color glass
windows, and we can also see the entrance door
of the building.

Ground Truth

Ours

in this image we can
see a man is dancing
on a road, and the
man is wearing white
color shirt and black
color pant.

we can also see a red and
white color cloth in 
his hand, and the man is
also wearing a orange and
black color belt around his
chest

 on the road we can see a
grey color car is parked,
and we can also see some
other people also standing
on the road
by holding flags

on the footpath we can see two women are
sitting and talking with each other, and in that
one woman is holding a baby, and we can also
see some other people are also standing on
the footpath, and in the background we can see a
big orange color building with white color glass
windows, and we can also see the entrance door
of the building.

WS-MCR (Goel et al., 2022)

Figure 4: Coreference resolution for an image-narration pair. We break down the full narration as individual
sentences in the columns for simplicity. The rows from top to bottom show ground-truth annotations, predictions
from the WS-MCR method (Goel et al., 2022) and Ours. The mentions in the same color form a part of the
coreference chain.
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Figure 5: Visualization of Grounding and CR performance. Zoom in for better visualization of bounding boxes.
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