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Abstract

Temporal data distribution shift is prevalent in
the financial text. How can a financial senti-
ment analysis system be trained in a volatile
market environment that can accurately infer
sentiment and be robust to temporal data dis-
tribution shifts? In this paper, we conduct an
empirical study on the financial sentiment anal-
ysis system under temporal data distribution
shifts using a real-world financial social media
dataset that spans three years. We find that the
fine-tuned models suffer from general perfor-
mance degradation in the presence of tempo-
ral distribution shifts. Furthermore, motivated
by the unique temporal nature of the financial
text, we propose a novel method that combines
out-of-distribution detection with time series
modeling for temporal financial sentiment anal-
ysis. Experimental results show that the pro-
posed method enhances the model’s capability
to adapt to evolving temporal shifts in a volatile
financial market.

1 Introduction

Natural language processing (NLP) techniques
have been widely adopted in financial applications,
such as financial sentiment analysis, to facilitate
investment decision-making and risk management
(Loughran and McDonald, 2016; Kazemian et al.,
2016; Bochkay et al., 2023). However, the non-
stationary financial market environment can bring
about significant changes in the data distribution be-
tween model development and deployment, which
can degrade the model’s performance over time
and, consequently, its practical value. For exam-
ple, a regime shift in the stock market refers to a
significant change in the underlying economic or
financial conditions. A regime shift, which may be
triggered by changes in interest rates or political
events, can significantly affect the market behav-
ior and investor sentiment (Kritzman et al., 2012;
Nystrup et al., 2018).

There has been limited research on the tempo-
ral dataset shift in the financial context. Existing
NLP works on financial sentiment analysis follow
the conventional approach that randomly splits a
dataset into training and testing so that there is
no distribution shift between training and testing
(Malo et al., 2014; Cortis et al., 2017). However,
in a real-world financial sentiment analysis sys-
tem, there could be unpredictable distribution shifts
between the data that is used to build the model
(in-sample data) and the data that the model runs
inference on (out-of-sample data). As a result, the
practitioners often face a dilemma. If the model
fits too well to the in-sample data, it may experi-
ence a drastic drop in the out-of-sample data if a
distribution shift happens (such as a regime shift
from a bull market to a bear market); if the model
is built to minimize performance disruption, its per-
formance may be unsatisfactory on the in-sample
data as well as the out-of-sample data.

In this paper, we raise our first research ques-
tion RQ1: how does temporal data shift affect the
robustness of financial sentiment analysis? The
question is not as trivial as it seems. For exam-
ple, Guo et al. (2023a) find that language models
are robust to temporal shifts in healthcare predic-
tion tasks. However, financial markets may exhibit
even more drastic changes. To answer this question,
we systematically assess several language models,
from BERT to GPT-3.5, with metrics that mea-
sure both the model capacity and robustness under
temporal distribution shifts. In our monthly rolling-
based empirical analysis, this dilemma between
in-sample performance and out-of-sample perfor-
mance is confirmed. We find that fine-tuning a pre-
trained language model (such as BERT) fails to pro-
duce robust sentiment classification performance
in the presence of temporal distribution shifts.

Moreover, we are interested in RQ2: how to
mitigate the performance degradation of financial
sentiment analysis in the existence of temporal dis-
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tribution shift? Motivated by the unique temporal
nature of financial text data, we propose a novel
method that combines out-of-distribution (OOD)
detection with autoregressive (AR) time series mod-
eling. Experiments show that OOD detection can
effectively identify the samples causing the model
performance degradation (we refer to those sam-
ples as OOD data). Furthermore, the model per-
formance on the OOD data is improved by an au-
toregressive time series modeling on the historical
model predictions. As a result, the model perfor-
mance degradation from in-sample data to out-of-
sample data is alleviated.

This work makes two contributions to the lit-
erature. First, while sentiment analysis is a very
well-studied problem in the financial context, the
long-neglected problem is how to build a robust
financial sentiment analysis model under the per-
vasive distribution shift. To our knowledge, this
paper provides the first empirical evidence of the
impact of temporal distribution shifts on financial
sentiment analysis. Second, we propose a novel ap-
proach to mitigate the out-of-sample performance
degradation while maintaining in-sample sentiment
analysis utility. We hope this study contributes to
the continuing efforts to build a more robust and
accountable financial NLP system.

2 Temporal Distribution Shift in
Financial Sentiment Analysis

In this section, we first define the task of financial
sentiment analysis on temporal data. We then in-
troduce two metrics for model evaluation under the
data distribution shift.

2.1 Problem Formulation

The financial sentiment analysis model aims to clas-
sify a text input, such as a social media post or
financial news, into positive or negative classes 1.
It can be expressed as a text classification model
M : M(X) 7→ Y . Conventionally, this task is
modeled and evaluated on a non-temporal dataset,
i.e., (X,Y ) consists of independent examples un-
related to each other in chronological order.

In the real world, financial text data usually
exhibits temporal patterns corresponding to its
occurrence time. To show this pattern, we de-
note (X,Y ) = {(X1, Y1), ..., (XN , YN )}, where

1We consider binary positive/negative prediction in this
paper. Other financial analysis systems may have an additional
neutral label (Huang et al., 2022).

(Xt, Yt) denotes a set of text and associated sen-
timent label collected from time t. Here t could
be at various time horizons, such as hourly, daily,
monthly, or even longer horizon.

In the real-world scenarios, at time t, the
sentiment classification model can only be
trained with the data that is up to t, i.e.,
{(X1, Y1), ..., (Xt, Yt))}. We denote the model
trained with data up to period t as Mt. In a continu-
ous production system, the model is applied to the
data (Xt+1, Yt+1) in the next time period t+ 1.

The non-stationary financial market environment
leads to different data distributions at different pe-
riods, i.e., there is a temporal distribution shift.
However, the non-stationary nature of the financial
market makes it difficult to predict how data will
be distributed in the next period. Without loss of
generality, we assume p(Xt, Yt) ̸= p(Xt+1, Yt+1)
for any time t.

2.2 Evaluation Metrics

Unlike traditional financial sentiment analysis, tem-
poral financial sentiment analysis trains the model
on in-sample data and applies the model to the
out-of-sample data. Therefore, in addition to the
in-sample sentiment analysis performance, we also
care about its generalization performance on out-
of-sample data. In other words, we hope the
model experiences minimal performance degrada-
tion even under significant temporal distribution
shifts. Specifically, we use the standard classifica-
tion metric F1-Score to measure the model perfor-
mance. To measure the model generalization, we
use ∆F1 = F1in−F1out, where F1in and F1out
are the F1-Score on in-sample and out-of-sample
data respectively. An ideal financial sentiment anal-
ysis model would achieve high F1in and F1out
and low ∆F1 at the same time.

3 Experiment Setup

This section describes the evaluation setups on the
dataset and models for temporal model analysis.

3.1 Dataset

We collect a time-stamped real-world financial text
dataset from StockTwits2, a Twitter-like social me-
dia platform for the financial and investing com-
munity. StockTwits data is also used in prior NLP
work for financial sentiment analysis (Cortis et al.,
2017), though the data is used in a conventional

2https://stocktwits.com/
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(a) Label distribution of the StockTwits Dataset.
sentiment positivity
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Figure 1: (a) A temporal view of the "sentiment posi-
tivity" (line) of the dataset and the number of examples
with positive and negative labels (bar). (b) and (c): The
"sentiment positivity" score (solid line) and the monthly
stock price return (dashed line) of Apple Inc and Tesla
Inc, respectively.

non-temporal setting. In our experiment, we collect
all posts from StockTwits spanning from 2014-1-1
to 2016-12-31 3. We then filter the dataset by select-
ing those posts that contain a user-generated senti-
ment label bullish ("1") or bearish ("0"). The final
dataset contains 418,893 messages, each associated
with a publish date, providing helpful information
for our temporal-based empirical analysis.

We provide some model-free evidence on the
temporal distribution shift. First, we plot the
"sentiment positivity" score for the monthly sen-
timent label distributions of the whole dataset in
Figure 1 (a). The sentiment positivity is defined
as the percentage of the positive samples, i.e.,
#pos/(#pos+#neg). It shows that while most
messages are positive each month, the ratio be-
tween positive and negative samples fluctuates.

We then choose two representative companies,
Apple Inc. and Tesla Inc., and filter the messages
with the token "Apple" or "Tesla". We plot their
sentiment positivity score in the solid lines in Fig-
ure 1 (b) and (c), respectively. We also plot the

3More recent year data is not easily accessible due to API
restriction.

monthly stock price return of Apple Inc. and Tesla
Inc. in the dashed line in Figure 1 (b) and (c).
It shows that the sentiment and the stock price
movement are highly correlated, and the Spear-
man Correlation between the sentiment and the
monthly return is 0.397 for Apple and 0.459 for
Tesla. Moreover, the empirical conditional proba-
bility of labels given the specific token (i.e., "Ap-
ple", "Tesla") varies in different months. Taking
together, we observe a temporal distribution shift
in the financial social media text.

3.2 Sentiment Classification Models

We choose several standard text classification meth-
ods for sentiment classification, including (1) a sim-
ple logistic regression classifier that uses bag-of-
words features of the input sentences, (2) an LSTM
model with a linear classification layer on top of
the LSTM hidden output, (3) three pretrained lan-
guage models: BERT (base, uncased) (Devlin et al.,
2019), RoBERTa (base) (Liu et al., 2019) and a fi-
nance domain specific pretrained model FinBERT
(Yang et al., 2020); (4) the large language model
GPT-3.5 (text-davinci-003) (Brown et al., 2020)
with two-shot in-context learning.

4 Empirical Evaluation of Temporal Data
Shift in Financial Sentiment Analysis

Our first research question aims to empirically ex-
amine if temporal data shift affects the robustness
of financial sentiment analysis and to what extent.
Prior literature has studied temporal distribution
shifts in the healthcare domain and finds that pre-
trained language models are robust in the pres-
ence of temporal distribution shifts for healthcare-
related prediction tasks such as hospital readmis-
sion (Guo et al., 2023a). However, financial mar-
kets and the financial text temporal shift are much
more volatile. We empirically answer this research
question using the experiment setup discussed in
Section 3.

4.1 Training Strategy

Training a sentiment classification model on the
time-series data is not trivial, as different utiliza-
tion of the historical data and models would lead
to different results in model performance and gen-
eralization. To comprehensively understand the
model behavior under various settings, we summa-
rize three training strategies by the different incor-
poration of the historical data and models.
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Old Data, New Model (ODNM): This train-
ing strategy uses all the available data up to time
t, i.e.{(X1, Y1), ..., (Xt, Yt)} to train a new model
Mt. With this training strategy, the sentiment analy-
sis model is trained with the most diverse financial
text data that is not restricted to the most recent
period.

New Data, New Model (NDNM): For each time
period t, a new model Mt is trained with the latest
data (Xt, Yt) collected in time t. This training strat-
egy fits the model to the most recent data, which
may have the most similar distribution to the out-
of-sample data if there is no sudden change in the
market environment.

New Data, Old Model (NDOM): Instead of
training a new model from scratch every time, we
update the model trained at the previous time with
the latest data. Specifically, in time t, the param-
eters of the model Mt are initialized with the pa-
rameters from Mt−1 and continuously learn from
(Xt, Yt). This training strategy inherits the knowl-
edge from past data but still adapts to more recent
data.

For GPT-3.5, we use two-shot in-context learn-
ing to prompt the model. The in-context examples
are randomly selected from (Xt, Yt). The prompt is
"Perform financial sentiment classification: text:{a
positive example} label:positive; text:{a negative
example} label:negative; text:{testing example} la-
bel:".

4.2 Rolling-based Empirical Test

To empirically examine temporal sentiment classi-
fication models, we take a rolling-based approach.
We divide the dataset by month based on the times-
tamp of each text. Since we have three years of
StockTwits data, we obtain 36 monthly subsets. For
each month t, we train a sentiment classification
model Mt (Section 3.2, except GPT-3.5) using a
training strategy in Section 4.1 that uses data up
to month t. For evaluation, we consider the test-
ing samples from (Xt, Yt) as the in-sample and
the testing samples from (Xt+1, Yt+1) as out-of-
sample. This rolling-based approach simulates a
real-world continuous production setup. Since we
have 36 monthly datasets, our temporal-based em-
pirical analysis is evaluated on 36−1 = 35 monthly
datasets (except the last month). We report the aver-
age performance in F1-score and ∆F1 as 2.2. The
train/validate/test split is by 7:1.5:1.5 randomly.

4.3 Empirical Results

We evaluate different sentiment classification mod-
els using different training strategies 4. We present
the main empirical results on the original imbal-
anced dataset in Table 1, averaged over the 35
monthly results. An experiment using the balanced
dataset after up-sampling the minor examples is
presented in Appendix A, from which similar con-
clusions can be drawn. To better understand the
model performance over time, we plot the results by
month in Figure 2, using BERT and NDOM strat-
egy as an example. The monthly results of NDNM
and ODNM on BERT are shown in Appendix B.
Furthermore, to compare the performance and the
robustness against data distribution shift among
the training strategies, we plot the in-sample per-
formance F1in(avg) in Figure 3, and the perfor-
mance drop ∆F1(avg) in Figure 4 by the training
strategies. The F1out(avg) is supplemented in Ap-
pendix B.

We have the following observations from the
experimental results: The performance drop in
the out-of-sample prediction is prevalent, espe-
cially for the negative label. All ∆F1 of the fine-
tuned models in table 1 are positive, indicating
that all fine-tuned models suffer from performance
degradation when serving the models to the next
month’s data. Such performance drop is especially
significant for the negative label, indicating that the
minority label suffers even more in the model gen-
eralization. The results remain after up-sampling
the minority label, as shown in Appendix A.

NDOM training strategy achieves the best in-
sample performance, yet fails to generalize on out-
of-sample. Table 1 and Figure 3 show that NDOM
has the highest F1-score among the three training
strategies, especially for the in-sample prediction.
Training with ODNM strategy is most robust
against data distribution shift. As shown in Table
1 and Figure 4, among the three training strategies,
ODNM has the smallest performance drop in out-
of-sample predictions. It suggests that using a long
range of historical data can even out the possible
distribution shift in the dataset and improve the
model’s robustness.

There is a trade-off between in-sample per-
formance and out-of-sample performance. As
stated above, the NDOM strategy achieves the best

4Since LR and LSTM are trained using dataset-specific
vocabulary, the NDOM training strategy, which uses the old
model’s vocabulary, is not applicable.
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F1in(pos) ↑ F1out(pos) ↑ ∆F1(pos) ↓ F1in(neg) ↑ F1out(neg) ↑ ∆F1(neg) ↓ F1in(avg) ↑ F1out(avg) ↑ ∆F1(avg) ↓
LogisticRegression

ODNM 89.9 89.7 0.27 34.8 32.7 2.10 62.3 61.2 1.18
NDNM 91.2 90.1 1.07 46.2 36.1 10.04 68.7 63.1 5.55

LSTM
ODNM 91.4 90.6 0.73 55.8 51.3 4.51 73.6 71.0 2.62
NDNM 90.4 89.1 1.32 44.6 35.2 9.42 67.5 62.2 5.37

BERT
ODNM 89.9 89.5 0.43 44.9 43.0 1.95 67.4 66.2 1.19
NDNM 91.5 90.4 1.13 53.5 45.2 8.27 72.5 67.8 4.70
NDOM 93.1 92.1 0.95 65.1 59.5 5.67 79.1 75.8 3.31

RoBERTa
ODNM 91.0 90.8 0.24 48.8 47.1 1.35 69.9 68.9 0.97
NDNM 91.7 90.6 1.12 56.8 50.0 6.80 74.3 70.3 3.96
NDOM 93.3 92.6 0.72 67.4 63.2 4.18 80.4 77.9 2.45

FinBERT
ODNM 89.4 89.2 0.25 40.3 38.5 1.76 64.9 63.9 1.00
NDNM 91.2 90.0 1.24 50.7 41.2 9.52 71.0 65.6 5.38
NDOM 92.6 91.7 0.83 60.9 54.9 6.05 76.7 73.3 3.44

GPT-3.5 81.8 82.5 -0.70 51.0 52.5 -1.50 66.4 67.5 -1.10

Table 1: Performance of different models under New Data New Model (NDNM), New Data Old Model (NDOM),
and Old Data New Model(ODNM) training strategies. The numbers are averaged over the monthly evaluation over
three years.
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between the in-sample and out-of-sample prediction are
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Figure 4: The performance drop ∆F1(avg) using three
training strategies in BERT.

in-sample performance but suffers significant out-
of-sample degradation. ODNM, conversely, has the
slightest performance degradation, yet its overall
prediction capability is limited. From a practical
perspective, both strategies are not ideal. First, ac-
curately identifying the market sentiments is essen-
tial for a financial sentiment classification model to
build a portfolio construction. Second, it is also im-
portant that financial sentiment classification mod-
els produce stable prediction performance so that
the subsequent trading portfolio, driven by the pre-
diction outcomes, can have the least disruption.

In GPT-3.5, the performance drop is not ob-
served, but the in-sample and out-of-sample per-
formance falls behind the fine-tuned models. It
indicates that increasing the model size and train-
ing corpus may reduce the performance drop when
facing a potential distribution shift. However, GPT-
3.5 is not ideal, as its performance on the in-sample
and out-of-sample data is significantly worse than
the fine-tuned models, which aligns with the find-
ings from (Guo et al., 2023b). Moreover, as the
training corpus in GPT-3.5 covers the data from
2014 to 2017, our test set may not be genuinely
out-of-distribution regarding GPT-3.5, which may
also result in alleviating the performance drop.

4.4 Additional Analysis

We conduct additional analysis to understand the
problem of performance degradation further. We
examine the relationship between distribution shift
and performance drop. To measure the distribution
shift between in-sample data (Xt, Yt) in month t
and out-of-sample data (Xt+1, Yt+1) in month t+1,
we follow the steps: 1) For each token v in the vo-
cabulary V ,5 we estimate the empirical probability

5V is the vocabulary from the pretrained tokenizer.
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Spearmanr (p-value)
BERT 0.385 (0.020)
RoBERTa 0.345 (0.039)
FinBERT 0.281 (0.096)

Table 2: Spearman correlations between the perfor-
mance drop (∆F1) and in-sample to out-of-sample dis-
tribution shift.

Important Features
devices, incbr, incbry, nakd, incnn, bears, pharmaceuticals,
patience, incara, ptx, bulls, release, incsla, paper, fall, dump,
pump, strong, advanced, incphs, ride, imnp, added, caterpillar,
kellogg, shorts, plx, owens, dilution, squeeze

Table 3: Top 30 important words identified by the Lo-
gistic Regression model. The bold words are the finan-
cial sentiment words, and the unbolded words are the
spurious correlated words. The model assigns high im-
portance to the many spurious words and is prone to be
influenced by spurious correlations.

pt(y|v), pt+1(y|v), pt(v), pt+1(v). 2) We measure
the distribution shift from (Xt, Yt) to (Xt+1, Yt+1)
as the weighted sum of the KL-divergence (KLD)
between the two conditional probability distribu-
tions:

∑
v pt(v)KLD(pt(y|v), pt+1(y|v)).

We then compute the Spearman correlation be-
tween the performance drop ∆F1 and the distribu-
tion shift from in-sample data (Xt, Yt) to out-of-
sample data (Xt+1, Yt+1). The result is shown in
Table 2, showing a significant positive correlation
between performance drop and distribution shift.
Therefore, a more significant distribution shift, pri-
marily caused by financial market turbulence, can
lead to more severe model performance degrada-
tion. This problem is especially problematic be-
cause the performance degradation may exacerbate
sentiment-based trading strategy during a volatile
market environment, leading to significant invest-
ment losses.

Second, we provide empirical evidence that the
models are prone to be influenced by spurious
correlations. Generally, a sentiment classification
model makes predictions on the conditional prob-
ability p(y|v) based on some sentiment words v.
Ideally, such predictions are effective if there is
no distribution shift and the model can success-
fully capture the sentiment words (e.g., v = bear-
ish, bullish, and so on). However, if a model is
affected by spurious correlations, it undesirably as-
sociates the words with no sentiment with the label.
The model generalization will be affected when
the correlations between the spurious words and

the sentiment label change in the volatile financial
market. For example, suppose the model makes
predictions based on the spurious correlated words
p(y|"Tesla"). When the market sentiment regard-
ing Tesla fluctuates, the model’s robustness will be
affected.

We use the most explainable logistic regression
model as an example to provide evidence for spu-
rious correlations. The logistic regression model
assigns a coefficient to each word in the vocabulary,
suggesting the importance of the word contributed
to the prediction. We fit a logistic regression model
to our dataset and then extract the top 30 words
with the highest coefficients (absolute value). The
extracted words are listed in Table 3, with bold
words indicating the sentiment words and the un-
bolded words as the spurious words. We can see
that most words the model regards as important
are not directly connected to the sentiments. As a
result, the performance of model prediction p(y|v)
is likely influenced by the changing financial senti-
ment in the volatile markets.

5 Mitigating Model Degradation under
Temporal Data Shift

In the previous section, our analysis reveals a con-
sistent performance degradation in financial senti-
ment classification models on out-of-sample data.
In this section, we explore possible ways to mit-
igate the degradation. As our previous analysis
shows that the performance degradation is corre-
lated with the distribution shift, it is reasonable to
infer that the performance degradation is caused by
the failure of the out-of-distribution (OOD) exam-
ples. This observation motivates us to propose a
two-stage method to improve the model robustness
under temporal data distribution shifts. Firstly, we
train an OOD sample detector to detect whether an
upcoming sample is out of distribution. If not, we
still use the model trained on in-sample data on this
sample. If yes, we propose using an autoregressive
model from time series analysis to simulate the
model prediction towards the future.

5.1 Mitigation Method
This subsection introduces the mitigation method
for temporal financial sentiment analysis.

5.1.1 Detecting OOD Samples
As the model trained on the historical data experi-
ences performance degradation on the future data
under distribution shift, we first employ an OOD
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detection mechanism to determine the ineffective
future data. To train the OOD detector, we collect
a new dataset that contains the in-distribution (ID)
data (label=0) and OOD data (label=1) regarding
a model Mt. The labeling of the OOD dataset is
based on whether Mt can correctly classify the sam-
ple, given the condition that the in-sample classifier
can correctly classify the sample.

Specifically, let i,j denote the indexes of time
satisfying i < j, given a target sentiment classifier
Mi, and a sample (xj , yj) which can be correctly
classified by the in-sample sentiment model Mj ,
the OOD dataset assigns the label by the rule

OOD(Mi, xj) =

{
0, if Mi(xj) = yj

1, Mi(xj) ̸= yj
(1)

After collecting the OOD dataset, we train an
OOD classifier f(M,x) on the OOD dataset to
detect whether a sample x is OOD concerning the
model M . The classifier is a two-layer multi-layer
perceptron (MLP) on the [CLS] token of M(x),
i.e.,

f(M,x) = W2(GELU(W1(M
[CLS](x))+b1))+b2

(2)
The classifier is optimized through the cross-

entropy loss on the OOD dataset. During train-
ing, the sentiment model M parameters are
fixed, and only the parameters of the MLP (i.e.,
W1,W2, b1, b2) are updated by gradient descent.
The parameters of the OOD classifier are used
across all sentiment models M ∈ {M1, ...,MN}
regardless of time.

During inference, given a sentiment model
Mt and an out-of-sample xt+1 , we compute
f(Mt, xt+1) to detect whether xt+1 is OOD re-
garding to Mt. If xt+1 is not an OOD sample, we
infer the sentiment of xt+1 by Mt. Otherwise, xt+1

is regarded as an OOD sample, and Mt may suffer
from model degradation. Therefore, we predict
the sentiment of xt+1 by the autoregressive model
from time-series analysis to avoid potential ineffec-
tiveness.

5.1.2 Autoregressive Modeling
In time series analysis, an autoregressive (AR)
model assumes the future variable can be expressed
by a linear combination of its previous values and
on a stochastic term. Motivated by this, as the distri-
bution in the future is difficult to estimate directly,
we assume the prediction from a future model can

also be expressed by the combination of the past
models’ predictions. Specifically, given an OOD
sample xt+1 detected by the OOD classifier, the
prediction ŷt+1 is given by linear regression on the
predictions from the past models Mt, ...,Mt−p+1,
i.e.,

ŷt+1 =

p−1∑

k=0

αkMt−k(xt+1) + ϵ (3)

, where αk is the regression coefficient and ϵ is
the error term estimated from the past data. More-
over, p is the order of the autoregressive model
determined empirically.

For temporal data in financial sentiment classi-
fication, the future distribution is influenced by an
aggregation of recent distributions and a stochastic
term. Using an AR model on previous models’ pre-
dictions can capture this feature. The AR modeling
differs from a weighted ensemble method that as-
signs each model a fixed weight. In our method,
weights assigned to past models are determined by
how recently they were trained or used, with more
recent models receiving higher weights.

5.2 Experiment Setup

To train the OOD detector and estimate the parame-
ters in the AR model, we use data from 2014-01 to
2015-06. We split the data each month by 7:1.5:1.5
for sentiment model training, detector/AR model
training, and model testing, respectively. The data
from 2015-07 to 2016-12 is used to evaluate the
effectiveness of the mitigation method.

To train the OOD detector, we use AdamW op-
timizer and grid search for the learning rate in
[2×10−3, 2×10−4, 2×10−5], batch size in [32, 64].
When building the OOD dataset regarding Mt, we
use the data that happened within three months
starting from t.

To estimate the parameters in the AR model, for
a training sample (xt, yt), we collect the predic-
tions of xt from Mt−1, ..,Mt−p, and train a regres-
sion model to predict yt, for t from 2014-01+p to
2015-06. We empirically set the order of the AR
model p as 3 in the experiment.

5.3 Baselines

Existing NLP work has examined model robust-
ness on out-of-domain data in a non-temporal shift
setting. We experiment with two popular meth-
ods, spurious tokens masking (Wang et al., 2022)
and counterfactual data augmentation (Wang and
Culotta, 2021), to examine their capability in miti-
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BERT
Precision Recall F1

ID 0.99 0.8 0.88
OOD 0.23 0.86 0.37
Accuracy 0.8

FinBERT
Precision Recall F1

ID 1 0.81 0.9
OOD 0.15 0.91 0.26
Accuracy 0.82

Table 4: The performance of the OOD detector of BERT
and FinBERT. The most crucial indicator is the recall
of OOD data, as we want to retrieve as much OOD data
as possible.

gating the performance drop under temporal data
distribution shift.

Spurious Tokens Masking (Wang et al., 2022)
(STM) is motivated to improve the model robust-
ness by reducing the spurious correlations between
some tokens and labels. STM identifies the spu-
rious tokens by conducting cross-dataset stability
analysis. While genuine and spurious tokens have
high importance, "spurious" tokens tend to be im-
portant for one dataset but fail to generalize to oth-
ers. Therefore, We identify the "spurious tokens"
as those with high volatility in the attention score
across different months from 2014-01 to 2015-06.
Then, we mask the identified spurious tokens dur-
ing training and inference on the data from 2015-07
to 2016-12.

Counterfactual Data Augmentation (Wang
and Culotta, 2021) (CDA) improves the model
robustness by reinforcing the impact of the causal
clues. It first identifies the causal words by a match-
ing algorithm and then generates the counterfactual
data by replacing the identified causal word with
its antonym. Like STM, we identify causal words
on the monthly datasets from 2014-01 to 2015-06.

More details of the setup of the two baseline
methods are presented in Appendix C.

5.4 Mitigation Results

First, we analyze the performance of the OOD de-
tector. Table 4 shows the classification reports of
the OOD detector of BERT and FinBERT on the
test set. The recall of OOD data is the most crucial
indicator of the model performance, as we want to
retrieve as much OOD data as possible before ap-
plying it to the AR model to avoid potential model
degradation. As shown in table 4, the detector can

F1in(avg) ↑ F1out(avg) ↑ ∆F1(avg) ↓
BERT 80.13 78.07 2.05
+STM 78.04 75.87 2.18
+CDA 76.91 74.88 2.02
+Ours 80.13 78.70 1.42
RoBERTa 81.87 80.25 1.62
+STM 81.12 79.14 1.98
+CDA 79.68 77.59 2.09
+Ours 81.87 80.61 1.26
FinBERT 77.46 75.44 2.01
+STM 76.57 74.49 2.08
+CDA 73.92 72.02 1.91
+Ours 77.46 76.09 1.36

Table 5: The mitigation results. Our method improves
the performance of the sentiment model on out-of-
sample data and reduces the performance drop.

achieve the recall of 0.86 and 0.91 for OOD data
in BERT and FinBERT, respectively, indicating the
adequate capability to identify the data that the sen-
timent models will wrongly predict. As the dataset
is highly unbalanced towards the ID data, the rela-
tively low precision in OOD data is expected. Nev-
ertheless, the detector can achieve an accuracy of
around 0.8 on the OOD dataset.

Table 5 shows the results of the mitigation meth-
ods under the NDOM training strategy. We only
apply our mitigation method to the out-of-sample
prediction. For BERT, RoBERTa, and FinBERT,
our method reduces the performance drop by 31%,
26%, and 32%, respectively. Our results show that
The AR model can improve the model performance
on OOD data. As a result, the overall out-of-sample
performance is improved, and the model degrada-
tion is alleviated.

Another advantage of our methods is that, unlike
the baseline methods, our method does not require
re-training the sentiment models. Both baseline
methods re-train the sentiment models on the newly
generated datasets, either by data augmentation or
spurious tokens masking, at the cost of influencing
the model performance. Our proposed methods
avoid re-training the sentiment models and improve
the out-of-sample prediction with aggregation on
the past models.

6 Related Works

Temporal Distribution Shift. While temporal dis-
tribution shift has been studied in other contexts
such as healthcare (Guo et al., 2022), there is no
systematic empirical study of temporal distribution
shift in the finance domain. Moreover, although
a prior study in the healthcare domain has shown
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that the large language models can significantly
mitigate temporal distribution shifts on healthcare-
related tasks such as readmission prediction (Guo
et al., 2023a), financial markets are more volatile,
so is the financial text temporal shift. Our em-
pirical study finds that fine-tuned models suffer
from model degradation under temporal distribu-
tion shifts.
Financial Sentiment Analysis. NLP techniques
have gained widespread adoption in the finance do-
main (Loughran and McDonald, 2016; Yang et al.,
2020; Bochkay et al., 2023; Shah et al., 2022; Wu
et al., 2023; Chuang and Yang, 2022). One of the
essential applications is financial sentiment clas-
sification, where the inferred sentiment is used to
guide trading strategies and financial risk manage-
ment (Kazemian et al., 2016). However, prior NLP
work on financial sentiment classification has not
explored the temporal distribution shift problem, a
common phenomenon in financial text. This work
aims to investigate the financial temporal distribu-
tion shift empirically and proposes a mitigation
method.

7 Conclusions

In this paper, we empirically study the problem
of distribution shift over time and its adverse im-
pacts on financial sentiment classification models.
We find a consistent yet significant performance
degradation when applying a sentiment classifica-
tion model trained using in-sample (past) data to
the out-of-sample (future) data. The degradation is
driven by the data distribution shift, which, unfor-
tunately, is the nature of dynamic financial markets.
To improve the model’s robustness against the ubiq-
uitous distribution shift over time, we propose a
novel method that combines out-of-distribution de-
tection with autoregressive (AR) time series mod-
eling. Our method is effective in alleviating the
out-of-sample performance drop.

Given the importance of NLP in real-world finan-
cial applications and investment decision-making,
there is an urgent need to understand the weak-
nesses, safety, and robustness of NLP systems. We
raise awareness of this problem in the context of
financial sentiment classification and conduct a
temporal-based empirical analysis from a practi-
cal perspective. The awareness of the problem can
help practitioners improve the robustness and ac-
countability of their financial NLP systems and also
calls for developing effective NLP systems that are

robust to temporal data distribution shifts.

Limitations

This paper has several limitations to improve in
future research. First, our temporal analysis is
based on the monthly time horizon, so we only
analyze the performance degradation between the
model built in the current month t and the follow-
ing month t + 1. Future analysis can investigate
other time interval granularity, such as weekly or
annual. Second, our data is collected from a social
media platform. The data distribution on social
media platforms may differ from other financial
data sources, such as financial news articles or an-
alyst reports. Thus, the robustness of language
models on those types of financial text data needs
to be examined, and the effectiveness of our pro-
posed method on other types of financial text data
warrants attention. Future research can follow our
analysis pipeline to explore the impact of data dis-
tribution shifts on financial news or analyst reports
textual analysis. Third, our analysis focuses on
sentiment classification performance degradation.
How performance degradation translates into eco-
nomic losses is yet to be explored. Trading sim-
ulation can be implemented in a future study to
understand the economic impact of the problem
better.
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