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Abstract

Language models have graduated from being
research prototypes to commercialized prod-
ucts offered as web APIs, and recent works
have highlighted the multilingual capabilities
of these products. The API vendors charge
their users based on usage, more specifically
on the number of “tokens” processed or gener-
ated by the underlying language models. What
constitutes a token, however, is training data
and model dependent with a large variance in
the number of tokens required to convey the
same information in different languages. In
this work, we analyze the effect of this non-
uniformity on the fairness of an API’s pricing
policy across languages. We conduct a system-
atic analysis of the cost and utility of OpenAI’s
language model API on multilingual bench-
marks in 22 typologically diverse languages.
We show evidence that speakers of a large num-
ber of the supported languages are overcharged
while obtaining poorer results. These speak-
ers tend to also come from regions where the
APIs are less affordable to begin with. Through
these analyses, we aim to increase transparency
around language model APIs’ pricing policies
and encourage the vendors to make them more
equitable.

1 Introduction

Language models (LMs) have come to be known
as general-purpose solutions capable of perform-
ing many tasks by following natural language
instructions (Brown et al., 2020; Ouyang et al.,
2022; Chung et al., 2022), and generalizing to new
tasks at test time using a handful of demonstra-
tions (Brown et al., 2020; Su et al., 2023). Moti-
vated by their potential for commercial use, many
industrial research institutions have moved away

1OpenAI’s tokenizer interface displays byte tokens absent
from their vocabulary as "?".

��οια ����ναι �� 
��ρωτε��ο��σα το�� 

��αρ��κο��;?

What is the 
capital of 
Morocco?

Ποια είναι η 
πρωτεύουσα 

του Μαρόκου;?

What is the 
capital of 
Morocco?

Η πρωτεύουσα του 
Μαρόκου είναι η πόλη 

Ραμπάτ, ή επίσης 
γνωστή ως Ραμπάτ Σαλέ.

The capital of 
Morocco is Rabat.

$ $ $ $

Figure 1: We investigate the effects of subword tok-
enization in LMs across languages with different writ-
ing systems. Our findings highlight disparities in the
utility of LMs, as well as socio-economic disparities and
increased costs in using commercial APIs for speakers
of underrepresented languages.1

from openly releasing them (Abdalla et al., 2023).
Instead, a new business model of LM as a Ser-
vice (Sun et al., 2022) has emerged where LMs
can be accessed for inference using (paid) web
APIs. The majority of these models (Ouyang et al.,
2022) offer multilingual capabilities, and the API
providers charge the users proportionally to the
number of tokens processed or generated.

In this work, we examine the fairness of this
pricing model for different languages, based on
how a “token” is defined in practice.2 Most LMs
rely on tokenizers that split text strings into chunks
(subwords). Subword tokenizers (Sennrich et al.,
2016; Kudo, 2018; Song et al., 2020) are typically
data-driven and learn to split text based on fre-
quency patterns of characters or bytes in some
corpus. Prior work argued that, in multilingual
settings, subword tokenizers lead to disproportion-

2Code available at https://github.com/orevaahia/l
lm_tokenizer_cost
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ate fragmentation rates for different languages and
writing scripts (Zhang et al., 2022a; Rust et al.,
2021; Muller et al., 2021). Many commercial LMs
are multilingual, and text from languages that suffer
from excessive fragmentation will be represented
using more tokens. This directly increases cost of
API usage for certain language speakers, even if
they convey the same information as the others.

We highlight this unfairness through three stages
of systematic analyses. First, we show evi-
dence that tokenizers of popular LMs indeed over-
fragment texts in certain language scripts and quan-
tify the API cost disparity that this issue causes.
We discover that the disparity is not caused just by
data imbalance, but is rooted in the language prop-
erties or the ways they are represented in Unicode.
Second, we show that languages with longer token
lengths as a result of greater fragmentation derive
less model utility with in-context learning (Brown
et al., 2020). Finally, we find that languages that
cost more and perform worse are often associated
with populations of speakers for whom the APIs
are less affordable on average, exacerbating the
economic divide in the accessibility of NLP tech-
nology.

Through these analyses, we argue that commer-
cial LM API vendors should revisit their processing
and pricing strategies to be more equitable. In ad-
dition, we encourage the NLP community to pay
better attention to tokenizers, an often neglected
part of the LM pipeline.

2 Do All Languages Cost the Same?

2.1 Background

Language Model APIs Autoregressive LMs are
trained to predict the next “token” given a previ-
ous context. Following the success of such models,
many commercial LM web APIs have emerged
and allow users to interface with the models using
natural language instructions to perform various
tasks with little to no exposure to the underlying
workings of the models. The API providers of-
ten support dozens of languages and charge users3

at a fixed rate based on the total number of input
and generated tokens.4 What constitutes a “token,”
however, is not a universally accepted definition
but a design choice that the model developers make.

3While most services also have free tiers, they limit daily
usage to a small number of tokens.

4E.g. see OpenAI models’ cost: https://openai.com/p
ricing.

The total token count is also not immediately obvi-
ous to users except through a tokenizer interface5

separate from the chat interface.

Tokenization in LMs Tokenization—
segmenting text into atomic units—is an
active research area. Proposed approaches range
from defining tokens as whitespace-delimited
words (for languages that use whitespace) which
makes the vocabulary extremely large, to defining
tokens as characters or bytes, making the tokenized
sequences extremely long in terms of number of
tokens; see Mielke et al. (2021) for a detailed
survey. A commonly-used solution now is to
tokenize text into subword chunks. With Sennrich
et al. (2016), one starts with a base vocabulary of
only characters adding new vocabulary items by
recursively merging existing ones based on their
frequency statistics in the data. Other approaches
judge subword candidates to be included in the
vocabulary using an LM (Kudo, 2018; Song et al.,
2021). For multilingual models containing data in
a variety of scripts, even the base vocabulary of
only characters (based on Unicode symbols) can
be very large with over 130K types. Radford et al.
(2019) instead proposed using a byte-level base
vocabulary with only 256 tokens. Termed byte-
level byte pair encoding (BBPE), this approach
has become a de facto standard used in most
modern language modeling efforts (Brown et al.,
2020; Muennighoff et al., 2022; Scao et al., 2022;
Black et al., 2022; Rae et al., 2022; Zhang et al.,
2022b). In this work, we investigate the impact
this tokenization strategy has on LM API cost
disparity as well as downstream task performance
(i.e., utility) across different languages.

2.2 Investigating the Impact of Byte-level
Subword Segmentation

There are hundreds of distinct writing systems
in the world (Hockett, 1997). BBPE, by design,
makes vocabulary construction script-agnostic, al-
lowing (in principle) new scripts to be supported
later on without modifying the vocabulary. How-
ever, not only are different scripts encoded dif-
ferently, their distribution in the training corpora
varies widely. To investigate the effects of this vari-
ation, we propose the following research questions
as the main focus of this work.

5
https://platform.openai.com/tokenizer
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RQ1 (number of tokens): do all languages con-
vey the same information with the same num-
ber of tokens? We analyze the fragmentation
of sequences in different languages with different
tokenizers. We find that among the supported lan-
guages in popular LMs, there is a large variance in
the average number of tokens required to convey
the same information with some languages requir-
ing 5 times as many tokens than others. Previous
work has shown that tokenization in multilingual
models is usually biased towards high-resourced
languages in the pretraining data (Ács, 2019; Rust
et al., 2021); we observe that this is not always the
case, but it could also be dependent on linguistic
features or properties of language scripts.

RQ2 (cost): do non-uniform tokenization rates
lead to LM API cost disparity for speakers of dif-
ferent languages? LM APIs like ChatGPT are
available worldwide and have been widely claimed
to have multilingual capabilities (Kasai et al., 2023;
Lai et al., 2023).6 We show that disparate fragmen-
tation rates across languages lead to significantly
high usage costs for less represented languages, and
we argue for a more equitable API pricing system.

RQ3 (model utility): do non-uniform tokeniza-
tion rates affect the models’ utility? LMs have
exhibited in-context learning capabilities, perform-
ing new tasks with few demonstrations as input
(without parameter finetuning). This is highly de-
sirable in any LM API as it avoids computational,
annotation (and financial) costs. We show that
high fragmentation rate of a language negatively
affects the in-context learning performance in that
language, resulting in reduced model utility.

RQ4 (socio-economic aspects): what are the
socio-economic implications of the API’s cross-
lingual cost and performance disparity? Our
analysis shows evidence that not only are LMs
more expensive for certain languages, they are also
less effective for them. To highlight the implica-
tions of these findings, we correlate those measure-
ments with the socio-economic indicators of lan-
guage speakers as a proxy for affordability of the
APIs. This analysis indicates that users who likely
cannot afford high API costs are charged more for
poorer service, hindering uniform accessibility.

6
https://help.openai.com/en/articles/674236

9-how-do-i-use-the-openai-api-in-different-lan
guages

3 Experimental Setup

3.1 Models
Throughout this work, we focus on two LMs: Chat-
GPT (Ouyang et al., 2022; Brown et al., 2020)
(gpt-3.5-turbo) and BLOOMZ (Muennighoff et al.,
2022). Both of these models are trained and ad-
vertised as general-purpose models capable of fol-
lowing instructions and performing a wide range
of tasks (Qin et al., 2023; Zhu et al., 2023; Ahuja
et al., 2023; Huang et al., 2023).

ChatGPT (Ouyang et al., 2022) is a closed model
only accessible through an API (with a premium
tier) provided by OpenAI. Studies report that it
supports as many as 90 languages (Ahuja et al.,
2023). ChatGPT can handle a maximum sequence
length of 4096 tokens (including both the prompt
and generated tokens).

BLOOMZ (Muennighoff et al., 2022) is an open-
source multilingual model trained on 46 natural
languages and 13 programming languages. While
training its tokenizer, sentences from different lan-
guages were sampled according to a multinomial
distribution (Conneau et al., 2020), thereby in-
creasing the number of tokens associated with low-
resource languages. The best-performing version
of this model has 175B parameters and is not fea-
sible to be loaded on our academic servers; hence
we rely on a free API of BLOOMZ hosted by Hug-
gingface.7 Although BLOOMZ was trained with
ALiBi positional embeddings (Press et al., 2022)
which allows the model to extrapolate to any length
sequences during inference, the Huggingface API
has a context limit of 1000 tokens.

3.2 Tasks and Datasets
To answer RQ1—whether the same information is
conveyed with similar numbers of tokens in differ-
ent languages—we use a validation set of FLORES-
200 (Goyal et al., 2022), a multilingual parallel cor-
pus containing examples in over 200 languages.8

We tokenize each sentence in the FLORES-200
subset with ChatGPT’s tokenizer9 and compute the
average number of tokens per sentence for each
language. Using parallel data controls for the same
information across languages. We consider that

7
https://huggingface.co/docs/api-inference/q

uicktour.
8We also experimented with WMT 2021 data (Akhbardeh

et al., 2021) and found similar results. Note that the WMT
data are focused on European languages.

9ChatGPT’s tokenizer https://github.com/openai/ti
ktoken
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language A is more efficiently tokenized than lan-
guage B if it uses fewer tokens per sentence on
average. While previous studies have computed
fragmentation rates with fertility (Ács, 2019), we
instead define it as the average number of tokens
in a sequence for two reasons. First, our goal is
to compare LLM API costs across languages that
charge users based on the number of tokens. To
control for content, we use a parallel corpus for
this analysis. Second, many languages we analyze
are understudied and do not have word tokenizers
available which are required to compute fertility.

For RQ2 and RQ3, to clearly highlight the cost
and utility disparities, we evaluate the models on
NLP tasks that involve long-form texts either at
input or output. We evaluate the models on di-
verse, challenging natural language generation and
classification tasks on the following benchmarks:

Classification We evaluate on (1) XNLI (Con-
neau et al., 2018): a cross-lingual inference
benchmark comprising of 11 typologically diverse
languages. It involves two sub-tasks, passage
selection and minimum answer span (Gold-P).
We focus on the latter task in our experiments.
(2) XFACT (Gupta and Srikumar, 2021): a multi-
lingual fact verification dataset of naturally existing
real-world claims covering 25 languages.

Span Prediction We use XQUAD (Artetxe et al.,
2019): a crosslingual question-answering dataset
where each example consists of a paragraph, a ques-
tion, and the answer as a span in the paragraph.

Generation We evaluate on (1) Cross
Sum (Hasan et al., 2021a): a cross-lingual
abstractive summarization dataset comprising
1.7 million article-summary samples in 1500+
language pairs, and, (2) XLSUM (Hasan et al.,
2021b): a summarization dataset covering 44
diverse languages. It comprises news articles and
summaries in the same language as the article.

3.3 Prompting Formulation

We evaluate both models in a k-shot in-context
learning setup where we also provide task instruc-
tions. We experiment with 0 ≤ k ≤ X , where X
is the maximum number of in-context examples
that can be provided. Note that X is not a fixed
value, but is determined by the LM API’s limit on
the number of input tokens and the fragmentation
rate of the language.
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Figure 2: Average number of tokens by script after
tokenizing the Flores dataset. The fragmentation rate
is lower for Latin script languages and higher for other
scripts. Number of languages per language group is
indicated at the top of each bar.

For all tasks, we provide the instructions in En-
glish following Ahuja et al. (2023), who show that
on several multilingual benchmarks, English in-
structions outperform the in-language prompts (see
Table 2 in the Appendix for the prompting format
for all tasks). For each task, we randomly sample
at most 500 test examples for evaluation.

4 Results and Analysis

4.1 RQ1 (number of tokens): do all languages
convey the same information with the
same number of tokens?

In Figure 2 we show that Latin-script languages are
represented with substantially fewer tokens com-
pared to languages in other scripts. While Cyrillic
and Japanese script languages come close to the
Latin, languages with their own script (e.g., Telugu)
require up to 5× more tokens to convey the same
information. We hypothesize that this disparity is
due to training data imbalance since ChatGPT’s
tokenizer was primarily trained on Latin-script lan-
guages, mainly English. The training details of
ChatGPT are not available. However, we make
a reasonable assumption that its training data has
a similar proportion of languages as the publicly
available large corpus CC100 (Wenzek et al., 2020).
If we sort languages shown in Figure 2 based on
their data size in CC100 (see Figure 14 in the Ap-
pendix), low-resourced languages of Latin script
appear to be less fragmented compared to other
mid-resourced languages of non-Latin scripts.

In Figure 15 in the Appendix, we present a sim-
ilar analysis for BLOOMZ’s tokenizer. We sort
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the languages based on their size in the pretraining
data (ROOTS corpus; Laurençon et al., 2023). We
observe that languages with fewer resources gen-
erally have a higher average token length. Arabic
is an outlier here as it appears to have more tokens
than some other mid-resourced languages.

What influences the non-uniformity of a to-
kenizer across languages? From our analysis
above, we identify two influential factors: (1) the
proportion of the language in the pretraining data,
and (2) inherent properties of the language and its
writing script. While we see some correlation be-
tween pretraining data size and fragmentation rate
in BLOOMZ , with ChatGPT it is quite different
as higher-resourced non-Latin script languages still
get excessively tokenized.

To disentangle the effects of factors (1) and (2)
we train BBPE tokenizers on a variety of languages
with diverse scripts with vocabulary sizes ranging
from 5,000 to 50,000, while controlling for content
and data size. Specifically, we train the tokenizers
on parallel corpora and include one language per
script. We then use these tokenizers to tokenize the
text they were trained on, and compute the average
number of tokens per sentence.
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Japanese
Arabic

Figure 3: BBPE tokenizer trained on parallel text from
different language scripts with varying vocabulary sizes.
We display a larger version with 21 more scripts in
Figure 19 in the Appendix.

As shown in Figure 3, even when controlling for
the content, there is still a disparity in the tokeniza-
tion rate at different vocabulary sizes. In particular,
most scripts are very sensitive to small vocabulary
sizes compared to Latin and Hangul scripts. We do
not achieve uniform fragmentation rate across all
language scripts even with large vocabulary sizes.
We therefore conclude that uniformity of BBPE
tokenizers across languages is not just determined
by the proportion of text from language in the pre-
training data but also by language/script properties.

4.2 RQ2 (cost): how do non-uniform
tokenization rates affect LM API costs for
different languages?

LM APIs charge users a fixed amount for a given
number of input and generated tokens. Since the
same information is expressed using different num-
ber of tokens in different languages, we aim to
investigate the disparity in what users pay to use
the API for different languages. From the results
of our analysis in §4.1, we compute the estimated
cost of API use per language as a function of the
average sequence length derived in Figure 2. We
report this on a subset of languages in Figure 16
in the Appendix and present a granular analysis of
languages that share family and script in Figure 4.

Languages that are more heavily segmented have
predictably higher costs of usage. Overall, we
see that the API costs are biased towards (i.e.,
cheaper for) Indo-European and Latin script lan-
guages and against many non-Latin script lan-
guages. In most mid-resourced Indic languages
with non-Latin scripts, we see close to a 5× in-
crease in cost compared to English.
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Figure 4: Estimated cost per language family/script, rel-
ative to English. The language families are abbreviated
as follows: IE: Indo-European, ST: Sino-Tibetan, AC:
Atlantic-Congo, AA: Afro-Asiatic, DR: Dravidian, KA:
Kartvelian.

Next, we report the costs of running experiments
relative to English. We report costs based on our
zero-shot experiments across all tasks listed in §3.2.
This is due to excessive tokenization in some lan-
guages for which we can only do zero-shot evalua-
tions. For XLSUM, we show in Figure 5 that we
spend up to 4× more for both prompting and gen-
eration in Telugu and Amharic. We observe similar
findings in XFACT and CROSSUM, as displayed
in Figure 11 in the Appendix.

While the majority of the commercial LMs are
perhaps being optimized to perform well in many
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Figure 5: Average cost of prompt + generated tokens
for XLSUM evaluations relative to English.

languages, we show that there is less focus on indi-
vidual experiences of speakers of languages other
than English. While LMs like ChatGPT might per-
form tasks in Telugu, for example, a user in Andhra
Pradesh might pay 5× more than an English user
in the US for an equivalent use of the model.

4.3 RQ3 – Model utility: do non-uniform
tokenization rates affect the models’
utility?
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Figure 6: Percentage of test examples per language
in XLSUM that do not successfully fit into the context
length of ChatGPT. We can fit more few-shot examples
in Latin script languages than in other languages.

LMs typically have an upper bound of the num-
ber of tokens they can handle, e.g., ChatGPT can
process a maximum of 4,096 tokens. Hence, due to
non-uniform fragmentation rates across languages,
there is a disparity in the amount of information
the models can process per language. In Figure 6
we plot the percentage of XLSUM test instances
against the maximum number of in-context exam-
ples those instances can be accompanied with. For
example, Telugu struggles to fit even one in-context
example for the majority of the test set. Hence, the
model can only do zero-shot prompting in this case.

To measure the impact of this issue on task per-
formance, we evaluate ChatGPT and BLOOMZ
with a k-shot learning setup on the 5 tasks on di-

verse languages as described in §3.2. Figure 7
shows ChatGPT’s performance according to stan-
dard automatic metrics of all tasks. Note that the
focus of this experiment is to illustrate the impact of
tokenization in in-context learning settings. There-
fore, we are interested not in the absolute value
of the metrics or comparisons among languages
but the relative improvement within the test sets of
the same language as we increase the number of in-
context examples. For all tasks and most languages,
we see consistent performance improvements as we
increase the number of in-context examples, from
zero-shot to k (even for k = 1). For many lan-
guages such as Telugu and Thai, due to their high
fragmentation rates, we were unable to fit even
one complete demonstration and hence, only report
zero-shot results. Based on trends from other lan-
guages, we suspect that these languages could also
have benefitted from more demonstrations. Hence,
as a result of unfair tokenization, ChatGPT’s utility
is much lower for speakers of those languages com-
pared to better represented languages like English.

Figure 8 reports the results of the same experi-
ment for BLOOMZ. Across all tasks we find that
adding in-context examples does not help. In fact,
in some cases, there is a performance drop even
with one in-context example. Upon manual inspec-
tion of the generated outputs from the one-shot
experiments, the model has a tendency to copy
spans from the in-context example, presenting that
as output and thus not successfully utilize demon-
strations. Our hypothesis here is that BLOOMZ is
better optimized for zero-shot prompting and is not
as suitable for in-context learning.

Due to the limited number of tokens that
BLOOMZ’s inference API accepts, some examples
in some languages cannot fit the 1000 token con-
text length when doing zero-shot prompting. We
experienced this with the XLSUM dataset as we
couldn’t fully fit news articles for some languages.
Understandably, some of these languages are not
even present in its pretraining data, and hence we
do not expect them to be tokenized efficiently. For
these examples that do not fit the context length,
we feed in truncated news articles into the model.
We therefore evaluate the generations for the frac-
tion of examples that fit context and ones that do
not fit the context separately. Figure 9 shows the
performance comparison when we use truncated
summaries in the prompt and when we use the full
articles. While the performance drop is expected,
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Figure 7: Results from ChatGPT few-shot evaluations. In most tasks, we see an increase in performance as we
increase the number of in-context examples.
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Figure 8: Results from BLOOMz few-shot evaluations. The BLOOMz model is clearly better at zero-shot prompting
than few-shot.
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Figure 9: Zero-shot evaluation of BLOOMz on XL-
SUM. Since we cannot fit the full article in the context
length for some languages, we compare results on eval-
uating full articles vs. truncated articles.

our focus here is to highlight a consequence of
differentiated tokenization in LMs.

4.4 RQ4 – Socio-economic aspects: what are
the socio-economic implications of the
API’s cross-lingual cost and performance
disparity?

In Figure 10, we plot the fragmentation rate per
language against the Human Development Index
in the country with the highest absolute number
of speakers of that language. We find a strong
negative correlation close to -0.5 showing that in

most cases, the lower the HDI index, the higher
the fragmentation rate and vice versa. Evidently,
the model’s vocabulary is biased towards users of
more developed countries.

Task
Cost-HDI HDI-Utility Cost-Utility

Spearman Pearson Spearman Pearson Spearman Pearson
XFACT **–0.41 **–0.60 *0.34 **0.38 **–0.61 **–0.55
XLSUM **–0.42 **–0.43 **–0.44 **–0.57 *–0.23 *0.21
CROSS SUM **–0.41 **–0.45 *–0.18 *0.24 *0.27 *–0.17

Table 1: Correlation between model utility, cost of API
access and Human Development Index (HDI) for each
task. We mark correlations with p < 0.05 with * and
also mark correlations with p < 0.0056 (according to
Bonferroni correction for multiple hypotheses) with **.

This bias is further validated by results shown in
Table 1, where we mostly find negative correlations
between pairs of each of the following variables:
average financial cost of experiments, model utility
(performance), and human development index of
the country in which each language is spoken. We
term this “double unfairness” as people from less
economically developed countries are overcharged
at a fixed rate per-token due to excessive tokeniza-
tion, but often derive less utility from the model.
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Figure 10: Fragmentation rate per language against the
Human Development Index in the top country where
the language is spoken.

5 What is the Way Forward?

Transparency in API limitations While the
NLP community is aware of many of the issues we
point out in this work, LM APIs are advertised to a
general audience. Much like the policy of adding
limitations to research papers, LM API providers
ought to be more transparent about the flaws and
biases in their models, especially when describing
their multilingual capabilities. Many users are not
privy to the inner workings of these models and
will be unknowingly charged higher prices if they
use the model in their native languages.

Rethinking the API pricing models Higher API
costs for languages in underprivileged communi-
ties risks excluding many populations from using
language technologies. A potential solution is to de-
velop pricing policies based on languages/regions
while also accounting for model performance on
language-specific benchmarks. An alternative is
to not charge by tokens at all. PaLM 2 API, for
example, charges the users based on characters.10

Hence, further analysis is needed to assess the fair-
ness of character-based pricing. Huggingface also
offers an inference service for their enterprise cus-
tomers11 relying on AWS instances and charging
them at an hourly rate. Future work may compare
this with a per-token rate we study in this work.

Open-source models vs. paid APIs Given issues
with paid APIs, the natural next question might be:
should the API users move to open-source mod-
els or train their own? In fact, in our experiments,
we find BLOOMZ, an open-source model, to per-
form better in the zero-shot setting than ChatGPT

10Prior work has shown evidence that even the number of
characters used to express the same information in different
languages is

11
https://huggingface.co/pricing#endpoints

performs in the few-shot setting, in most cases.
However, first, most open-source models are dis-
tributed under an academic license whereas most
developers are interested in integrating these tech-
nologies into their products for commercial use,
which may incur licensing costs. Second, barring
licensing issues, LMs tend to be large and resource-
intensive to train and deploy and require dedicated
expensive hardware to run at a commercial scale,
which again might not be possible for most devel-
opers and users, even exceeding the cost of using
the APIs. Research on reducing such hardware re-
quirements (Dettmers et al., 2022; Park et al., 2023)
could increase accessibility. Still, this requires a
considerable level of technical expertise from de-
velopers and users which might be infeasible.

Technological improvements in LMs Several
solutions proposed in recent work to improve lan-
guage modeling performance can help alleviate
the cost and utility issues we highlight. Tokeniza-
tion is an active area of research and various so-
lutions based on data balancing (Johnson et al.,
2017; Conneau and Lample, 2019), optimal trans-
port (Xu et al., 2021), fuzzy subwords (Provilkov
et al., 2020), and many more (Chung et al., 2020;
Tay et al., 2022) have been proposed. BLOOMZ,
for instance, relies on data balancing to improve
fragmentation rates across languages. Some works
also focused on increasing the context lengths of
language models (Bulatov et al., 2023; Press et al.,
2022) which can help alleviate issues with utility
by allowing more in-context examples as input.

6 Related Work

Analyzing tokenization methods The impact of
tokenization on model performance (Ács, 2019;
Rust et al., 2021; Zhang et al., 2022a; Klein and
Tsarfaty, 2020; Bostrom and Durrett, 2020; Ka-
mali et al., 2022), inference speed and memory
usage of LMs in practical settings (Sun et al.,
2023; Hofmann et al., 2022) has been widely stud-
ied. Ács (2019) observes that mBERT’s vocabu-
lary is largely dominated by Indo-European lan-
guages. Rust et al. (2021) find that monolingual
LMs perform better than mBERT because some
languages suffer from over-fragmentation. Zhang
et al. (2022a) find that sentence-level MT models
are not sensitive to language imbalance in their to-
kenizer training data. In contrast to prior work, our
focus is on the cost and performance analysis of
multilingual LM APIs across languages with regard
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to over-fragmentation and in-context learning.

Socio-economic impacts of language models
Prior work show that unfairness in LMs is a
consequence of many stages in the development
pipeline (Cao and Daumé III, 2020; Talat et al.,
2021). Efforts have tried to identify social biases
in LM generations (Wolfe and Caliskan, 2021; Dev
et al., 2022; Sheng et al., 2021; Chen et al., 2021;
Hutchinson et al., 2020). Other works have sur-
faced the cultural and language disparity beyond
and within multilingual LMs (Gururangan et al.,
2022; Kreutzer et al., 2022; Virtanen et al., 2019).
Talat et al. (2022) discuss challenges impacting
bias evaluation in multilingual LMs. They exam-
ine power dynamics and consequences of training
LMs emphasizing implications associated with ad-
vancement of such technologies. In this work, we
study economic unfairness of LMs across differ-
ent communities. Concurrent work (Petrov et al.,
2023) analyses multilingual tokenizers focusing on
financial cost, latency and context size. However,
apart from cost, our analysis also covers model
utility and socio-economic implications. Kasai
et al. (2023) report unfair API costs as a result
of tokenization differences between English and
Japanese. We extend this to 21 more languages
highlighting the pervasiveness of this issue.

7 Conclusion

By analyzing popular language model APIs on
challenging multilingual benchmarks, we find that
(a) API tokenizers disproportionately favor Latin
scripted languages and over-fragment less repre-
sented languages and scripts, (b) the API pricing
policy of charging based on the number of tokens
is flawed and extremely unfair towards speakers
of the over-fragmented languages, and (c) the API
performs poorly on such languages compared to
the less-fragmented counterparts. In the current
NLP research landscape, where more and more in-
dustrial labs are building their own APIs, this is a
concerning trend that may reduce the accessibility
of these technologies to already marginalized com-
munities. Hence, we encourage the vendors to be
more transparent about their models’ limitations
and rethink their pricing policy.

Ethics Statement

This work sheds light on the consequences of unfair
tokenization to users of commercial LM APIs that

speak languages with scripts less represented in
the pretraining data. With the recent widespread
use of commercial LMs, we believe that our work
is crucial to ensuring that language technologies
are accessible to diverse users irrespective of the
languages they speak.

There are different factors that contribute to non-
uniform tokenization across languages. Whilst our
analysis touches on the size of pretraining data
and language writing systems we suspect that there
might be other factors not yet uncovered; we leave
that for future work. The lack of access to Ope-
nAI’s training data prevents us from making solid
claims about all the languages that ChatGPT is
optimized for; however, their models have been
advertised and shown to work well in many lan-
guages. More work on large multilingual models
should include the release of (details of) training
data to further enable this kind of research.

Limitations

Translationese We conduct the analysis to an-
swer RQ1 using a parallel corpus, FLORES-
200 (Team et al., 2022), in order to control for the
same information. This corpus consists of many
examples that have been professionally translated.
Prior studies have shown that translated texts in any
language (referred to as translationese) may differ
from original written text in many ways (Laviosa,
2002). These may have caused the information
conveyed in different languages to not be exactly
the same. We do not have a way to measure these
differences. However, we expect them not to be
so large as to meaningfully affect the trend of frag-
mentation rates.

Language statistics of ChatGPT training data
ChatGPT is a closed model developed by OpenAI
who have not released the training details of the
model including any information of the languages
it supports.12 Hence, we cannot ascertain the ac-
tual statistics of all the languages in their training
data. We use CC100 (Wenzek et al., 2020), a large
multilingual corpus, to estimate these statistics.

Reproducibility One limitation with testing
closed LMs is lack of reproducubility particularly

12The only official information they provide about Chat-
GPT’s multilingual support is here: https://help.opena
i.com/en/articles/6742369-how-do-i-use-the-opena
i-api-in-different-languages Prior studies have specu-
lated that ChatGPT was trained on at least 90 languages (Ahuja
et al., 2023).
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because the model weights are typically updated
continually. However, this only affects the down-
stream evaluations as our cost analysis is repro-
ducible, since the tokenizers we evaluate are open-
source.
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A Prompt template

In Table 2, we provide the exact prompts we use
for each respective task in our experiments.
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B Cost analysis

In Figure 11 we present the experimental cost rel-
ative to English and Spanish for Crosssum and
XFACT respectively. Figure 16 shows the esti-
mated cost of GPT3.5 API access for all languages
in CC100 relative to English .

C Extra analysis of fragmentation rate

In Figure 12 and Figure 13 we present the fragmen-
tation rate across language families and scripts for
both GPT3.5 and BLOOM respectively. Figure 17
shows the fragmentation rate for all languages in
FLORES grouped by language script.

D Fragmentation rate vs pretraining data
size

In Figure 14 we sort languages based on their size
in CC100 corpus (Wenzek et al., 2020) and plot
their fragmentation rate with GPT3.5 tokenizer.
Figure 15 shows the same statistics for BLOOM’s
tokenizer based on language pretraining data size
in (ROOTS corpus; Laurençon et al., 2023).

E Pretrained tokenizers on more
languages

Figure 19 shows fragmentation rate across lan-
guage scripts, when we train a BBPE tokenizer
trained on parallel text in 30 languages.

F Fragmentation rate vs HDI

Figure 18 shows GPT3.5’s fragmentation rate per
language against the Human Development Index
of the country with the largest amount of speak-
ers of that language. We add more languages and
countries here compared to the figure in the main
paper.
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Task Prompt Template
XLSUM Write a short summary sentence of the following text in

{language} Article: { article} Summary:
XQUAD Context: context Question: question Answer: Template
XNLI {Premise} Question : {hypothesis} True, False, or Neither?

Answer:
CROSSUM Write a short summary sentence of the following text in

English. Article: { article} Summary:
XFACT Tell me whether the following claim is {label 1 } or {label

2 } or {label 3 } ... given evidence {evidence 1 }, {evidence
2 }, {evidence 3 }

Table 2: Prompt template used for each dataset.
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Figure 11: Relative cost of prompt + generated tokens for XFACT and CROSS-SUM evaluations.
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Figure 12: Average number of tokens per language
family after tokenizing Flores dataset with GPT3.5 tok-
enizer. The fragmentation rate is lower for Latin script
languages and higher for other scripts.
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Figure 13: Average number of tokens per language
script after tokenizing Flores dataset with BLOOM to-
kenizer. The fragmentation rate is higher on average
for Latin script languages. This is because majority of
the low-resourced languages are latin-script and have
higher fragmentation rate.
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Figure 14: Average number of tokens per language after tokenizing FLORES with GPT3.5 tokenizer. Languages
are arranged in descending order based on the size of pretraining data in Commoncrawl.
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Figure 15: Average number of tokens per language after tokenizing FLORES with BLOOM tokenizer. Languages
are arranged in descending order based on the size of pretraining data in the ROOTS corpus.
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Figure 16: Estimated cost of GPT3.5 API access relative to English.
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Figure 17: Average number of tokens by script after tokenizing all languages in the Flores dataset with GPT3.5
tokenizer.
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Figure 18: Fragmentation rate per language against the Human Development Index in the country with the largest
amount of speakers of that language.
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Figure 19: BBPE tokenizer trained on parallel text from 30 language scripts with varying vocabulary sizes. It is
impossible to achieve uniform fragmnatation rate even when we have equal pretraining data sizes across all language
scripts.
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