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Abstract

Commercial news provide rich semantics and
timely information for automated financial risk
detection. However, unaffordable large-scale
annotation as well as training data sparseness
barrier the full exploitation of commercial
news in risk detection. To address this prob-
lem, we propose a semi-supervised Semantic-
Topological Iteration Network, STINMatch,
along with a News-Enterprise Knowledge
Graph (NEKG) to endorse the risk detection
enhancement. The proposed model incorpo-
rates a label-correlation matrix and interactive
consistency regularization techniques into the
iterative joint learning framework of text and
graph modules. The carefully designed frame-
work takes full advantage of the labeled and
unlabeled data as well as their interrelations,
enabling deep label diffusion coordination be-
tween article-level semantics and label correla-
tions following the topological structure. Exten-
sive experiments demonstrate the superior ef-
fectiveness and generalization ability of STIN-
Match'.

1 Introduction

Financial risk detection for enterprises is an essen-
tial task to assess and estimate the dynamic fragility
of the market. Efforts need to be made to probe
the vulnerable enterprises and enable timely pre-
paredness. Traditional methods often treat each
enterprise individually and leverage the official
information or relevant structured data from gov-
ernment agencies to assess risk (Ozbayoglu et al.,
2020). However, these official data are often bi-
ased and lagged, making it difficult to identify risks
accurately and timely (Bi et al., 2022). Commer-
cial news mining offers another effective perspec-
tive for financial risk detection owning to the mas-
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sive and timely information embedded in news ar-
ticles (Walker, 2016; Calomiris and Mamaysky,
2019; Li et al., 2022). Nevertheless, challenges
are persisting on how to efficiently utilize news for
detecting financial risks for enterprises.

One of the key issues is the multi-label diffusion
problem. One news document may carry multiple
risk labels (e.g., a ‘debt risk’ can be accompanied
by ‘litigation threat’), and conventional methods
are difficult to handle the mutual influences among
these labels given the rapid growth and variety of
streaming media. Recently, deep learning methods
have achieved great success in the field of natural
language processing. Deep multi-label text classifi-
cation (MLTC) methods can be applied to explore
the label correlations (Liu et al., 2017; Yang et al.,
2018). Unfortunately, pure text-based methods can-
not handle risk diffusion in the business ecosystem.
In order to address this problem, we propose a
new model, semantic-topological iteration network
(STIN), to estimate the ‘risk diffusion’ on the estab-
lished news-enterprise knowledge graph (NEKG).
Unlike previous graph neural network (GNN) meth-
ods for text analysis (Yang et al., 2021b,a; Pang
et al., 2022; Zhao et al., 2023), our STIN model fo-
cus on the multi-label-correlation guided text-graph
joint learning, hoping to capture the dissemination
for various types of financial risks following the
NEKG topological structure.

Another challenge is the limited annotation data
of financial news due to domain expert scarcity
or expensive labor cost. Semi-supervised learning
(SSL) is a common method for solving data scarcity
problems. Many SSL methods based on entropy
minimization, consistency regularization or generic
regularization have been proposed for low-resource
analysis scenarios (Berthelot et al., 2019, 2020;
Sohn et al., 2020). However, few studies have
been carried out on the semi-supervised integra-
tion for text-graph joint learning framework, which
could improve the performance for both modules
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by leveraging the unlabeled data more efficiently
in scenarios similar to our task.

The contributions are summarized as follows:
e We propose a pioneer semi-supervised text-graph
joint learning framework STINMatch. It fully ex-
ploits the semantic information and topological as-
sociation for risk diffusion with limited annotation
data.
e A novel content-label-topology aggregation
mechanism is further introduced during the iter-
ation of STIN model to handle the multi-label dif-
fusion issues on text-attributed graphs.
e We release an NEKG dataset annotated with mul-
tiple financial risks, which leverages real-world
enterprise relatedness and news-enterprise associa-
tions for risk detection.
e Extensive experiments demonstrate the detection
effectiveness of STINMatch and its good general-
ization ability on NEKG dataset, as well as other
two public datasets.

2 Related Work

Financial Risk Detection. Classification and re-
gression algorithms as well as time series forecast-
ing have been widely used in financial risk detec-
tion (Ozbayoglu et al., 2020; Sezer et al., 2020).
However, such methods mainly rely on historical,
structured data from corporate or government agen-
cies which lack up-to-date information. Recently,
unstructured textual data, such as business man-
agement reports and financial news, are adopted
for financial risk detection due to richer informa-
tion and better timeliness (Peng and Yan, 2021; Li
et al., 2022). However, such methods overlook the
interactions between news and enterprises for risk
diffusion by simply leveraging sentiment analysis
on each isolated document. A recent work (Bi et al.,
2022) leverages financial news as intermediaries
between enterprises to exploit their interactions,
but textual contents of the news are neglected.

Label Diffusion. Label correlations (Kurata et al.,
2016; Yang et al., 2018; Zhang et al., 2021) are
widely employed to improve model performance
for MLTC tasks. GNN methods have also been
used to deal with label diffusion issues for text
analysis. Most of them apply GNN on the ex-
tracted word/entity-level knowledge graph (Yang
et al., 2021b) or label co-occurrence graph (Pal
et al., 2020) to enrich representation for each in-
dependent sample. Other GNN methods utilize
text-attributed node relatedness (Kipf and Welling,

2017; Alkhereyf and Rambow, 2020) to enhance
node representation, but the text representations
are fixed during training. Some recent works are
combining GNNs with text classifiers to take ad-
vantage of both topology and semantic modeling.
For example, GLEM (Zhao et al., 2023) proposes
a variational expectation maximization framework
to alternatively updates the text and graph modules
separately. Nevertheless, different from previous
works, our STINMatch method focuses on the semi-
supervised integration for text-graph joint learn-
ing framework, as well as the multi-label diffusion
upon typologies for text-attributed GNN works.

Consistency Regularization for SSL. Consistency
regularization is a popular SSL approach to con-
strain model predictions being invariant to input
noise. MixMatch (Berthelot et al., 2019) applies
data augmentation techniques and introduces a uni-
fied loss for unlabeled data that seamlessly reduces
entropy while maintaining prediction consistency.
The modified versions such as ReMixMatch (Berth-
elot et al., 2020) and UDA (Xie et al., 2020) both
use weakly-augmented examples to generate artifi-
cial labels and enforce consistency against strongly-
augmented examples. FixMatch (Sohn et al., 2020)
is a simplified version of ReMixMatch and UDA,
which combines the pseudo-labeling with consis-
tency regularization while removing many speci-
fied components (e.g., training signal annealing and
distribution alignment). However, all these meth-
ods focus on SSL within a single text or graph mod-
ule respectively and could not be trivially adapted
to our joint learning framework for text-attributed
graphs. Other related work related to classifica-
tion for subjective texts in different granularities
include (Xiao et al., 2019; Moon et al., 2021; Song
et al., 2023).

3 Preliminary

In this section, we introduce the task goal of STIN-
Match, detail the NEKG construction, and provide
an intuitive example for financial risk diffusion.

Semi-supervised Risk Diffusion. Given a set of
news X and risk labels Y € {0, 1}%, the dataset
D = Dy U Dy contains n labeled news Dy =
{(zi,yi)|zi € X,y; € Y,i=1,2,...,n} and m
unlabeled news Dy = {z;|i = 1,2,...,m}. The
risk diffusion model aims to learn the mapping
F : X — Y from news to multiple financial risks.

NEKG Construction. The news-enterprise knowl-
edge base is formulated as a graph G = (N, C, E),
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where N is a vertex set denoting news, C' is a
vertex set denoting enterprises, and £ = {ele =
(p,q),p € C,q € CyU{ele = (p,q),p € N,q €
C'} is an undirected edge set. Among N, each
news in Dy, is annotated with K binary risk labels,
represented by a K -hot vector.

Resource and Statistics. Specifically, our NEKG
contains 99,666 news nodes and 50,193 enterprise
nodes. Each news node is initialized by its title and
content, and each enterprise node is initialized by
the company name. The edge between a news node
and an enterprise node indicates that the enterprise
is mentioned in the content of the news. The edges
between different enterprises belong to five real-
world relationship types: subsidiary, investment,
share-manager, share-investor, and share-legal-
entity. In total, NEKG contains 135,340 news-
enterprise edges and 121,938 enterprise-enterprise
edges.

Annotation. We sample | Dy,| = 15,000 news from
all news data, and Dy, is annotated by three do-
main experts. Each news can be identified as cor-
relating to one or more financial risks from the
following labels: Bankruptcy, Liquidation, Busi-
ness closure, Production halts, Debt, Corruption,
Dispute, Counterfeit, Fraud, and Litigation. The
annotation standard is summarized through three
preliminary rounds of annotation with 500 pieces
of news. After the adjustment through preliminary
rounds, each annotator labels Dy, independently
in more than a month’s time, and the annotation
results achieve a 0.803 Fleiss’s kappa.

Semantic labels

from news itself
R wnans!
b
/

/(\ Ny

g NEs

Topological labels
from diffusion

News-company relation

Real-world company relation

Figure 1: A toy example for financial risk diffusion
through NEKG. NEKG consists of two node types: text-
attributed news nodes and intermediate enterprise nodes.

Intuitive Example. Fig. 1 shows a toy example
for explaining the financial risk diffusion through
NEKG. The goal of model is to predict the risk
label distribution of the target news node ng. Tradi-

tional MLTC methods only consider the content of
the news itself. Suppose the ng node are connected
with three different enterprise nodes c2 3 4 accord-
ing to co-occurrence relations. Each enterprise
node can be connected with other enterprise nodes
according to the real-world enterprise relations (e.g.
[c2, c1]), as well as some extra news nodes (e.g.
[c3,n31]). The risk information from expanded
news can be propagated to the center news node
ng through the jump enterprise nodes. If most of
the neighbor news contain the risk information of
Liquidation, the probability for the target ng news
having Liquidation risk label also increases. On
the other hand, the probability distribution of risk
labels for each enterprise node can also be obtained
when the diffusion model converges.

4 STINMatch: Methodology
4.1 Overview

Architecture. We propose an end-to-end semi-
supervised semantic-topological iteration network
to endorse multiple risk diffusion. As illustrated
in Fig. 2, STINMatch is composed of a text clas-
sifier (i.e., My), a GNN-based node classifier (i.e.,
My), and a label-correlation matrix R. M; con-
tains a base text encoder and several classification
layers. It takes textual inputs and learns text embed-
dings through classification objectives on labeled
news. The hidden representations and predictions
of M; are utilized to initialize node features of M,
at each iteration round. M, propagates risk infor-
mation from labeled samples to unlabeled samples
through NEKG topology to achieve risk diffusion
and boost risk detection. We iteratively train M;
and M, in turn until convergence, and we seek
to optimize the integration of the correlation ma-
trix R into an iterative joint learning framework
in order to maximize performance and efficiency.
Upon the diffusion model reaching convergence,
the enterprise risk labels are adopted as signals for
precisely quantifying risk evaluation. Our work
advocates for an innovative approach to financial
risk detection that integrates label correlation ef-
fectively into the text-graph iterative learning pro-
cess. The integration of label correlation into the
iterative learning process offers a mutual benefit,
significantly improving the overall performance of
the system. On the one hand, the label correlation,
serving as domain-specific knowledge, plays an im-
portant role to guide the label diffusion for both text
and graph modules in each iteration; on the other
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Figure 2: (a) shows the overall semi-supervised learning framework of STINMatch. (b) shows the deep interactions
between text module, graph module and label correlations during the iteration for STIN model.

hand, the predictions of the successively enhanced
model help involve more previously unlabeled sam-
ples into the calculation of label correlation, result-
ing in a more generalized label correlation in each
iteration round.

Iterative Learning Framework. Below we elabo-
rate on the iterative semi-supervised learning frame-
work and the workflow from one iteration to the
next iteration. We ignore the subscription denoting
the iteration round for readability.

For a certain iteration round, we denote the key
information layer in M; as h;. h; carries two em-
beddings: text semantic embedding x;, and graph
context embedding x4, from the last iteration. M;
performs data augmentation techniques on both
labeled and unlabeled data to compute supervised
and unsupervised loss functions for updating model
parameters. We detail the module components and
semi-supervised learning strategy for M, in section
4.2.

After retraining My, we take the value of its
representation layer v; as the learned text repre-
sentation to initialize the node representations h,,
of M, in this iteration round. The M;’s prediction
Uy := (p1,p2, ..., px)" will also participate in the
calculation of graph aggregation process. Similarly,
we train M, with a joint loss function, consisting
of a supervised loss and an unsupervised loss, and
take the values of its last hidden layer 1), as learned
node representations. Then we use 1), to reinitial-
ize the x4, of M; for the next iteration round. We
detail the semi-supervised learning of M, and data
filtering strategy in section 4.3.

With the retrained M; and M,, STINMatch
filters An confidently-predicted samples from
m unlabeled samples to update the risk label
correlation matrix R € REXK a5 R;; =
cos((y1i, Y2is - - - YNi)s (Y15, Y255 - - - Yn;)), where
N = n 4+ An is the number of samples for
the joint set of Dy and the filtered set, and
(Y1is Y2is - - -, Yni) 18 the vector consisting of the
i-th risk labels for the NV samples. R is initially
calculated from the labeled set Dy, and updated
in each iteration round. Fig. 3 shows a visualized
calculation process for R.

4.2 Semi-Supervised Text Model

Text semantic embedding x; for M; comes from
a text encoder (e.g. CNN, RNN or BERT-based).
Graph context embedding x4 is randomly initial-
ized for all nodes and can be obtained from v, of
graph model M in the following iterations.

Similar to (Kurata et al., 2016), we involve
a weight initialization strategy leveraging label
co-occurrence to improve the model performance
for MLTC task. Let I, denote the second-last
layer in M;. The text model makes predictions as
Iy = (W; @ R)I; + by, where R is the risk label
correlation matrix, © represents element-wise pro-
duction, and W, and b, are learnable parameters.

Let X = {(zp,yp) : b € (1,...,B)} denote
a batch of labeled samples, where x;, are training
examples and y; are multi-hot labels. For the k-th
independent risk label, the supervised loss on the
batch of labeled data is:
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B
k= *% > ik logpik + (1= yix) log(1 — pi)]-
i=1
Here p; 1 is the probability of the ¢-th sample being
predicted with the k-th risk label by M.

LetUd = {up: b e (1, B')} denote a batch
of unlabeled samples. STINMatch applies differ-
ent augmentation techniques on the unsupervised
data U to generate a set of weak augmentation data
U}’ and a set of strong augmentation data U4, by
manipulating the primary semantic representation
x¢ and the supplementary graph context represen-
tation z, for My. Let I* = (p¥,p¥,...,p%)T and
7 = (p§,p5,...,p%)" denote the predictions of
My onU}¥ and U}, respectively. To generate [}, the
key idea is only to disturb the supplementary graph
context embedding x4, for weak augmentation. We
apply the Random Perturbation method (Kumar
et al., 2019) on x4 and combine it with the original
x¢ as the input of F'C'. For [, we applied a relative
strong augmentation method Extrapolation (Kumar
et al., 2019) on both x; and x4, which utilizes the
differences from other samples to synthesize new
examples. Here, the weak augmentation provides
higher accuracy for the pseudo labels, while strong
augmentation provides better diversity and a larger
region of sample perturbation for the consistency
regularization, thereby improving the performance
of the semi-supervised learning.

For each p}, we calculate a pseudo-label with an
indicator function pi’ = 1[p}’ > 7] which returns 1
when p;’ > 7 else 0, where 7 is a threshold hyper-
parameter. Let P* = {p}’|k = 1,2,..., K}. The
unsupervised loss for k- th risk label on the batch
of unlabeled data is defined as:

Zk = Z szk > 1 tk,ia
=1

where 1[3° K o1 D3 > 1] is an indicator function
for verifying the Vélidity of the predictions on the -
th augmented sample and L', ; is the cross-entropy
loss on k-th label for the - th unlabeled sample:

Lt,k,i = [pi,k IOgPi,k + (1 - pi,k)(l - logpi,k)]'

Finally, we merge the supervised and unsu-
pervised loss of all K labels for training M;:

Ly = Zijil

parameter.

[Ef,k + LY k], where « is a hyper-

4.3 Semi-Supervised Graph Model

Content-Label-Topology Aggregation. The ag-
gregation mechanism in M, is dominated by

a Semantic-representation and Label-distribution
guided Attention (SLA) layer. News semantics, la-
bel correlations, and risk diffusion can be learned
jointly via NEKG by stacking SLA layers. The
following part introduces the forward calculation
from the input node feature set hfq of the [-th SLA
layer to that of the next layer hffl. Below we omit
the subscription denoting the graph model g and
the number of layer [ for readability. For each node
1, the input and output node features for SLA layer
are denoted as h and h , respectively.
Specifically, we ﬁrst apply a multi-head
semantic-similarity-based attention mechanism
similar to (Velickovi¢ et al., 2017). It learns J
independent semantic attention weights to stabilize
the learning process, where the j-th single-head
weight between node p and v is calculated as:

— LeakyReLU(a?[W7h,,||[W7h,)),
where W7 is a shared transformation matrix, a’ is a

shared feed-forward neural network for each layer,
and Il is the concatenation operation.

J
M,
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Liquidation
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Figure 3: (a) shows the calculation process and a visual-
ization of label correlation matrix R. (b) is an example
showing how does R affect the risk label diffusion.

Then we involve a label-similarity-based atten-
tion mechanism since there exist internal relations
among different labels. However, direct similar-
ity calculation between multi-hot label representa-
tions neglects such correlations. To address this
issue, we utilize the correlation matrix R to cap-
ture the internal relations among different labels
to enable cross-label similarity calculation. As
shown in Fig. 3, without considering label cor-
relations, the aggregation weight W(ns — ¢1)
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is equal to W(n4s — c¢1). While considering
that Bankruptcy and Liquidation are correlated
risk labels, W(n3 — ¢;1) becomes larger than
W (n4 — c1). The label attention between node 1
and node v is:

/BM,V = Hgt,u . Eg:y ®© RHFrobcnius-
Note that ¢, ,, and ¢[,, come from the predictions
of My, ® represents element-wise production, and
||| | Frobenius represents frobenius norm for matrix.
After obtaining both 7, , and f3,, ,,, we combine
them into a merged attention weight .. The j-th

merged attention part of node p with respect to
node v is the softmax of a linear combination:

o ey £ (LX) B)
o Ere/\fu eXp[)\j : nft,r + (1 - AJ) ' B,LL,T'}
where NV, indicates the neighborhoods include it-
self for node 41, and A € R’ is a trainable vector.
At last, the SLA layer outputs the feature represen-

tation for node p as the concatenation of J inde-
pendent transformations:

= | o| > ol -Wh,
j=1 veN,

Here, o is the sigmoid function. Note that the input
feature for the first SLA layer is initialized from
the learned text representation ¢, in this iteration
round, and we employ the averaging operation in-
stead of concatenation for the J head outputs on
the final (prediction) layer as in (Velickovi¢ et al.,
2017).

Consistency Regularization for )/,. Similar to
M, the supervised loss for the k-th risk label to
train M, on the batch of labeled data is:

—
/

h

B
ok = *% D i loggir + (1 - yix) log(l — gip)],
i=1
where ¢; 1, is the probability for the i-th sample
being predicted by M, as the k-th risk label.
Also, STINMatch applies data augmentations
on the unsupervised data I/ to generate a set
of weak augmentation data U/’ and a set of
strong augmentation data Uy for M,. Let [f =
(¢, g%, ..., q@)" and 15 = (qf,45,. .., qj)" de-
note the predictions of My on Uy" and U, re-
spectively. For [, we utilize the graph attention
dropout on the attention coefficients in (Velickovié¢
et al., 2017) at inference phases. The weak aug-
mentation only changes the aggregation pattern
without disturbing the input node features. For
strong augmented [, besides the graph attention

dropout, we further apply the Extrapolation aug-
mentation method (Kumar et al., 2019) on the input
node feature set h, of the graph model.

For each ¢;’, we also calculate a pseudo-label
as g¢ = llg > 7], and let Q¥ = {G’|k =
1,2,...,K}. To ensure the validity of the pre-
dictions from M, we introduce an Elevated Con-
straint by restricting that the additional informa-
tion from neighbors do not reduce the risk labels
obtained from text model M; for each node itself.
Namely only the samples whose pseudo-labels pre-
dicted from M, being a subset of that from graph
module M, will participate in loss calculation, and
the unsupervised loss for the k-th risk label to train
M on the batch of unlabeled data is defined as:

1 B

K

ok = —gz 1 (Zqi“k > A(PYCQY)| Ly,
i=1 k=1

Here A represents the simultaneous satisfaction for

both conditions. L, ; is the cross-entropy loss for

the i-th unlabeled sample, regarding ¢;” as the label

and ¢g;, as the prediction:

Ly ki = 4% log @7 + (1 = ¢;%) (1 — log g7 1,)]-
Finally, we merge the supervised and unsuper-
vised loss of all K labels for training M,: L, =

K s u
dim1 { gk T 7£g,k]-
S Experiments

5.1 Experimental Setting

Datasets. We validate our model on three different
datasets. The main dataset NEKG are described
in section 3. Note that we fixed a 5000 original
labeled news as test set. We take only a random
part of the remaining original labeled news as our
labeled data set Dy, for each experimental setting.
We remove the labels except for Dy, during training
STINMatch. The default labeled size for Dy, is set
to 1000, unless otherwise stated. The enterprise-
related information comes from a subset of the data
integrated by our data center team collected from
various of government-backed open data providers
such as National Enterprise Credit Infomation Pub-
lic System of China, and it enables the designed
web-crawler to collect the corresponding news for
annotations and evaluations.

The other two public datasets RentTheRunWay
and Goodreads-Spoiler will be described in the
algorithm generalization part of section 5.4.
Implementation We carried out all models with
Pytorch. Graph model is implemented using dis-
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tributed graphics library (DGL). All models are
trained on the NVIDIA Tesla A100 80GB GPU.
The hyper-parameter details are shown in Ap-
pendix A.

5.2 Baselines

As shown in Table 1, the STINMatch model is
compared with baselines from 4 main categories.
Category 1 contains classical text classification
methods. ROBERTa-sw represents the RoOBERTa
trained using the sliding-window method (Wang
etal., 2019). In order to validate the performance
of different frameworks over pure text level fairly,
most of the text encoder part in following cate-
gories are based on the TextCNN over pre-trained
BERT embedding layers (represented by TCB).
Category 2 contains state-of-the-art text models
specialized for MLTC tasks such as LCNNI (Ku-
rata et al., 2016), SGM (Yang et al., 2018)
and CORE (Zhang et al., 2021). Focal or DB
loss (Huang et al., 2021) designed to handle the
label distribution for MLTC tasks from loss terms
are also tested.

Category 3 contains typical semi-supervised learn-
ing methods for pure text models.

Category 4 applies typical GNN-based methods
over TCB representations. General GNN models
such as GCN (Kipf and Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), GAT (Velickovié
et al., 2017) are used. GNN models specialized for
MLTC tasks such as MAGNET (Pal et al., 2020)
and LC-GAT (Xu et al., 2020) are also included for
comparison. GLEM (Zhao et al., 2023) is a latest
text-graph co-training method, which has also been
tested. Some details of GLEM have been modified
to adapt to our scenario for fair comparison (e.g.
using TCB as base language module, replacing the
binary cross-entropy loss with a multi-label loss).

5.3 Effectiveness for STINMatch

News Risk Evaluation. Experiment results are
reported in Table 1 with the labeled size n set to
1000. From Category 2 of Table 1 one can wit-
ness slight improvements with some multi-label
methods, indicating the usefulness of correlations
among labels. Text-based semi-supervised meth-
ods also slightly enhance the performances. GNN
methods achieve certain improvements compared
to that of pure text-based methods, showing the ef-
fectiveness of the additional NEKG. The proposed
STINMatch model shows convincing superiority

Table 1: Comparisons on news risk detection task be-
tween our STINMatch model and other methods. { indi-
cates that a pre-trained BERT embedding layer serves
as the first layer of the model.

Category Model MacroF1  MicroF1

FastText 0.62 0.81

TextRCNN 0.728 0.906

Category 1 TextRCNNT 0.748 0.885
TextRNN-attention' 0.746 0.863

TextCNNT (i.e. TCB) 0.808 0.922

RoBERTa-sw 0.815 0.902

LCNNIf 0.724 0.831

Category 2 SGM 0.714 0.841

CORE! 0.834 0.920

TCB-Focal-loss 0.830 0.923

TCB-DB-loss 0.813 0.917

Category 3 l?seudo-TCB 0.814 0.921
MixMatch-TCB 0.818 0.919
ReMixMatch-TCB 0.821 0.921
FixMatch-TCB 0.821 0.923

GCN-TCB 0.811 0.908

Category 4 GraphSAGE-TCB 0.827 0.916
GAT-TCB 0.831 0.921

MAGNET-TCB 0.835 0.923

LC-GAT-TCB 0.837 0.926

GLEM-TCB 0.849 0.927

STINMatch STINMatch 0.889 0.938

Table 2: Evaluation for enterprise risk detection based
on risk propagation results from different GNN models.

Model Accuracy Fl-low-risk F1-high-risk

GCN-TCB 0.668 0.786 0.264
GraphSAGE-TCB 0.677 0.792 0.270
GAT-TCB 0.695 0.807 0.281
MAGNET-TCB 0.684 0.798 0.274
LC-GAT-TCB 0.704 0.813 0.287
GLEM-TCB 0.716 0.824 0.295
STINMatch 0.732 0.834 0.310

compared to all baselines. It is owing to the multi-
label-correlation guided text-graph joint learning,
as well as the interactive semi-supervised learn-
ing across text-graph models. Note that we run
the experiments for 5 times and reported the av-
erage performances. The t-test results show that
the proposed model significantly outperforms the
best baseline by 4.7%. The detailed ablation study
results for STINMatch are described in Section 5.4.
Enterprise Risk Evaluation. We also conducted
comparative experiments for evaluating enterprise
risk detection based on the label-diffusion results
from NEKG. In fact, each enterprise node has a
credit risk rating label provided by an authorita-
tive rating agency. The credit risk rating labels
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can be divided into 2 different levels according to
the rating scores: high-risk (1) and low-risk (in-
cluding those with no risk) (0). On the other hand,
the GNN-based models will also offer risk predic-
tions for each enterprise node when converged. To
make the two label systems comparable, we sup-
pose enterprise nodes with more than one predicted
risk labels from graph models are high-risk (1),
while others are low-risk (0). We take the credit
risk rating labels as ground truth, and calculate
the classifier metrics (Accuracy and F1 for low-
risk/high-risk class) according to the predictions
from different GNN-based models.

By comparing the results of Table 1 and 2, we
can find that the model performance of the enter-
prise risk classifier is nearly positively correlated
with that on MLTC task for news risk detection.
The performance of STINMatch method exceeds
all that from other GNN-based baselines on enter-
prise risk evaluation task.

5.4 Analysis for STINMatch

Ablation Study. To investigate the contribution
for each component in STINMatch, we conducted
6 different ablation studies. The first study was
trained by patient epochs for text and graph mod-
ule respectively with early stopping in a single
round without iteration. The second study only
initialized the label correlation matrix R once with-
out the updating mechanism. The third study only
considered the traditional semantic attention and
ignored the label attention 3 for M. The follow-
ing studies explored different components for the
semi-supervised learning.

From Table 3 we can find that every intention-
ally removed component leads to a decrease in the
performance of the STINMatch model. It indi-
cates that the well-trained semantic representation
and graph-based diffusion model can perceive im-
portant reciprocal advantages from each other by
leveraging the multi-label correlations. The two
descriptions "w/o unsupervised loss" and "w/o un-
supervised loss" indicate the results after removing
the semi-supervised techniques from the text model
and the graph model. It indicate that the interac-
tive semi-supervised learning across text and graph
modules indeed make a better utilization for unla-
beled data at different training stages. Moreover,
the superiority for the text-graph joint learning can
be indicated by compare the results of category 3
from Table 1, which represent the semi-supervised-

Table 3: Ablation results for STINMatch method. w/o
means without using corresponding component.

Model MacroF1 MicroF1
w/o iteration 0.841 0.923
w/o updating matrix R 0.876 0.931
w/o label attention 3 0.869 0.925
w/o unsupervised loss for M; 0.873 0.929
w/o unsupervised loss for M, 0.871 0.929
w/o elevated constraint 0.878 0.931
STINMatch 0.889 0.938

enhanced text classification methods without text-
graph joint learning.

Time Cost & Labeled Size Analysis. Fig. 4
presents the model performance over the increase
with training epochs and the size of labeled data.
The left insets (i.e., (a) and (b)) show the time cost
and Macro F1 when varying training epochs with
the labeled size fixed as 1,000. With nearly three
times of computation time cost, our method out-
performs the TCB baseline by 9.5% on Macro F1.
The right insets show the increase ratio of Macro
F1 along with the labeled data size. The result of
inset (c) is calculated from dividing the best Macro
F1 of STINMatch by that of TCB, which are shown
in inset (d). It can be found that the increase ratio
is larger when the labeled size is smaller, while it
decreases with the growth of the labeled size. It
indicates the better superiority of STINMatch in
lower resource scenarios. It can also be observed
from inset (d) that when the labeled size |Dy| is
1,000, STINMatch achieves a performance which is
approximately similar to that with | Dz,| = 10, 000.
However, for the baseline TCB model, the perfor-
mance of the model with | Dy,| = 1,000 is signifi-
cantly lower than that with |Dy,| = 10,000. This
indicates that the proposed mechanisms effectively
reduce the dependency on labeled data, resulting in
substantial cost savings in terms of annotation.

Algorithm Generalization We also processed
two public datasets RentTheRunWay (Misra et al.,
2018) and Goodreads-Spoilers (Wan et al., 2019) to
demonstrate the generalization ability of our STIN-
Match method when adapted to other domains. We
elaborate on the two review datasets in Appendix C.

For these two datasets, we fixed half of the sam-
ples as test set, and randomly selected 10% of
the remaining samples as labeled ones for semi-
supervised learning comparison. We selected four
typical baselines described in section 5.2. From Ta-
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Figure 4: The left insets (a) and (b) show the variation
trend of the time cost and model performance with the
increase of training epochs. The right insets (c) and
(d) show the variation trend on the best Macro F1 with
increasing the labeled data size.

Table 4: Algorithm generalization experiments.

Method RentTheRunWay  Goodreads-Spoilers
MacroFl MicroF1 MacroFl  MicroF1
RoBERTa 0.481 0.764 0.573 0.611
GAT-TCB 0.487 0.771 0.579 0.613
GLEM-TCB 0.501 0.789 0.585 0.624
FixMatch-TCB 0.495 0.786 0.584 0.621
SSINMatch-TCB 0.516 0.801 0.615 0.638

ble 4 we can see that our method still outperforms
other baselines on the two public datasets, showing
good generalization ability of STINMatch.

6 Conclusion

In this paper, we introduce the NEKG for helping
detect financial risks from commercial news. The
proposed STINMatch method outperforms existing
state-of-the-art models on news risk detection task,
as well as the downstream enterprise risk evalua-
tion task. Such improvements mainly come from 1)
Additional NEKG topology enables article-level
risk diffusion; 2) The carefully designed STIN
model brings deep interactions among semantic
module, topological module and label-correlation
matrix, enhancing the sound diffusion upon NEKG.
3) The innovative semi-supervised joint learning
framework enables text and graph modules to per-
ceive important reciprocal advantages from each
other, making both modules utilize unlabeled data
more effectively. The utility of real-world applica-
tions in scenarios similar to our financial risk de-
tection task is substantial, ranging from multi-label
document classification based on citation or so-
cial networks, to multi-label product classification
through e-Commerce platforms. We also apply the
STINMatch method on two public graph-enhanced

MLTC datasets and validate its good generalization
ability.

7 Limitations

STINMatch leverages semi-supervised learning
techniques on a semantic-topological iteration net-
work. Our research demonstrates that both the
joint iterative learning and interactive consistency
regularization of the text and graph models bene-
fit the risk diffusion. However, we acknowledge
that the proposed mechanisms increase the com-
putation cost. For example, with the same train-
ing epochs and batch size, the computation cost
of STINMatch is nearly three times the simplest
baseline (i.e., TCB). However, this higher cost is
justified by the significant benefits it brings. In fact,
STINMatch outperforms TCB by 9.5% in terms
of Macro F1, which is a substantial improvement.
Moreover, in order for TCB to achieve an evenly-
matched performance, it needs almost 10 times
labeled data than STINMatch. The overall results
indicate that our STINMatch offers better results at
a certain cost of consumption time.
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A Hyperparameters

For all experiments, hyper-parameters are deter-
mined by grid search, and total maximum epochs
are set to the same order with early stopping to be
fair. The learning rate is is 2e-4 for the text model
and 5e-4 for the graph model. The batch size B is
8, B' is 7 times greater than B, which is the same
to (Sohn et al., 2020). The layers for graph model
is 3. The confidence threshold parameter 7 is set to
0.95. The balance weight parameter y for unsuper-
vised and supervised loss is set to 0.5, the details
can be seen in Table 5. The max content length in
review datasets is 512, and the max length for each
news in NEKG is set to 2000. For most experimen-
tal settings, we use a CNN-based text encoder with
a pre-trained BERT embedding layer considering
the length limitation and efficiency issues for fair
comparison. Each text-graph iteration includes 100
text epochs and 100 graph epochs, the maximum
of iterations is set to 10. All indicators are taken
from the average value of last five epochs to ensure
stability.

B NEKG Datasets

The distribution of each risk label among all an-
notated news the details can be seen in Table 6.
Besides, we also report the circumstances of multi-
label annotation of the news data in Table 7.
Among all 15,000 annotated news, 5855 news are
associated with 1 risk label, 6986 news are associ-
ated with 2 risk labels, and more than two thousand
news have 3 or more labels.

C Review Datasets

RentTheRunWay (Misra et al., 2018) dataset con-
tains self-reported fit feedback from customers as

Table 5: Performance under the balance weight parame-
ter -y at different scales for NEKG dataset.

0% MacroF1
0.05 0.878
0.1 0.882
0.5 0.889

1 0.883

Table 6: Distribution of risk labels for NEKG dataset.

Risk Label Number of News
Bankruptcy 3376
Liquidation 2107
Business closure 272
Production halts 705
Debt 4097
Corruption 474
Dispute 5262
Counterfeit 1187
Fraud 993
Litigation 8277

Table 7: Risk label count for news.

Risk Label Count | Number of news
1 5855
2 6986
3 1725
4 344
5 83
6 7

well as other side information like reviews, ratings,
product categories, etc. It contains 105,508 users,
5,850 items and 192,544 reviews. We construct
a bipartite graph of item nodes and review nodes.
Item nodes are medium nodes similar to the enter-
prise nodes in our enterprise graph, and the review
nodes are text-attributed nodes similar to our news
nodes. One item is connected to another item by
an edge if they are commented by a same user. We
transformed the three-class fit-feedback tags and
ten-class rating tags into the multi-labels.

Goodreads-Spoilers (Wan et al., 2019) dataset
contains reviews from the Goodreads book review
website. It contains 25,475 items, 18,892 users
and 1,378,033 reviews. The constructing method
of graph is similar to that of RentTheRunWay. We
transformed the six-class rating tags and the "has-
spoiler" tag into the multi-labels.

D Annotation Table

Finally, we provide a detailed annotation table for
interpreting all symbols in Table 8.
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Table 8: Annotation Table.

Risk Label Count Number of news
R label correlation matrix
K number of all risk labels
N vertex set for news
C vertex set for enterprises
E edge set of news-enterprise KG
Dy, labeled news data
Dys unlabeled news data
M, graph module
M; text module
Ty output of the text encoder in M,
Py hidden representation in M,
Iy output of M,
: predictions on strong augmentation data in M;
b predictions on weak augmentation data in M;
hg node representation in M,
g hidden representation in M,
lg output of M,
9 predictions on strong augmentation data in M,
ly predictions on weak augmentation data in M,
B node-level attention weights regarding label correlation
n similarity-based node-level multi-head attention weights
Q node-level attention weights in M,
¥ balance weight parameter for unsupervised and supervised loss
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