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Abstract
This work focuses on the spatial dimension of
narrative understanding and presents the task
of event-location tracking in narrative texts,
namely the extraction of the sequence of loca-
tions where the narrative is set. We present sev-
eral architectures for the task that seek to model
the global structure of the sequence, with vary-
ing levels of context awareness. We compare
these methods to a number of strong baselines
and ablated variants. We also develop meth-
ods for the generation of location embeddings
and show that learning to predict a sequence
of continuous embeddings is advantageous in
terms of performance over predicting a string
of locations. We focus on the test case of Holo-
caust survivor testimonies, motivated by the
moral and historical importance of studying
this dataset using computational means. The
dataset further provides a unique case of a large
set of narratives with a relatively restricted set
of location trajectories. Our results show that
models that are aware of the global context of
the narrative can generate more accurate loca-
tion chains. We corroborate the effectiveness
of our methods by showing similar trends in an
additional domain.1

1 Introduction

A primary goal of narrative analysis is to represent
essential dimensions of stories in a schematic man-
ner. One such essential dimension is the location
or sequence of locations, in which the story takes
place. In fact, location is such an important ele-
ment in a story, that the ability to situate a story in
a place is often viewed as one of the elements that
distinguish narrative text from other types of texts
(Piper and Bagga, 2022). Characterizing stories
by their sequence of locations is also beneficial in
that it provides a backbone for alignment between
different stories–an important task in its own right
(see, e.g., Ernst et al., 2022).

1Code is provided at https://github.com/
eitanwagner/location-tracking

Figure 1: Event-Location Tracking in Holocaust testi-
monies. The output is the list of event locations which
is not identical to the list of location mentions.

Nevertheless, and despite the wealth of NLP lit-
erature that has studied the expression of locations
in texts (see §2), we are not aware of works that
attempted to extract the trajectory or sequence of
locations where a narrative story takes place.

In this work, we focus on transcriptions of Holo-
caust survivor testimonies, given in English. It is
difficult to overstate the importance of this dataset
for the study and memory of the Holocaust. With
the inevitable perishing of the last living survivors,
there is an imminent need to develop new modes
of engagement with the vast amount of Holocaust
testimonies stored in the archives. The applica-
tion of NLP technology to the analysis of these
testimonies has recently been strongly advocated
(Artstein et al., 2016; Wagner et al., 2022). Indeed,
NLP can aid in allowing researchers to gain insight
from the entire collection of testimonies (tens of
thousands of them), instead of focusing on small-
scale, mostly manual, studies. We further argue that
Holocaust testimonies have the additional, unique
value for NLP, due to its combination of a large
number of testimonies and a relatively restricted
domain, in terms of themes and locations. This
quality stands in contrast to that of typical narrative
datasets (Sultana et al., 2022).
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In the narrative framework, event-location track-
ing is unique in two ways. First, as in Gius and
Vauth (2022), the focus is on event location, i.e., the
location where the event takes place. For example,
if a witness recounts events in the ghetto, and men-
tions someone who came from some town, then al-
though the town’s name is a mention of a location,
it is not part of the event location. Second, the loca-
tions in narratives should be viewed as a trajectory.
For example, migration from Europe to America
is not merely a change of location since it follows
a common post-war theme of Holocaust-related
trajectories. The task of event-location tracking is
therefore different from entity linking in its desired
output – a sequence of segment-wise predictions
for an entire document.

Trajectory extraction can be valuable for visual-
ization and trajectory clustering (Bian et al., 2018).
In addition, successful location extraction indicates
aspects of long-range narrative understanding, a
currently open problem in NLP (Yao et al., 2022).

In this work, we present various architectures for
location tracking that vary in their degree of context
awareness. In one architecture, we use a learnable
transition matrix, thus taking into account the adja-
cent locations. In another, we design a hierarchical
transformer that can attend to the whole document.
We also design a method to generate embeddings
for the locations. We compare our methods to a
number of baselines that use strong language mod-
els but are limited in the context-length that can be
taken into account.

We show that our models significantly outper-
form the baseline models. We find that, in general,
models with larger context capabilities have higher
performance in location tracking. We also find that
the use of location embeddings, trained with addi-
tional metadata, can contribute to the performance.
For validation, we construct an experiment in an ad-
ditional domain and show that similar trends arise.

In conclusion, we find that the task of event-
location tracking belongs, both conceptually and
empirically, to the level of full narratives. We argue
that this is an important step towards the under-
standing of narratives as full stories.

Our contributions in this work are as follows: (1)
we present the task of event-location tracking for an
entire narrative text; (2) we establish an experimen-
tal setup for the task, in the domain of Holocaust
survivor testimonies; (3) we present a number of ar-
chitectures for the task, capable of document-level

processing; (4) we present a method for creating
domain-dependent location embeddings, and show
its value to the task at hand.

2 Previous Work

Narrative Analysis and Segmentation. Narra-
tive schema analysis attempts to model the essence
of event sequences. It is beneficial to extract a high-
level sequential progression of a long story, giving
an overview of the events and allowing alignment
between relevant parts. For example, Antoniak
et al. (2019) visualized the frequent topic paths in
birth stories using segment-wise topic modeling.

To extract an interpretable sequential progres-
sion it is necessary to divide the long story into
shorter segments. Zehe et al. (2021) formulated the
task of dividing a long text into segments by scenes.
Hotho et al. (2021) summarized a shared task for
scene segmentation and concluded that the task re-
mains challenging. Our work is somewhat similar
to scene segmentation since location trajectories in-
duce some type of segmentation and locations are a
key component in scenes. Nevertheless, the defini-
tion of a scene involves other aspects, such as time
and plot, making it harder to formalize a prediction
task and apply domain knowledge to aid the task.
We focus, therefore, on locations only, and seek to
extract the trajectory of the whole narrative. For
this purpose, we focus on coarse locations (such as
cities) and not on detailed scenes (such as specific
houses).

Event Locations. Some recent works have ex-
pressed the significance of event locations for nar-
rative analysis. Piper et al. (2021) formulated a
definition of narratives with event locations as a
key part. Soni et al. (2023) formulated a task of
grounding characters to locations. Other works
extracted event locations for single events, such
as events described in tweets (Kumar and Singh,
2019). However, no previous work, to the best of
our knowledge, has studied the trajectory of loca-
tions in a full narrative.

Toponym Resolution. Toponym resolution de-
scribes the task of extracting and identifying loca-
tion mentions in a text. This task can be seen as
a subtask of Named Entity Linking, by consider-
ing only location (“GPE”) entities. Therefore, to-
ponym resolution can be carried out with a general-
purpose entity linker. Cao et al. (2021) released a
general-purpose entity linker based on autoregres-
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sive language generation. As in most entity linkers,
the entities are Wikidata items.

Nevertheless, it has been shown that special train-
ing for spatial entities has better performance, lever-
aging specialized location gazetteers such as Geon-
ames 2, which is more detailed than Wikidata lo-
cation items (Hu et al., 2023). Hu et al. (2022)
presented a survey about location-specific entity
extraction. Zhang and Bethard (2023) provided
a system that first resolves the non-ambiguous lo-
cation mentions and used them as context for the
ambiguous ones. Wang and Hu (2019) provided an
evaluation platform for toponym resolution.

Location Embeddings. Many methods exist for
general-purpose text-span embeddings (Le and
Mikolov, 2014; Reimers and Gurevych, 2019).
Specifically for locations, Tian et al. (2022) gen-
erated location embeddings from human mobility
trajectories using a graph-based approach. Kejri-
wal and Szekely (2017) generated location embed-
dings based on random walks over the Geonames
location graph. Dassereto et al. (2020) proposed
evaluation methods for location embeddings.

Trajectory Modeling. In contrast to toponym
resolution, which focuses on short mentions, a dif-
ferent line of work seeks to extract document-level
trajectories. Mathew et al. (2012) modeled human
location trajectories by Hidden Markov Models
(HMM). Sassi et al. (2019) replaced HMMs with
convolutional neural networks applied on location
embeddings. Lui et al. (2021) used LSTM-based
models for pedestrian trajectory prediction.

In our work, we propose the extraction of loca-
tion trajectories for events in texts. There are two
key differences between this and the existing work,
which focuses on trajectory modeling for lists of
location coordinates. First, event locations may
not be explicitly mentioned in the text, therefore
requiring non-trivial mention extraction. Second,
locations in texts represent more than simple coor-
dinate values. For example, a concentration camp
might be close to a city but they clearly represent
different thematic locations.

3 Task Definition

Our setting is the following: given a text, divided
into initial segments, x = x1,x2, ...,xn, we wish to
predict a sequence of locations y = y1,y2, . . .yn,
such that each location yi corresponds to the text

2http://geonames.org/

segment xi. The location sequence induces another
segmentation that is based on locations. We work
with a closed set of locations Y , i.e., ∀i.yi ∈ Y .

It is instructive to compare this task to NER for
locations. Whereas NER is a prediction task at the
phrase level, our task’s focus is on the document
as a long sequence of events. This change of focus
implies some unique properties:
• In location tracking, the locations are to be as-

signed to spans of multiple sentences, that de-
scribe a locally confined cluster of events, and
not to individual phrases as in NER. We do not
see much value in marking the exact token-level
boundaries of event locations since they are not
necessarily clear from the text. In our case, we
make a practical choice and use units of multiple
sentences, as this is the scope of the available
labeled data.

• In location tracking, the prediction is at the docu-
ment level, with possible dependencies through-
out the entire document. This property requires
strong long-context capabilities. For example, a
segment describing a visit to the narrator’s home-
town might not explicitly mention the town’s
name. The location name should be predicted as
the event-location based on earlier mentions or
external knowledge.

• Whereas NER annotates mentions, event-
location tracking often requires inferring the lo-
cation implicitly. Indeed, the task requires as-
signing a location to events even if no explicit lo-
cation is mentioned. Conversely, many locations
are mentioned without acting as event locations.
We also note that, specifically for testimonies,

we differentiate between the locations of described
events, which the task addresses, and the locations
of the event of giving the testimony (the ground),
which are not part of the location trajectory.

4 Methods

Location tracking is a structured prediction task,
as there are dependencies between the segment la-
bels yi. For tasks like this, the global context of
the document, and not just the individual segments,
can be helpful. To this end, we propose three dif-
ferent approaches with different degrees of context
awareness.

4.1 Deep CRF
We design and implement a linear CRF model (Laf-
ferty et al., 2001) with transformer inputs. We first
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(a) CRF with global transition weights. (b) CRF with segment-dependent transition weights.

(c) Hierarchical transformers.

Figure 2: Overview of the proposed models. Notation is as defined in Section 4.

finetune a transformer for segment location clas-
sification and use the output logits as inputs for
the CRF module.3 We propose two variants: the
first is a more straightforward approach that uses a
global transition potential matrix, while the second
predicts the transition potentials “on the fly.”

Global Transition Probabilities. In the first ver-
sion, the model consists of one transition matrix
that is learned during training. The transition ma-
trix is a parameter of the CRF component. See
figure 2a. We denote the global transition model
with CRF-G. Formally we can write:

PCRF-G(y|x) =
exp

[
∑n

i=1 (Eθ (xi) ·w+Myi−1,yi)
]

Z(x;θ ,w,M)
(1)

where Eθ is the transformer encoder, w are the
weights of the linear layer on top of the classifier,
and M is the transition matrix. Z is the partition
function. θ ,w and M are learnable parameters.

In this version, the transition matrix is a function
of the entire training dataset and does not depend
on the specific local segment. This assumption has

3Our implementation for the CRF model is based on
the TorchCRF package — https://github.com/s14t284/
TorchCRF — with minor modifications.

limitations. For example, in most cases, the proba-
bility of staying in the previous location is highest,
but if the previous segment describes migration or
deportation then the probability of staying should
be low. For this reason, we present another version
with local probabilities.

Local Transition Probabilities. In the second
version, the transition matrix is the output of a
transformer that receives the segments as inputs
and outputs a transition matrix. This allows the use
of different transition probabilities based on the
content of the current segment. The architecture of
the transition estimator is similar to the classifier,
but the output is a (flattened) logit matrix instead of
a logit vector. Each entry in the matrix represents
the potential of transitioning between two location
labels. In this version, all the learned parameters
are part of the transformer component and its heads.
See figure 2b. We denote the local transition model
by CRF-L. Formally:

PCRF-L(y|x) =
exp

[
∑n

i=1 (Eθ1(xi) ·w1 +Eθ2(xi−1)yi−1,yi ·w2)
]

Z(x;θ1,θ2,w1,w2)
(2)
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where Eθ1 and Eθ2 are the transformer encoders;
Eθ1 outputs a vector for a text span and Eθ2 outputs
a matrix. w1 and w2 are the weight vectors of the
linear layers on top of Eθ1 and Eθ2 , respectively. Z
is the partition function.

Learning. In both versions, the segment-level
classifier is first finetuned with locally labeled seg-
ments. Then the CRF optimization is performed
with the negative log-likelihood loss of the se-
quence. As in CRF models, the likelihood includes
an exponential number of summands but can be
computed efficiently with dynamic programming.
Gradient updates can either include only the tran-
sition component (a matrix for the global version
or a classification head for the local version), with
the local classifier frozen, or can include further
finetuning at the segment-level classifier too.

4.2 Hierarchical Transformer
In a similar manner to the CRF model, we design a
hierarchical transformer with one transformer that
encodes the text of each segment, and a second
transformer that encodes the sequence of segment
encodings. See Figure 2c.

This architecture has two potential advantages
over the CRF ones. The first is that a linear CRF
attends to one previous location only, thus limit-
ing the available context. Extending the context
involves a high computation cost. The second ad-
vantage is the larger flexibility of the hidden states.
As opposed to the CRF model, which outputs prob-
abilities, the transformer component outputs raw
hidden states that can be used either as inputs for a
classification layer or as the actual representations
given a set of predetermined embeddings.

Given the flexibility of this architecture, we de-
sign two versions. The first uses discrete locations,
and the second uses location embeddings.

Discrete Locations. This model is constructed
with two components. First, a segment-level trans-
former text encoder receives a text segment and out-
puts an embedding vector. Second, a transformer
encoder model receives a sequence of embeddings
and outputs embeddings for sequence classification.
We denote this model with HITRF. Formally:

∀i ∈ [n] :

PHITRF(yi|x) = so f tmax
([

Eθ2(Eθ1(x j)
n
j=1) ·w

]
i

)
(3)

where Eθ1 and Eθ2 are the transformer encoders;
Eθ1 outputs a vector for a text span and Eθ2 outputs

hidden states for each vector inputs. w is the weight
vector for the linear layer on top of Eθ2 .

Location Embeddings. The previous models use
a discrete list of locations. In this setting, classi-
fication is done in a “one-hot” setting. A better
option is to leverage the properties of the locations
by creating location embeddings. This allows the
use of zero-shot capabilities of the models, as well
as the use of similarity between locations.

The embeddings are obtained by a sentence em-
bedding model trained on natural language infer-
ence (NLI) data, with additional domain-specific
data derived from the thesaurus and the segment
annotations.

Using embeddings does not require structural
changes to the architecture. The only difference is
that the classification layer (i.e., the layer before
the softmax) is initialized with the location embed-
dings and remains frozen during training. By doing
so, we effectively predict the locations by project-
ing the inner representations onto the embeddings.
We denote this model by HITRF+EMB.

4.3 Baseline Models

For baselines, we present several methods that do
not take the entire document into account. Pre-
dictions are made for each segment independently,
taking into account very limited additional context.
These methods are simple and efficient. We intend
to show that simplicity comes with a significant fall
in performance.

Independent Classification. This method ex-
tracts a location sequence as independent classifica-
tion tasks. We train a transformer model to classify
the location and use this to predict the segment loca-
tion independently, i.e., without taking into account
the relationship between predicted classes. This is
the same as Eθ (x) ·w in the proposed models. We
denote this model with INDEPENDENT.

Greedy Decoding. In this method, we train a
transformer to predict a location for a segment
given some previous locations and segments. 4

For decoding, we predict a location given the
first segment and two ‘START’ (one for an empty
segment), and then recursively predict the loca-
tion for a segment given the previous segment and

4In our experiments, we used the two preceding locations
and one preceding segment. The input format was: yi−2 [SEP]
xi−1 [SEP] yi−1 [SEP] xi, where x-s are text segments and y-s
are locations. The model was trained to predict yi.
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two previously predicted locations. We denote
this model with GREEDY. Another version of this
method used beam search for decoding. The results
were not significantly different.

In the independent and greedy baseline methods,
we also divided the testimony into 10 bins and
inserted the bin number of the segment as part of
the text. This gives the classifier some additional
information beyond the segment itself.

Location Entity Selection. In this method, we
apply NER and predict the location based on the
entity mentions. We use a pretrained zero-shot
classifier to predict the location based on the con-
catenation of all mentions of the locations in the
segment, obtained from a NER tool. We denote
this model with ENTITY.

ChatGPT. Another baseline we experiment with
is zero-shot classification with ChatGPT.5 We give
the model instructions to return a location category
from the specified list. For each segment, we input
the instructions and the previous segment and its
response, with an exception for cases where the
response was not a category on the list, in which
case, we did not input the previous segment and
response for the next segment.6 After receiving
a list of predictions, we ignored all responses that
were not on the list and instead kept the previous lo-
cation category that was on the list (or used START
if there was no previous location). See appendix B
for the full prompts.

5 Experimental Setup

5.1 Data
Location Data. Our main data consists of 1000
Holocaust survivor testimonies, received from the
Shoah Foundation (SF).7 All interviews were con-
ducted orally by an interviewer, recorded on video,
and transcribed as time-stamped text. The lengths
of the testimonies range from 2609 to 88105 words,
with a mean length of 23536 words.

Each testimony recording was divided into seg-
ments, typically a segment for each minute. Each
segment was indexed with labels, possibly multi-
ple. The labels are all taken from the SF thesaurus.8

The thesaurus is highly detailed, containing ∼ 8000
unique labels across the segments.

5https://chat.openai.com/
6This is done to avoid propagation of this type of error.
7https://sfi.usc.edu/
8https://sfi.usc.edu/content/

keyword-thesaurus

For the purpose of location tracking, we used in-
dex labels that can be seen as describing locations,
such as cities, ghettos, concentration camps, etc.
We performed our experiment with the category
name (e.g., “Ghettos in Poland”) and not the ex-
act location name (e.g., “Warsaw (Warsaw, Poland:
Ghetto)”). The conversion to categories was based
on the hierarchy in the SF thesaurus, with minimal
adaptation, that was done by Holocaust research
experts. We ended up with 105 categories for loca-
tions and two more labels for ‘START’ and ‘END’.
The label set has 55 categories for cities (including
moshavim and kibbutzim), 13 for concentration
camps, 11 for administrative units, 9 for ghettos, 9
for DP camps, 9 for refugee camps, and one cate-
gory for death camps. The full list can be found in
appendix A.

Using location categories allows us to signifi-
cantly reduce the number of categories (we have
over 1500 exact locations). Reducing the number
of categories inevitably results in some loss of infor-
mation, but the categories still provide rich informa-
tion useful for many tasks such as location-based
segmentation, alignment between testimonies, and
creation of high-level summaries.

We filtered out testimonies that did not follow
the same labeling as the others, such as those with
longer segments or very few location labels. We
clarify that we did not discard any parts of the tes-
timony text. For segments without location labels,
we assumed the previous location is maintained,
An exception is a case of a segment that was la-
beled as including a visit, in which case the next
segment assumed the location before the visit. We
ended up with 585 testimonies labeled with loca-
tions for each 1-minute segment. As the described
process includes some heuristic labeling, which in-
evitably introduces noise, we manually proofed the
labeling of a random set of 53 testimonies. These
testimonies were held out for all steps of training,
including embedding training and hyperparameter
tuning, and were used only as a test set. Out of the
remaining testimonies, we used 90% for training
and 10% for validation.

5.2 Model Specifics

General Considerations. In all models that in-
volved training, text segments were encoded with
a pretrained transformer model. We decided to use
the LUKE model (Yamada et al., 2020) since it was
explicitly trained for entity-aware tasks. We used
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the pretrained luke-base from Huggingface hub.9

The outputs of the encoder were pooled using the
default HuggingFace-transformer pooler. Specif-
ically, the LUKE-pooler applies a linear transfor-
mation and tanh activation to the embedding of a
special token that is placed at the beginning of the
sequence.

Baseline Models’ Specifics For the independent
and greedy baselines, we finetuned LUKE for loca-
tion classification with the standard Huggingface
Trainer settings. For independent classification, the
input was only the segment text and the relative lo-
cation in the testimony, and for the greedy decoder,
the input included the previous location-category
label. For beam search, we used k = 10 beams.

For the entity selection baseline, we used the
Holocaust NER model for entity recognition,10 and
bart-large11 for zero-shot classification.

Initialization. The CRF transition matrix can be
initialized either randomly or manually. Our exper-
iments showed that initializing the prior transition
matrix as a (smoothed) diagonal matrix yields the
best results and this is what we used.

In HITRF, for the transformer for segment em-
beddings, we used a randomly initialized DeBERTa
(He et al., 2021) architecture.

Intermediate Training. In the trained models,
besides the pretraining for the first transformer, we
added an intermediate step of training at the seg-
ment level. In all architectures, the segment-level
text-transformer components (both classification
and transition ones) were trained with the standard
Huggingface trainer, with batch-size=4, learning-
rate=5 ·10−5, for 3 epochs. This was done also in
the hierarchical transformer architectures, with the
only difference being that the classification head
was used for this step only and no further.

Finetuning. The main training step is finetuning
with whole documents. In one version this finetun-
ing updates only the weights of the last component
(θ2) – the CRF in the first architecture and the sec-
ond transformer in the others. This method is fast
and uses less memory, but it does not enable the
usage of global properties on the segment level. In
another version, we update all weights (i.e., also

9https://huggingface.co/studio-ousia/
luke-base

10https://ner.pythonhumanities.com/intro.html
11facebook/bart-large-mnli

θ1). This type of training requires some form of
gradient accumulation for memory efficiency. 12

In our experiments, we applied full gradient up-
dates to all models besides CRF-L. This is due to
technical complexity and the fact that the hierarchi-
cal transformer models yield better performance.

For all architectures, we used batch-size=1. We
trained CRF-L, CRF-G and HITRF+EMB for 20
epochs, and HITRF 10 epochs. For the segment-
level text-transformer, in the full gradient setting,
we used learning-rate=5 ·10−6. For the CRF ma-
trix, we used learning-rate=5 · 10−5 and weight-
decay=10−6. For the transformer with segment
embeddings, we used learning-rate=10−5.

Location Embeddings. Using the sentence-
transformer package,13 we finetuned LUKE for
sentence embeddings. First, we finetuned with the
combination of the SNLI (Bowman et al., 2015)
and MultiNLI (Williams et al., 2018) datasets and
with the Multiple Negative Ranking loss.14 We
added domain-specific training examples and fur-
ther finetuned with them. The extra examples were
testimony segments with the SF location labels and
location terms from the SF Thesaurus with their cor-
responding descriptions. We note that even though
the predicted output is on the category level, the
location embeddings were trained also for the ex-
act location level (i.e., for each city name). The
pairs were converted to NLI form with standard
prompts. See appendix C for further details on the
embedding training.

5.3 Evaluation Methods

Location Chains. Our models output a sequence
of locations for a predefined list. For pointwise
comparison, we only consider exact matches and

12In the forward pass, Eθ1 receives segments and outputs
corresponding (pooled) encoding vectors, and Eθ2 receives
all these vectors and outputs a sequence of locations. The
loss is calculated by the outputs of Eθ2 , which are determined
only after all segments were encoded (i.e., the input segments
cannot be divided into batches). Encoding all segments before
updating requires many copies of the computational graph,
which requires a large amount of GPU memory. To allow
batching, we do the following: We run a forward pass for
Eθ1 without gradients, encoding each segment. With these
encodings, we run a forward pass for Eθ2 , with gradients,
compute the loss, and backpropagate through Eθ2 , obtaining
(partial) gradients. We run forward again through Eθ1 , this
time with gradients, and backpropagate with the previously
obtained gradients. The last forward pass can be done in
batches.

13https://www.sbert.net/index.html
14https://www.sbert.net/docs/package_reference/

losses.html#multiplenegativesrankingloss
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ignore the different levels of similarity between
different locations. Although it is possible to take
similarity into account, for example, by using em-
beddings, this will introduce bias to the evaluation.

One measure we used was Python’s difflib Se-
quenceMatcher (SM) score, which is based on the
gestalt pattern matching metric (Ratcliff and Met-
zener, 1988). This metric sums the longest com-
mon substrings in a recursive manner, and divides
by the total length, attempting to reflect human
impression for similarity. In this metric, a higher
score means stronger similarity.

Another sequence measure we used is the Dam-
erau–Levenshtein edit distance (Edit, Damerau
1964). This measure defines the distance between
two sequences as the minimal number of insertions,
deletions, substitutions, or transpositions in order
to get from one sequence to the other. Since the
number of edits depends on the number of elements
in the sequence, we normalized the distance by the
number of locations in the reference document.15

For the Edit distance, lower is better.
For completeness, we also report the element-

wise accuracy (ACC) of the predictions.

6 Results

Scores for location tracking in Holocaust testi-
monies are in Table 1. We see that the proposed
models significantly outperform the baseline mod-
els, with the best baseline (GREEDY) showing simi-
lar performance to the lowest performing proposed
model (CRF-G). Regarding the CRF models, we
can see that using locally predicted transition ma-
trices can improve performance. The hierarchical
transformer models show improvements, with the
best results for the location transformer model with
location embeddings.

We report one score for the greedy algorithm
as we find that adding beam search had very little
effect. For comparison, we mention here that fixed
prediction for the most common category (which
is “cities in Germany”) gave much worse results:
Edit = 0.84, SM = 0.07, and Accuracy = 0.11.

7 Discussion

Our experiments show that document-level archi-
tectures are significantly better at event-location

15The normalized distance might be larger than 1 if the
predicted number of topics is larger than the real number. This
normalization is commonly known in the literature as word
error rate.

Model Edit SM ACC
INDEPENDENT 0.64 0.19 0.36
GREEDY 0.58 0.32 0.42
ENTITY 0.7 0.17 0.28
CHATGPT 0.72 0.19 0.27
CRF-G 0.57 0.27 0.42
CRF-L 0.53 0.38 0.47
HITRF 0.4 0.43 0.59
HITRF+EMB 0.37 0.49 0.63

Table 1: Performance of the various models for event-
location tracking in Holocaust testimonies, in terms of
Sequence Matching (SM), Edit distance, and Accuracy
(ACC). For SM and ACC higher is better and for Edit
lower is better. The models in the top part are the base-
line models. CRF-G and CRF-L are the global and
local versions of the proposed CRF architecture, and
HITRF and HITRF+EMB are the proposed hierarchical
transformer architectures without and with location em-
beddings. All models except CRF-L were trained with
full gradient updates.

tracking compared to local methods. This includes
both fine-tuned transformers and strong zero-shot
models, such as ChatGPT, and it is also true for
such models as LUKE that are specifically designed
to be aware of named entities.

Among the baselines, we see that simple lo-
cal classification obtains poor results. This in-
dicates that the task benefits from context. The
zero-shot models seem to struggle to comply with
the strict prediction format. This might be due to
the abundance of implicit locations. The greedy
model shows relatively good results, but its infe-
riority compared to the global models shows the
importance of taking into account a larger context.
Greedy’s rough similarity in performance to the
CRF-G model shows that the greedy models can
balance the local signal (i.e., prediction based on
the current text segment) and the transition signal
(i.e., accounting for the previous location), without
requiring global normalization.

Among our models, we see that the hierarchi-
cal transformer models perform better than the
CRF models. This might be due to the larger con-
text for the second level and the ability to capture
more information in the first-level embeddings. In
general, the experiment results follow a pattern in
which models that are more expressive in terms
of global context have better performance. Hierar-
chical transformer models are also robust to large
sets of locations, in terms of memory, since the
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embedding size is fixed. This is opposed to the
CRF models, for which the transition matrix grows
quadratically with the number of locations.

We also see that using specialized location em-
beddings improves performance over the test set.
The location embeddings are also important in or-
der to allow better adaptation to other sets of loca-
tions, such as more fine-grained categories, or even
the exact location names, using the zero-shot capa-
bilities of the embedding models to compensate for
sparsity of data.

Manual inspection of the HITRF outputs, shows
that in most cases the predicted trajectory is very
similar to the gold one. The cases in which the
performance was low seem to involve origin coun-
tries that are less frequent in the testimonies (like
Lithuania or Luxembourg).

We also consider metrics that asses the models’
performance in predicting location changes, while
ignoring the exact location. For this, we use the F1-
score for a binary prediction of whether a location
change is made after a given segment. Interestingly,
we find that with this metric, the greedy model (F1
= 0.29) and CRF-L (F1 = 0.24) outperform the
HITRF models (F1 ≈ 0.17). CRF-G (F1 = 0.16)
and INDEPENDENT (F1 = 0.1) under-perform the
HITRF models. This result implies that the pre-
dicted trajectories, while fairly accurate, are not
reliable enough as a means of segmentation. That
is, it seems that the HITRF models succeed in cap-
turing an overview of the testimonies, but struggle
with exact boundaries, while models with local-
transition components are more accurate in this
regard.

In order to learn about the impact of bidirec-
tionally on performance (separately from the im-
pact of structured prediction), we designed an ad-
ditional oracle baseline, based on an ensemble of
greedy models. We trained a greedy model to pre-
dict a location given the following locations and
segments (in a similar manner to the greedy base-
line). Its results were slightly inferior to the origi-
nal greedy model. We then constructed an oracle
baseline in which we predict sequences in both
directions and choose the backward predicted loca-
tion if it is the correct one. The results were Edit
= 0.41, SM = 0.45 and Accuracy = 0.59. These
results are similar to HITRF but still not as good
as HITRF+EMB. despite the oracle information
available to this method. These results then show
that even under idealized conditions, a simple bidi-

rectional model is not as strong as the best models
presented here, underscoring the importance of tak-
ing into account a larger context.

An interesting feature of the CRF models is the
ability to extract matrices with first-order transi-
tion scores. In CRF-G, we have a single matrix
for the entire set of testimonies. In CRF-L, we
have a function that assigns a unique matrix for a
given segment. Although the matrix depends on
the segment, our inspection shows that the gen-
erated matrices tend to be similar, allowing us to
observe both general and segment-specific trends.
In appendix E we present examples of matrices and
discuss the trends observed in them.

Although our experiments focus on the test case
of survivor testimonies, the techniques developed
here are applicable more broadly. To validate this
claim, we report in Appendix D results for an ad-
ditional test domain. The results show a similar
trend, thereby lending support to our claim as to
the importance of viewing this task as a global
(document-level) task.

8 Conclusion

We presented the task of event-location tracking in
narrative texts and proposed various methods for
tackling it.

We showed that our methods significantly out-
perform several baseline methods in terms of the
trajectory of locations that the model generates. Be-
tween architectures, we showed that additional con-
text improves results. We also showed that using
location embeddings improves results, in addition
to their importance for possible generalization. We
corroborate our findings in another domain.

In addition to the technical contribution of this
work, it also makes important first steps in analyz-
ing spoken testimonies in a systematic, yet ethi-
cal, manner. As such, our work contributes to the
domain of Holocaust and memory studies, design-
ing new methods of browsing and analysis that
augment the current efforts of scholars and prac-
titioners alike. More broadly, this work makes a
significant contribution to the growing field of com-
putational literary studies by offering new models
of narrative analysis, based on event locations.

Limitations

Our experiments involve a specific and unique do-
main. While we did test on an additional domain,
the main data and conceptual framework, such as
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the location categories, are limited in this respect.
Nevertheless, the domain provided an important
well-motivated test case also from the NLP per-
spective.

Ethical Considerations

We abided by the instructions provided by each of
the archives. We note that the witnesses identified
themselves by name, and so the testimonies are not
anonymous. Still, we do not present in the analy-
sis here any details that may disclose the identity
of the witnesses. We intend to release our code-
base and scripts, but those will not include any of
the data received from the archives; the data and
trained models used in this work will not be given
to a third party without the consent of the relevant
archives. The testimonies can be made accessible
for browsing and research by requesting permission
from the SF archive.
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A List of Location Categories

1. START

2. END

3. German concentration camps in Austria

4. German concentration camps in Belgium

5. German concentration camps in Czechoslo-
vakia

6. German concentration camps in Danzig (FC)

7. German concentration camps in Estonia

8. German concentration camps in France

9. German concentration camps in Germany

10. German concentration camps in Latvia

11. German concentration camps in Poland

12. German concentration camps in the Nether-
lands

13. German concentration camps in the USSR

14. German death camps in Poland

15. German prisoner of war camps in France

16. German prisoner of war camps in Germany

17. Slovakian concentration camps in Czechoslo-
vakia

18. Soviet concentration camps in the USSR

19. administrative units in Belgium

20. administrative units in Canada

21. administrative units in Denmark

22. administrative units in Hungary

23. administrative units in Israel

24. administrative units in Italy

25. administrative units in Lithuania

26. administrative units in Romania

27. administrative units in Spain

28. administrative units in the Netherlands

29. administrative units in the United Kingdom

30. cities in Argentina

31. cities in Australia

32. cities in Austria

33. cities in Belgium

34. cities in Bulgaria

35. cities in Canada

36. cities in Chile

37. cities in China

38. cities in Colombia

39. cities in Cuba

40. cities in Cyprus

41. cities in Czechoslovakia

42. cities in Danzig (FC)

43. cities in Denmark

44. cities in Dominican Republic

45. cities in Ecuador

46. cities in Egypt

47. cities in Estonia

48. cities in Finland

49. cities in France

50. cities in Germany

51. cities in Ghana

52. cities in Greece

53. cities in Hungary

54. cities in Iran

55. cities in Iraq

56. cities in Ireland

57. cities in Israel

58. cities in Italy

59. cities in Japan

60. cities in Latvia

61. cities in Libya
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62. cities in Lithuania

63. cities in Luxembourg

64. cities in Mexico

65. cities in Morocco

66. cities in New Zealand

67. cities in Nigeria

68. cities in Norway

69. cities in Paraguay

70. cities in Poland

71. cities in Portugal

72. cities in Romania

73. cities in South Africa

74. cities in Spain

75. cities in Sweden

76. cities in Switzerland

77. cities in Uruguay

78. cities in Yugoslavia

79. cities in the Netherlands

80. cities in the USSR

81. cities in the United Kingdom

82. cities in the United States

83. displaced persons camps or installations in
Austria

84. displaced persons camps or installations in
Germany

85. displaced persons camps or installations in
Germany: British zone

86. displaced persons camps or installations in
Germany: US zone

87. displaced persons camps or installations in
Italy

88. ghettos in China

89. ghettos in Czechoslovakia

90. ghettos in Greece

91. ghettos in Hungary

92. ghettos in Latvia

93. ghettos in Poland

94. ghettos in Romania

95. ghettos in the Netherlands

96. ghettos in the USSR

97. kibbutzim in Israel

98. moshavim in Israel

99. refugee camps in Australia

100. refugee camps in Austria

101. refugee camps in Italy

102. refugee camps in Jamaica

103. refugee camps in Sweden

104. refugee camps in Switzerland

105. refugee camps in the Netherlands

106. refugee camps in the United Kingdom

107. refugee camps in the United States

B ChatGPT Prompt

For the ChatGPT baseline, for the first segment, we
input the following prompt with the “system” role
(filling in the actual list):

"Here is a list of Holocaust-related event
location categories:
<Here comes the list of categories in ap-
pendix A>
The user will give you a text segment
and you will give back the location, out
of the previous list, where the events in
the segment took place. We emphasize
that we want the event locations (from
the list) and not the location of the inter-
view. Give only the name of the category
from the list with no additional text. If
there is no location give the one that is
the most probable.

Then we input the following with the “user” role
(filling in the actual text):

Segment: <Here comes the text seg-
ment>.
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From the response, we extract a predicted location.
After a response was received we input the last

query and response as part of the message history,
in addition to the instructions. In cases where the
response did not fit to any location in the list, we
did not use it as part of the message history.

C Location Embedding Training

The training of location embeddings was done
as NLI training with Multiple Negative Ranking
loss. The first set of NLI examples was general-
domain NLI data, which is a combination of
the SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018). We trained with learning-
rate=2 ·10−5.

We also obtained 2 sets of domain-specific ex-
amples. One set was generated from our annotated
testimonies. For each segment that has an explicit
location label, we generated two entailment exam-
ples of the form:

<text segment> ==> “The event location
is <label>“
<text segment> ==> “The event location
category is <label category>“.

For each entailment example, we also used the
opposite direction as entailment. Also, we created
a contradiction example with a different location
(or location category).

Another set was generated from the SF descrip-
tion for the locations and categories. For example,
the location “Warsaw (Warsaw, Poland)” has the
description:

Coordinates: 52º15’N 21º00’E Capi-
tal of Poland 1929 Voivodship: War-
saw Jewish population in 1939: 393,950
1900-1917: Russia 1917-1918: Occu-
pied by Germany 1918-1939: Poland
1939-1944: Occupied by Germany (Gen-
eralgouvernement) 1944-1945: Liber-
ated by Soviet troops 1945- : Poland.

For each of these descriptions, we generated an
NLI example of the form:

<description> ==> “The event location is
<location>“.

We used the opposite direction too and took a
random other description as a contradiction.

We remark that although in our experiments we
predicted the location categories, we still trained
the vectors for detailed locations.

Model Edit SM
IND. 0.16 0.83
CRF-G 0.18 0.83
CRF-L 0.2 0.8
HITRF 0.11 0.89
HITRF+EMB 0.2 0.79

Table 2: Performance for NBA biography team-
tracking.

D Location Tracking in Biographies

As a validation, we implemented and evaluated our
methods on another test domain.

Data. We extracted from Wikipedia professional
biographies of basketball players who played in
the NBA. We applied our methods to the task of
predicting the professional stage for each paragraph
in the article.

Starting with the WikiBio dataset (Lebret et al.,
2016), we selected all the biographies of basket-
ball players who played in the NBA. We then ob-
tained the full Wikipedia article (retrieved May 11,
2023) and filtered out the summary and sections
that do not describe professional stages. We used
the Wikipedia subsection titles as labels for each
paragraph in the section.

We used labels for all current teams and legacy
teams. We added labels for early careers, coaching
and executive careers, and non-NBA teams. The
final label set consists of 35 labels. For the full list
see D.1.

The process yielded 655 biographies with an
average of 16.9 labeled paragraphs. The average
length is 1300 words.

Training. We followed the same training pro-
cedure as with the Holocaust data. We changed
to learning-rate=10−6 for the segment-embedding
transformer.

Results and Discussion. For the NBA dataset,
the location embeddings hurt the performance,
even compared to the local classifier. In general,
since the local classifier has such good perfor-
mance, it proved difficult to add extra components
without hurting the performance. Nevertheless, we
still found that the use of hierarchical transformers
yields a substantial improvement over the indepen-
dent predictions. This shows that the global context
is beneficial.
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It’s worth mentioning that we assume that the
transformer models saw the NBA data with the
headers during pretraining. This might be a reason
for the strong performance of the local classifica-
tion model. The LUKE model might have already
learned useful embeddings, which outperform the
ones we use here.

D.1 List of NBA Biography Categories
1. Atlanta Hawks

2. Boston Celtics

3. Brooklyn Nets

4. Charlotte Hornets

5. Chicago Bulls

6. Cleveland Cavaliers

7. Coaching career

8. Dallas Mavericks

9. Denver Nuggets

10. Detroit Pistons

11. Early careers

12. Executive career

13. Golden State Warriors

14. Houston Rockets

15. Indiana Pacers

16. Los Angeles Clippers

17. Los Angeles Lakers

18. Memphis Grizzlies

19. Miami Heat

20. Milwaukee Bucks

21. Minnesota Timberwolves

22. New Orleans Pelicans

23. New York Knicks

24. Non-NBA team

25. Oklahoma City Thunder

26. Old team

27. Orlando Magic

28. Philadelphia 76ers

29. Phoenix Suns

30. Portland Trail Blazers

31. Retirement

32. Sacramento Kings

33. San Antonio Spurs

34. Toronto Raptors

35. Utah Jazz

36. Washington Wizards

E Transition Matrices

We attach here (partial) heatmaps of the transition
matrices obtained by the CRF models.

In figure 3 is a heatmap for the 35 most common
location categories, obtained by the global CRF
model. We can see some trends:

• For any category the most probable next step
is to stay in the same category.

• After START the next common category is
“concentration camps in poland”. In general,
after START, the common categories are in
European countries.

Figures 4 and 5 are heatmaps for the 35 most
common location categories, obtained by the local
CRF model. Figure 4 is obtained for a segment
describing a transport to a camp and figure 4 is
obtained for a segment describing life in Tel Aviv
after the war. We see that:

• The two matrices are very similar. This means
that although the transitions depend on spe-
cific segments, it is still possible to extract
some global trends.

• The second matrix has higher values in gen-
eral. This might mean that this segment is
interpreted as having more “mobility”.

• As in the matrix for the global transitions, the
highest values are for remaining in the same
category. Also, there are similar patterns for
transitions from START.

8803



Figure 3: Heatmap of the global transition matrix for the global CRF model. We plotted only the 35 most frequent
categories.
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Figure 4: Heatmap of a local transition matrix for the local CRF model for a segment describing a transport to a
camp. We plotted only the 35 most frequent categories.

Figure 5: Heatmap of a local transition matrix for the local CRF model for a segment describing life in Tel Aviv
after the war. We plotted only the 35 most frequent categories.
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