DialCoT Meets PPO: Decomposing and Exploring Reasoning Paths in
Smaller Language Models

Chengcheng Han®*
Yixin Lian®

Xiaowei Du®
Xiang Li® Ming Gao®*’ Baoyuan Wang*!

Che Zhang®

¢School of Data Science and Engineering, East China Normal University
#Xiaobing. Al
“School of Software & Microelectronics, Peking University
*KLATASDS-MOE in School of Statistics, East China Normal University
chengchenghan@stu.ecnu.edu.cn
{duxiaowei,lianyixin,wangbaoyuan}@xiaobing.ai
mmt@stu.pku.edu.cn
{xiangli,mgao}@dase.ecnu.edu.cn

Abstract

Chain-of-Thought (CoT) prompting has proven
to be effective in enhancing the reasoning ca-
pabilities of Large Language Models (LLMs)
with at least 100 billion parameters. However,
it is ineffective or even detrimental when ap-
plied to reasoning tasks in Smaller Language
Models (SLMs) with less than 10 billion param-
eters. To address this limitation, we introduce
Dialogue-guided Chain-of-Thought (DialCoT)
which employs a dialogue format to generate in-
termediate reasoning steps, guiding the model
toward the final answer. Additionally, we opti-
mize the model’s reasoning path selection using
the Proximal Policy Optimization (PPO) algo-
rithm, further enhancing its reasoning capabil-
ities. Our method offers several advantages
compared to previous approaches. Firstly, we
transform the process of solving complex rea-
soning questions by breaking them down into
a series of simpler sub-questions, significantly
reducing the task difficulty and making it more
suitable for SLMs. Secondly, we optimize the
model’s reasoning path selection through the
PPO algorithm. We conduct comprehensive ex-
periments on four arithmetic reasoning datasets,
demonstrating that our method achieves signifi-
cant performance improvements compared to
state-of-the-art competitors. !

1 Introduction

With the advent of Chain-of-Thought (CoT)
prompting (Wei et al., 2022), which encourages
Large Language Models (LLMs) to generate a
series of intermediate steps to help get the final
answer, reasoning capabilities of LLMs has seen
*Work done during an internship at Xiaobing.AlL
T Corresponding author.

'Our code and dataset are publicly available at https:
//github.com/hccngu/DialCoT.

teams . If 15.0 of them did not get picked for the team and
the rest were put into 2.0 groups . How many students
would be in each group ?

t There are 25.0 students trying out for the school 's trivia)
o

Chain-of-Thought

The 25.0 - 15.0 = 10.0 students who were picked for the
trivia teams were put into 2.0 groups. There would be 5.0
students in each group. So the answer is 5.0.

Dialogue-guided Chain-of-Thought

w many students were picked for the trivia teams?]
-
[25.0 -15.0 = 10.0 students were picked for the trivia@ 8

&

&Huw many students would be in each group?]
g

g e know that the 10.0 students who were picked for
the trivia teams were put into 2.0 groups. So there

ould be 5.0 students in each group. So the answer
is 5.0.

b

&

Figure 1: A comparison of DialCoT and CoT prompt-
ing (Wei et al., 2022). CoT prompting guides the model
to output all intermediate reasoning steps at once to ob-
tain the final answer, while DialCoT leads the model
to gradually generate intermediate reasoning steps in a
dialogic format to ultimately arrive at the answer.

significant improvement. However, preliminary
results of Wei et al. (2022) have demonstrated
that CoT prompting only shows significant perfor-
mance gains on LLMs (>100B), such as LaMDA-
137B (Thoppilan et al., 2022), GPT-3 175B (Brown
et al., 2020) and PaLM-540B (Chowdhery et al.,
2022). But it is ineffective, or even detrimental,
to the performance on reasoning tasks in Smaller
Language Models (<10B). This phenomenon is
explained by Wei et al. (2022), who attribute it
to abilities such as semantic comprehension and
symbolic mapping, which only manifest at larger

8055

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 8055-8068
December 6-10, 2023 ©2023 Association for Computational Linguistics

https://github.com/hccngu/DialCoT
https://github.com/hccngu/DialCoT

scales. The massive computational requirements
and inference costs of LLMs make them unfeasible
for widespread deployment. There is a pressing
community interest in figuring out how to further
enhance the reasoning capabilities within Smaller
Language Models (SLMs).

Recent works (Magister et al., 2022; Ho et al.,
2022; Fu et al., 2023) have attempted to enhance
the performance of SLMs on reasoning tasks by
fine-tuning them with training data generated from
LLMs that contain intermediate reasoning steps.
However, the results have been less than opti-
mal. To further boost the reasoning capabilities
of SLMs, we propose Dialogue-guided Chain-of-
Thought (DialCoT), which aims to progressively
generate intermediate reasoning steps in the dia-
logue format, instead of generating all interme-
diate reasoning steps at once (as shown in Fig-
ure 1). Specifically, we assign to the model two
roles: Decomposer and Solver. The Decomposer
is tasked with breaking down the original question
into a series of sub-questions. The Solver sequen-
tially addresses each sub-question presented by the
Decomposer, thereby obtaining the answer to the
original question. They utilize different instruc-
tions while sharing the same model parameters.
We propose three different forms of DialCoT: 1)
DialCoT-A (All at once), in which the Decomposer
generates all sub-questions at once and the Solver
simultaneously provides all answers. 2) DialCoT-
M (Mixed), where the Decomposer generates all
sub-questions at once but the Solver sequentially
delivers the answers of the sub-questions gener-
ated by the Decomposer. 3) DialCoT-S (Step by
step), where both the Decomposer and Solver op-
erate sequentially to generate sub-questions and
their corresponding answers. We provide a de-
tailed comparison of the performance of the three
different forms of DialCoT in Section 4.4. Fur-
thermore, building upon DialCoT-S, we design
DialCoT-S-PPO, which leverages the Proximal
Policy Optimization algorithm to select the opti-
mal reasoning path, thereby further enhancing its
performance in reasoning tasks. Compared to pre-
vious methods (Ho et al., 2022; Fu et al., 2023),
our approach has two main advantages:

1. We transform the process of solving a com-
plex reasoning question into decomposing the
question and solving a series of simpler sub-
questions, which reduces the task difficulty
and is more suitable for SLMs.

2. By breaking down intermediate reasoning
steps into dialogue-formatted sub-questions
and answers, we can use reinforcement learn-
ing more effectively to choose the optimal
reasoning path from various options.

To validate the effectiveness of our approach, we
fine-tune Flan-T5 (Chung et al., 2022) using 7000
training examples from the GSM8K (Cobbe et al.,
2021) dataset that include intermediate questions
and answers. The results surpass the latest method,
SpecialFT (Fu et al., 2023), by 6.2%. Notably,
the amount of training data we use is only 1/20
of that used by SpecialFT. In addition, to ver-
ify the model’s generalization capability on out-
of-distribution tasks, we also test on the Multi-
Arith (Roy and Roth, 2015), ASDiv (Miao et al.,
2020) and SVAMP (Patel et al., 2021) datasets.
Our method achieves state-of-the-art performance
compared to other baselines.

2 Related Work

2.1 Chain-of-Thought Prompting

Chain-of-Thought (CoT), which significantly en-
hances the reasoning capacities of large language
models, was originally pioneered by Wei et al.
(2022). The approach focuses on augmenting
few-shot examples with detailed reasoning steps,
thereby markedly improving performance on rea-
soning tasks. Subsequent works, inspired by Wei
et al. (2022), have further refined the CoT method-
ology, such as Self-Consistency (Wang et al., 2022),
Least-to-Most prompting (Zhou et al., 2022b), Dy-
namic Least-to-Most prompting (Drozdov et al.,
2022), Self-Training (Huang et al., 2022), Veri-
fier (Li et al., 2022) and Tree of Thought (Yao
et al., 2023). The aforementioned methods pri-
marily focus on improving the specific format of
CoT prompting to better stimulate the reasoning
capabilities of LLMs (>100B). However, they are
not tailored to augment the reasoning capabilities
of SLMs (< 10B). We propose a novel method
specifically designed to enhance the performance
of SLMs on reasoning tasks.

2.2 Reasoning Enhancement in SLMs

Chung et al. (2022) observes that training SLMs
with data that include intermediate reasoning steps
can improve the reasoning capabilities of SLMs.
Both Magister et al. (2022) and Ho et al. (2022)
enhance the reasoning capabilities of SLMs by

8056

fine-tuning them with training data, which includes
intermediate reasoning steps generated by LLMs.
STaR (Zelikman et al., 2022) enables the model to
self-improve through its own generated rationales.
SpecialFT (Fu et al., 2023) employs LLMs as
teacher models and utilizes distribution matching
in knowledge distillation to transfer the reasoning
capabilities from LLMs to SLMs. Orca (Mukher-
jee et al., 2023) learns to imitate the reasoning
process of LLLMs from rich signals generated by
LLMs, including explanation traces, step-by-step
thought processes and other complex instructions.
Difterently, DialCoT transforms solving complex
reasoning questions into decomposing questions
and addressing a series of simpler questions, sig-
nificantly reducing the task difficulty. Furthermore,
we incorporate the PPO algorithm to enable the
model to choose the optimal reasoning path among
multiple options, thereby further enhancing the per-
formance in reasoning tasks. Notably, our method
does not require generating a large amount of train-
ing data with intermediate reasoning steps through
LLMs. For example, by simply fine-tuning with
only 7,000 examples from the GSM8K dataset, we
could achieve a remarkable enhancement in SLM
performance on reasoning tasks.

2.3 Question Decomposition

Question decomposition is crucial for understand-
ing and solving complex questions. Earlier re-
search (Kalyanpur et al., 2012) uses decomposition
rules based on lexico-syntactic features to facilitate
question decomposition. HSP (Zhang et al., 2019)
proposes a hierarchical semantic parsing method
based on a sequence-to-sequence model, which
combines a question decomposer and an informa-
tion extractor. Patel et al. (2022) designs a human-
in-the-loop question decomposition method to im-
prove model performance. Least-to-Most prompt-
ing (Zhou et al., 2022b) improves the format of
CoT, enhancing the reasoning capabilities of LLMs
by decomposing problems. Self-Ask (Press et al.,
2022) explicitly asks itself follow-up questions
before answering the initial question to perform
compositional reasoning tasks. DecomT5 (Zhou
et al., 2022a) develops robust decomposition-based
models using distant supervision from comparable
texts. Decomposition Distillation (Shridhar et al.,
2022) learns a semantic decomposition of the orig-
inal question into a sequence of sub-questions and
uses it to train two models designated for question

decomposition and resolution. Compared to the
aforementioned methods, we not only decompose
the question but also enable the model to choose
the optimal reasoning path through reinforcement
learning methods, thereby further enhancing the
model’s capability to solve complex questions.

3 Dialogue-guided Chain-of-Thought

We propose Dialogue-guided Chain-of-Thought
(DialCoT), which aims to decompose complex
questions into sub-questions in a dialogue format
and gradually guide the model to obtain the fi-
nal answer. Specifically, we introduce two roles
for the model, namely the Decomposer and the
Solver, who engage in a dialogue-based interaction.
The Decomposer is responsible for breaking down
the original question into a series of simpler sub-
questions, while the Solver sequentially answers
these sub-questions. We design distinct instruc-
tions for the Decomposer and Solver, followed by
performing instruction tuning (Wei et al., 2021) on
SLMs. We first introduce three different forms of
DialCoT. Subsequently, we describe how we in-
corporate the Proximal Policy Optimization (PPO)
algorithm into DialCoT to enable the model to se-
lect the optimal reasoning path and further enhance
its reasoning capabilities.

3.1 Three Forms of DialCoT

We propose three different dialogue forms of
DialCoT, namely DialCoT-A, DialCoT-M, and
DialCoT-S. Specifically, DialCoT-A aims to guide
SLMs in reasoning through minimal dialogue turns.
DialCoT-M refines the Solver based on DialCoT-A,
further reducing the task complexity. DialCoT-
S maximally decomposes intermediate reason-
ing steps, allowing it to reference previous sub-
questions and their answers when proposing new
sub-questions. Figure 2 and Figure 3(1) presents
the overall frameworks of them.? Next, we will
introduce each of these forms individually.

DialCoT-A (All at once). We first establish an in-
struction for the Decomposer, enabling it to gener-
ate all sub-questions in a single step. Subsequently,
we incorporate the generated sub-questions to the
original texts and design a new instruction for the
Solver, which allows the Solver to answer all sub-
questions simultaneously. Figure 2(1) displays

*The specific prompt structures can be found in Table 3 of
Appendix A.

8057

(1) DialCoT-A (All at once)

Cuntcnt: There are 25.0 students trying out for the school 's trivia teams . If)
15.0 of them did not get picked for the team and the rest were put into 2.0

—

Please break down the above question into multiple sub-questions.
> T

M
Content: There are 25.0 students trying out for the school 's trivia teams . If \« - - - -

15.0 of them did not get picked for the team and the rest were put into 2.0
groups . How many students would be in each group ?_

\Sub-question 1: How many students were picked for the trivia teams?

Final question: How many students would be in each group?

Please answer the above sub-questions in order and provide the final
answer. Y

Decomposer | /

(2) DialCoT-M (Mixed)

— Sub-question 1: How many students were picked for the trivia teams?
Final question: How many students would be in each group?

Solver

@

Content: There are 25.0 students trying out for the school 's trivia teams . If
15.0 of them did not get picked for the team and the rest were put into 2.0

—

Please break down the above question into multiple sub-questions.

!

N
Content: There are 25.0 students trying out for the school s trivia teams . If |
15.0 of them did not get picked for the team and the rest were put into 2.0
groups . How
many students would be in each group?

-

v D

Solver

— \Sub-question 1: How many students were picked for the trivia teams?
Final question: How many students would be in each group?

Decomposer |

N / ’
T — .. -
M N--—-------————
Content: There are 25.0 students trying out for the school 's trivia teams . If $
15.0 of them did not get picked for the team and the rest were put into 2.0 ——> W ﬁ“{
‘gm_upL How many students were picked for the trivia teams? Solver v
/

J

Figure 2: (1) DialCoT-A, where the Decomposer generates all sub-questions at once, and the Solver responds to all
the sub-questions in a single step. (2) DialCoT-M, where the Decomposer is the same as in DialCoT-A, while the
Solver addresses a sub-question at a single step, with the response being incorporated into the original texts to aid in

solving subsequent sub-questions.

the instructions we designed and examples of in-
put/output when the model operates as a Decom-
poser and Solver. DialCoT-A shares a similar mo-
tivation with Orca (Mukherjee et al., 2023), both
striving to improve model reasoning performance
by providing explicit reasoning paths. Orca repre-
sents the reasoning path through problem-solving
steps, whereas our method exhibits the reasoning
path via a sequence of sub-questions.

DialCoT-M (Mixed). Upon deriving a series of
sub-questions via the same Decomposer used in
DialCoT-A, we sequentially replace the final ques-
tion in the original texts with these sub-questions,
which allows the Solver to address each sub-
question individually. The Solver’s response from
each sub-question is appended to the original text,
providing contextual support for solving subse-
quent questions. Figure 2(2) presents an example
of DialCoT-M solving a math word problem. Com-
pared to DialCoT-A, DialCoT-M mitigates the task
complexity for the Solver by addressing a single
and simpler question in each step.

DialCoT-S (Step by Step). We design new in-
structions to direct the Decomposer to generate
only a single sub-question at a step and the Solver
to address the sub-question. Responses are prefixed
with role identifiers such as “Decomposer: ” and

“Solver: . The history of the dialogue is appended
after the original texts, aiding the model in answer-
ing subsequent questions and deriving the final an-
swer. Figure 3(1) displays the overall framework
of DialCoT-S. Compared to the previous two forms
of DialCoT, DialCoT-S can reference previous sub-
questions and their answers when generating new
sub-questions. Moreover, DialCoT-S is more sim-
ilar to the traditional multi-turn dialogue format.
Therefore, it can more effectively stimulate the
model’s multi-turn dialogue capability to improve
the model performance on reasoning tasks.

3.2 DialCoT-S-PPO

DialCoT-S-PPO aims to enable the model to select
the optimal reasoning path by combining DialCoT-
S with the PPO algorithm, further improving the
model’s performance on reasoning tasks. Fig-
ure 3(2) presents an example of DialCoT-S-PPO
solving a math word problem. DialCoT-S-PPO
chooses the optimal intermediate questions or an-
swers from the model’s multiple outputs, thus form-
ing an reasoning path through a series of choices.
Specifically, we first need to collect some data com-
posed of states S, actions A and rewards R for
training the policy network 7g. S represents the
space of states of the environment, which are the
input of the policy network. Let s; € S be a state

8058

(1) DialCoT-S (Step by step)

(2) DialCoT-S-PPO

antent There are 25.0 studems
trying out for the school 's trivia
teams . If 15.0 of them did not get
picked for the team and the rest
were put into 2.0 groups . How
many_students would be in each
group ? <Dialogue History>
Based on the above content, to
(answer this question, we need
rst to know :

Content There are 25.0 students
trying out for the school 's trivia
teams . If 15.0 of them did not get
picked for the team and the rest
were put into 2.0 groups.
<Dialogue History>

Based on the given dialogue text,
generate a reply.

(Decomposer: Sub-question 1:
\How many students were picked
\for the trivia teams?

]
S
L

-

Decomposer

<
<

(Decomposer: Final question

Solver

How many students would be in
each group?

Solver:
1

L

i Instruction Frozen
\ Decomposer Response ¢ Tunable
' >

‘@ RL model &
(Decomposer: Sub-question 1
How many students are [I\IN out
\for the school's trivia teams?

How many students were picked
\for the trivia teams?

(Decomposer: Sub-question 1: J

(Decomposer: Sub-question 1:
How many students did not get X
\picked for the team?
/ = =
i Solver: 2 2~
udent i \ C €
1a (€ \ J
D P < Solver
(Decomposer: Final question: \
How many students would be in ‘
each group?)

=
Solver:

Figure 3: (1) DialCoT-S, where the Decomposer presents a sub-question at a step and the Solver answers it. Their
past dialogue information is inserted into <Dialogue History> to assist in generating the answer of the final
question. (2) An example of Dial CoT-S-PPO solving a math word problem. The policy network is used to select a
response from each step of the SLM, ultimately forming an optimal reasoning path and arriving at the final answer.

at time ¢ defined as

st = [hy; hy; ...
[hy, ho, ...,

s hyl, (D
hy] = LMy (X), 2

where X denotes the input text constructed via
DialCoT-S, LMy4(-) represents the SLM after in-
struction tuning and h denotes the last hidden
state of the model’s response. We utilize beam
search to generate the top-k responses with the
highest probability as candidates and s; is the con-
catenation of these candidates’ last hidden states.
A = [0,1,..., k] represents the action space. At
each time ¢, we input s; into 7y to obtain the prob-
ability p of actions:

P = mo(st). 3)

Based on the probability p, my chooses an action
a; € A, which represents choosing the a;-th can-
didate. During the exploration phase, 7y obtains
a; through sampling. In the inference phase, my
chooses the a; with the highest probability. When
the model correctly answers a sub-question, it re-
ceives a reward r,, € [0, 1]. 7, is a hyperparam-
eter that represents the extent to which the model
focuses on the intermediate steps. When the model
correctly answers the final question, it receives a
reward vy = 1. In all other cases, the reward is

0. We update the policy network 7y through the
following objective function:

J(0)=E,

min<7ﬂ9 (2 | se) A,
To,1q (Bt | St)

clip(7o (ay | St)),l —e 1+ E)At)

Toq (At | St

“

where 7y(+) represents the training policy network
and mg_,, denotes the policy network that interacted
with the environment to collect data. Further infor-
mation regarding the clip(-) and A; can be found
in Schulman et al. (2017). After update the param-
eters of g, the new parameter of 7y is transmitted
to mg,,,. We then repeat data collection and 7y
updates until training completion.

4 Experiments

4.1 Datasets

We consider the following four math word problem
datasets: GSMS8K (Cobbe et al., 2021), Multi-
Arith (Roy and Roth, 2015), ASDiv (Miao et al.,
2020) and SVAMP (Patel et al., 2021). The
GSMBSK dataset contains 7,000 training instances
with intermediate questions and answers. In con-
trast to previous work (Magister et al., 2022; Ho
et al., 2022; Fu et al., 2023), we only fine-tune

8059

our model using these 7,000 instances, eliminat-
ing the need for generating additional training data
with intermediate reasoning steps via LLMs. Apart
from evaluating our method on the GSMS8K test
set, we evaluate the model’s out-of-distribution per-
formance on three other datasets. All datasets com-
prise arithmetic reasoning problems at a primary
school level, varying by the entities they incorpo-
rate. This form of out-of-distribution generaliza-
tion is typically classified as lexical-level composi-
tional generalization (Liu et al., 2021). Following
SpecialFT (Fu et al., 2023), for each dataset, we
employ 500 instances as the validation set, using
the remaining instances (800 for GSMS8K, 400 for
MultiArith, 18K for ASDiv, 500 for SVAMP) as
the test set.

4.2 Baselines

In our experiments, we compare our method with
some competitive baselines which can be grouped
into two categories: (1) generic large language
models: code-davinci-002 (Chen et al., 2021) pre-
sumably with a size of 175B or more, LaMDA -
137B (Thoppilan et al., 2022), PaLM-60B (Chowd-
hery et al., 2022) and UL2-20B (Tay et al., 2022),
each of which exhibits strong reasoning abilities
in Chain-of-Thought prompting. (2) concurrent
works enhancing SLMs’ reasoning capabilities:
CoT-FT (Wei et al., 2021) directly employs the
7000 CoT training instances from the GSM8K
dataset to perform instruction tuning, which is a
vanilla approach to enhancing the reasoning capa-
bilities of SLMs. DecomDistill (Shridhar et al.,
2022) is a decomposition-based method, which
learns a semantic decomposition of the original
problem into a sequence of sub-problems through
LLMs. Both Magister et al. (2022) and Ho et al.
(2022) fine-tune SLMs by generating training data
with intermediate reasoning steps through LLMs.
SpecialFT (Fu et al., 2023) employs LLMs as
teacher models and utilizes distribution matching
in knowledge distillation to transfer the reasoning
capabilities from LLMs to SLMs. It is noted that
SpecialFT uses 130K training instances with inter-
mediate reasoning steps generated by LLMs, which
is nearly twenty times the size of our training set.

4.3 Implementation

We consider using FlanT5-XL (3B)/XXL (11B)
as the backbone of our model. The Decomposer
and Solver utilize different instructions (as shown
in Figure 2) but share the same model parameters.

Hyperparameters Scope
learning rate {le — 4,3e-4,5¢ — 4,1e — 3}
batch size {1024, 2048, 4096}
€ {0.1,0.2,0.3}
k {2,3,4,5,6}
Tm {0.1,0.2,0.3,0.4,0.5}

Table 1: The searching scope for the hyperparameters
of the proximal policy optimization algorithm. We high-
light the best settings in bold.

Following Chung et al. (2022), we fine-tune the
model for 50 epochs with the batch size 4096 and
the learning rate 5e — 4. For the PPO algorithm,
we use three feed-forward layers as the policy net-
work and set the number of hidden units to 1024.
Moreover, we use the grid search to find the best
hyperparameters. The details of grid search are
shown in Table 1. As a result, we set the learning
rate as 3e — 4 and batch size as 4096 for the policy
network. We also set € to 0.2, k£ to 3 and r,,, to 0.3.
During the stage of optimizing the policy network,
we freeze the backbone parameters. All baseline re-
sults except CoT-FT (Wei et al., 2021) are recorded
in SpecialFT (Fu et al., 2023). For CoT-FT and our
method, we keep the experimental setup consistent
with other baselines. We run all the experiments on
eight NVIDIA Tesla A100 GPU.

4.4 Results

Table 2 shows the performance of various methods
on four arithmetic reasoning datasets. First, we
discuss the results for DialCoT-A, DialCoT-M, and
DialCoT-S. Then, we compare our method with
other baselines to demonstrate its superiority. Fi-
nally, we validate the effectiveness of incorporating
the PPO algorithm based on DialCoT-S through an
ablation study.

Discussion of Three DialCoT Variants. Com-
pared to CoT-FT, all three forms of DialCoT out-
perform on the four reasoning tasks, demonstrating
their effectiveness in enhancing the reasoning ca-
pacities of SLMs. More specifically, Dial CoT-M
performs better than Dial CoT-A. This indicates that
SLMs lack the capability to decompose a reason-
ing problem and answer it all at once. DialCoT-
M addresses only one sub-question at a single
step, which reduces the task difficulty and makes
it more suitable for SLMs. DialCoT-S, in com-
parison to DialCoT-M, shows greater performance
gains, which can be attributed to two factors: (1)

8060

Methods Backbone #Params. GSMS8K MultiArith ASDiv SVAMP Average
Generic Large Language Models

code-davinci-002 (Chen et al., 2021) > 175B 63.1 95.8 80.4 76.4 78.9
LaMDA (Thoppilan et al., 2022) 137B 14.8 45.0 46.6 37.5 36.0
PalLM (Chowdhery et al., 2022) 60B 29.9 75.0 61.9 46.7 53.2
UL2 (Tay et al., 2022) 20B 4.4 16.9 12.5 —
Concurrent Works to Boosting SLM Reasoning

DecomDistillf(Shridhar et al., 2022) GPT 7B 21.0 — — — —
Magister et al. (2022)f T5-XXL 11B 21.9 — 42.1 — —
Ho et al. (2022)" GPT 6B 6.8 33.3 - — -

" CoT-FT (Weietal., 2021) FlanT5-XL 3B 135 240 207 177 190
SpecialF"F]L (Fu et al., 2023) FlanT5-XL 3B 22.4 42.3 28.4 23.8 29.3
DialCoT-A (All at once) FlanT5-XL 3B 20.3 40.3 24.6 21.3 26.6
DialCoT-M (Mixed) FlanT5-XL 3B 22.9 43.1 27.1 23.2 29.1
DialCoT-S (Step by Step) FlanT5-XL 3B 24.3 45.7 29.3 25.5 31.2
DialCoT-S-PPO FlanT5-XL 3B 25.6 46.9 30.7 27.1 32.6

" CoT-FT (Wei etal., 2021) FlanT5-XXL 1B 161 517 365 397 360
SpecialFTT (Fu et al., 2023) FlanT5-XXL 11B 27.1 63.0 37.6 35.6 40.8
DialCoT-A (All at once) FlanT5-XXL 11B 21.7 57.1 32.5 34.2 36.4
DialCoT-M (Mixed) FlanT5-XXL 11B 30.5 63.9 38.2 37.7 42.6
DialCoT-S (Step by Step) FlanT5-XXL 11B 35.2 65.7 39.3 40.3 45.1
DialCoT-S-PPO FlanT5-XXL 11B 371 68.1 40.9 41.7 47.0

Table 2: Accuracy (%) of various methods on four reasoning tasks. T indicates that the method employs additional
training data with intermediate reasoning steps generated via LLMs, where SpecialFT uses nearly 20 times the
training data of our method. We highlight the best results on SLMs (~ 10B) in bold.

DialCoT-S obtains more intermediate information
before generating sub-questions. (2) DialCoT-S
more effectively stimulate the model’s multi-turn
dialogue capabilities to boost its reasoning perfor-
mance.’

Comparison between DialCoT and Baselines.
From the Table 2, we observe that DialCoT-S-PPO
attains state-of-the-art results on SLMs. Specifi-
cally, when using FlanT5-XXL as the backbone,
DialCoT-S-PPO improves the average performance
across the four datasets by 6.2% compared to Spe-
cialFT. Notably, the training data we used is only
1/20 of what SpecialFT used, which clearly demon-
strates that our method is very effective in improv-
ing reasoning capabilities of SLMs. On the other
hand, when compared with LLMs, all variations of
DialCoT (i.e., DialCoT-A/M/S/PPO) outperform
LaMDA-137B on average across the four datasets,
despite the parameters of our approach are merely
1/12 of LaMDA’s. This further substantiates the su-
periority of our approach. While there is still a no-
ticeable gap when compared to code-davinci-002,
our experimental results demonstrate that there is
potential for SLMs to achieve LLM-level reasoning

3A more detailed discussion of the three DialCoT variants
can be found in Appendix D.

capabilities via appropriate fine-tuning methods.*

Ablations. The ablation study is conducted to
demonstrate the effectiveness of incorporating the
PPO algorithm based on DialCoT-S. Compared
to DialCoT-S with FlanT5-XXL, DialCoT-S-PPO
achieves an improvement of nearly 2%, confirming
the effectiveness of employing the PPO algorithm
for selecting the optimal reasoning path. Addition-
ally, we observe that when using FlanT5-XL as
the backbone, the performance gain brought by
the PPO algorithm is 1.4%, which is lower than
the performance on FlanT5-XXL. This might be at-
tributed to the lower diversity in the multiple replies
generated by the smaller model.

4.5 Analysis

Different Model Size. We extend our method to
smaller backbones, including FlanT5-Base (250M)
and FlanT5-Large (760M), on the GSM8K and
MultiArith datasets. Our experimental results are
illustrated in Figure 4. In comparison to the original
FlanTS5, our approach improves the performance of
the model on reasoning tasks across different model
sizes, affirming the effectiveness of our method for
varying model sizes. Notably, we observe that

*The detailed experimental comparison between DialCoT
and SelfAsk can be found in Appendix A.

8061

40
—-=—- FlanT5
DialCoT-A
—— DialCoT-M
—— DialCoT-S
DialCoT-S-PPO

30

Accuracy (%)
=

S

Base(250M) Large(760M)
70 GS

XL(3B)
MSK

XXL(11B)

—-=—- FlanT5
60 DialCoT-A
50] —=— DialCoT-M
—+— DialCoT-S e

—— DialCoT-S-PPO

Accuracy (%)
g &

%3
S

10 S

Base(250M) Large(760M) XL(3B)
MultiArith

XXL(11B)

Figure 4: Results under different model sizes on the
GSMS8K and MultiArith datasets. FlanT5 indicates the
results of using Few-shot CoT (Wei et al., 2022) on the
backbone (Chung et al., 2022). Our methods achieve
performance improvements across all model sizes.

our method yields larger performance gains on
larger model sizes, which is similar to the results
of Chung et al. (2022). This could be attributed
to the stronger capabilities that larger models ob-
tain during pre-training, making them more readily
stimulated.

Different Model Architectures. To evaluate
the generalizability of DialCoT across LMs with
varying architectures, in addition to the encoder-
decoder LM (e.g., FlanT5), we conduct experi-
ments using the decoder-only LM (e.g., LLaMA-
7B (Touvron et al., 2023)) as the backbone of our
method on the GSM8K and MultiArith datasets.
The results are illustrated in Figure 5. As can be
seen from the figure, all of our methods achieve
significant performance gains compared to CoT-FT,
especially DialCoT-S and DialCoT-S-PPO. This
demonstrates that our approach is applicable to
SLMs with various architectures, not merely effec-
tive on encoder-decoder LMs. Moreover, we ob-
serve that Dial CoT-A performs better than DialCoT-
M on the MultiArith dataset, which is different
from the results based on FlanT5 (as shown in Fig-
ure 4). This suggests that the most suitable form
of DialCoT may differ for different SLMs, which
could potentially be related to model architecture
and pre-training corpora.

GSMSK

Accuracy (%)
0o
NS

CoT-FT DialCoT-A DialCoT-M DialCoT-S Dial CoT-S-PPO

MultiArith

75

~
(=}

Accuracy (%)
A

wn
W

50

CoT-FT DialCoT-A DialCoT-M DialCoT-S Dial CoT-S-PPO

Figure 5: Results using LLaMA-7B (Touvron et al.,
2023) as the backbone on the GSM8K and MultiArith
datasets. Our method achieves significant performance
gains on decoder-only LMs.

/\‘\‘\.

FlanT5-XL
—e— FlanT5-XXL

40

(98]
W

Accuracy (%)
3

25
2055 =3 k=4 k=5 k=6
GSMSK
70
60
> FlanT5-XL
8 55
g —e— FlanT5-XXL
E 50
45
055 k=3 k=4 k=5 k=6
MultiArith

Figure 6: The effect of hyperparameter k on the model
performance on the GSM8K and MultiArith datasets.

Effect of Hyperparameter k. We set the model
to output the top-k responses with the highest
probability in each step of dialogue through beam
search. In other words, & represents the size of the
action space, indicating that we can select the op-
timal response from k different responses in each

8062

step. Figure 6 illustrates the effect of k£ on the
model performance on the GSM8K and MultiArith
datasets. Specifically, the model can achieve op-
timal performance when £ is set to 3 or 4. When
k is too small, the number of reasoning paths we
can choose from is too limited, preventing us from
achieving optimal performance. Conversely, when
k is too large, the space of available reasoning paths
is too large, which may introduce noise and make it
difficult for the model to learn to select the optimal
reasoning path.

5 Conclusion

In this paper, we explored strategies to boost the
reasoning capabilities of SLMs and proposed Dial-
CoT, which aims to generate intermediate reason-
ing steps in a dialogue format leading to the final
answer. Specifically, we designed two roles for
the model, namely Decomposer and Solver. The
Decomposer is responsible for breaking down ques-
tions into multiple sub-questions, while the Solver
is tasked to address the sub-questions. They engage
in dialogue to arrive at the final answer. We intro-
duced three different dialogue formats: DialCoT-
A (All at once), DialCoT-M (Mixed) and DialCoT-
S (Step by step). Furthermore, we incorporated the
PPO algorithm into DialCoT-S to enable the model
to choose the optimal reasoning path among mul-
tiple options, thereby further improving its perfor-
mance on reasoning tasks. We conducted extensive
experiments on four arithmetic reasoning datasets
and the experimental results demonstrate the ef-
fectiveness of our method. Future work primarily
involves extending our method to other types of rea-
soning tasks, such as commonsense reasoning and
symbolic reasoning. In addition, we will explore
other decomposition methods or other reinforce-
ment learning methods to optimize the reasoning
paths of SLMs.

Limitations

We conduct experiments on four arithmetic reason-
ing tasks, demonstrating the effectiveness of Dial-
CoT. However, as our reward pattern is specifically
designed for arithmetic reasoning, modifications
are necessary to apply our method to commonsense
or symbolic reasoning. This presents a limitation
to the broader applicability of our method. We plan
to extend DialCoT to a wider range of reasoning
tasks in the future. On the other hand, DialCoT
specifically focuses on enhancing the reasoning

capabilities of SLMs. Due to constraints on compu-
tational resources, we do not conduct experiments
on larger scale language models (> 20B), thus
the applicability of our method for LLLMs remains
undetermined. We will further explore the perfor-
mance of DialCoT on larger scale language models
in future research.

Ethics Statement

The proposed method has no obvious potential
risks. All the scientific artifacts used/created are
properly cited/licensed, and the usage is consis-
tent with their intended use. Also, we open up
our codes and hyper-parameters to facilitate future
reproduction without repeated energy cost.

Acknowledgements

This work has been supported by the National
Natural Science Foundation of China under Grant
No.U1911203, the National Natural Science Foun-
dation of China under Grant No.62377012 and Fun-
damental Research Funds for the Central Universi-
ties under grant number YBNLTS2023-015.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurlIPS.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,

8063

Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
CoRR, abs/2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Andrew Drozdov, Nathanael Schirli, Ekin Akyiirek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2022. Compositional
semantic parsing with large language models. CoRR,
abs/2209.15003.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal,
and Tushar Khot. 2023. Specializing smaller lan-
guage models towards multi-step reasoning. CoRR,
abs/2301.12726.

Namgyu Ho, Laura Schmid, and Se-Young Yun.
2022. Large language models are reasoning teachers.
CoRR, abs/2212.10071.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. CoRR,
abs/2210.11610.

Aditya Kalyanpur, Siddharth Patwardhan, Branimir
Boguraev, Adam Lally, and Jennifer Chu-Carroll.
2012. Fact-based question decomposition in deepqa.
IBM J. Res. Dev., 56(3):13.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

neural information processing systems, 35:22199—
22213.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2022. On the

advance of making language models better reasoners.
CoRR, abs/2206.02336.

Linqging Liu, Patrick Lewis, Sebastian Riedel, and Pon-
tus Stenetorp. 2021. Challenges in generalization
in open domain question answering. arXiv preprint
arXiv:2109.01156.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2022.
Teaching small language models to reason. CoRR,
abs/2212.08410.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
english math word problem solvers. In ACL, pages
975-984.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from

complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In NAACL, pages 2080-2094.

Pruthvi Patel, Swaroop Mishra, Mihir Parmar, and
Chitta Baral. 2022. Is a question decomposition unit
all we need? In EMNLP, pages 4553-4569.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. arXiv preprint arXiv:2210.03350.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In EMNLP, pages 1743—-1752.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2022. Distilling multi-step reasoning ca-
pabilities of large language models into smaller mod-
els via semantic decompositions. arXiv preprint
arXiv:2212.00193.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Gar-
cia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng,
Neil Houlsby, and Donald Metzler. 2022. Unify-
ing language learning paradigms. arXiv preprint
arXiv:2205.05131.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Yanqi Zhou, Chung-Ching Chang,
Igor Krivokon, Will Rusch, Marc Pickett, Kathleen S.

8064

Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed H. Chi, and
Quoc Le. 2022. Lamda: Language models for dialog
applications. CoRR, abs/2201.08239.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, and Denny Zhou. 2022. Self-
consistency improves chain of thought reasoning in
language models. CoRR, abs/2203.11171.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. In NeurIPS.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. CoRR,
abs/2305.10601.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. In NeurlPS.

Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang.
2019. Complex question decomposition for semantic
parsing. In ACL, pages 4477-4486.

Ben Zhou, Kyle Richardson, Xiaodong Yu, and Dan
Roth. 2022a. Learning to decompose: Hypothetical
question decomposition based on comparable texts.
In EMNLP, pages 2223-2235.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed H. Chi. 2022b.
Least-to-most prompting enables complex reasoning
in large language models. CoRR, abs/2205.10625.

8065

A Comparison between DialCoT and
SelfAsk

We add further discussion regarding the compar-
ison with SelfAsk. Self-Ask (Press et al., 2022)
explicitly asks itself follow-up questions before
answering the initial question to perform composi-
tional reasoning tasks. Please refer Table 3 for the
comparison between SelfAsk and our methods.

From the table, we see that: (1) SelfAsk is
designed for in-context learning method without
fine-tuning, whereas DialCoT is a finetune-based
method. (2) Even if fine-tuning can be applied to
SelfAsk theoretically, how to format the fine-tuning
is still un-explored. We offer a novel way to lever-
age two tailored tasks (problem decomposition and
problem solving) through fine-tuning task-oriented
instructions on the same model (SLM). Therefore,
we believe the performance gain mainly come from
the way of decomposing and solving sub-questions
through fine-tuned model with tailored instructions.
The additional instructions naturally come along
with the proposed solution. They will instruct the
model to play dedicated role during the instruction
fine-tuning. However, we don’t think they are the
major factors.

Moreover, we conduct additional experiments
(SelfAsk) on the GSMS8K dataset using Flan-T5-
XXL. The results are illustrated in Table 4. From
the table, we can draw the following conclusions:

Firstly, in the fine-tuning setting, SelfAsk im-
proves on Standard CoT by 5.5% with all-at-once
finetuning and by 13.2% with sequential finetuning.
We believe these improvements stem from prob-
lem decomposition. Furthermore, SelfAsk with
sequential finetuning improves by 7.7% compared
to SelfAsk with all-at-once finetuning. This once
again confirms our previous conclusion that decom-
posing problems sequentially is more effective than
decomposing them all at once. Moreover, DialCoT-
S improves by 5.9% over SelfAsk with sequential
finetuning. We attribute this additional improve-
ment to fine-tuning with different instructions tai-
lored for specific tasks. Compared to SelfAsk with
sequential finetuning, DialCoT-S has clearer and
more independent instructions for both problem
decomposition and problem solving.

Secondly, compared to finetune-based methods,
methods without fine-tuning perform poorly, in-
dicating that fine-tuning is crucial for SLMs. At
the same time, we found that both SelfAsk and
DialCoT-S experience a performance drop in the

setting compared to Standard CoT. This could
be either because Flan-T5 was trained with some
standard-CoT-formatted training data or due to the
weaker instruction-following capabilities of SLMs,
where complex instructions increase the task diffi-
culty.

For encoder-decoder structure, i.e., TS, the dif-
ference between SelfAsk-A and SelfAsk-S is sig-
nificant, due to the fact of bidirectional attention
within the input. For decoder-only structure, the
difference is indeed very subtle. Table 6 shows the
results of additional experiments (SelfAsk) on the
GSMSK using LLaMA-7B. The SelfAsk-A outputs
all intermediate questions, answers and connecting
words between them such as “Follow up” and “In-
termediate answer”, while the sequential finetuning
is focused on outputting intermediate question or
answer, and does not include the loss of connecting
words, encouraging the model to focus more on
most important part of the learning. We speculate
this subtlety brings the improvement.

B Fine-grained Analysis on Each
Sub-step

We select samples that require decomposition into
three sub-questions from all test sets and report
the accuracy for each sub-question in Table 7. As
shown in the table, as the number of steps increases,
i.e., as the complexity of the questions rises, our
method shows a notable performance improvement
(7%) compared to CoT-FT. On the other hand, al-
though our method’s performance does decline as
question complexity increases, the rate of decline
is significantly slower compared to vanilla CoT.
When comparing DialCoT-S with Dial CoT-S-PPO,
It is evident that step-level PPO significantly im-
proves the model’s performance on reasoning tasks
at every step.

C Comparison of Inference Speed

In terms of the time cost for reasoning, the infer-
ence speed of our method is comparable to that of
SelfAsk (Press et al., 2022), as both need to gen-
erate sub-questions and answers. In terms of the
number of iterations, Dial CoT-A requires two iter-
ations, which is comparable to Zero-shot CoT (Ko-
jima et al., 2022), while DialCoT-M and DialCoT-S
require approximately three and six iterations re-
spectively. Overall, in our methods, DialCoT-A has
the fastest inference speed, followed by DialCo'T-
M, and finally DialCoT-S. The trade-off between

8066

Methods

Prompt Structure

All-at-once?

ICL or FT

SelfAsk Input: Original question | Output: Sub-question 1 + Intermediate ~ All-at-once In-context Learning
step 1 + ... + Final answer
DialCoT-A Decomposer: Inpfn': Orlglnal~ question | 0utgut.‘ Sub-questions All-at-once Fine-tuning
Solver: Input: Original question + Sub-questions | Output: Inter-
mediate steps + Final answer
Decomposer: Input: Original question | Output: Sub-questions
‘ Solvgr: Input: Original question + Sub-question 1 | OQutput: Inter- Output intermediate . .
DialCoT-M mediate step 1 stens sequentiall Fine-tuning
Solver: Input: Original question + Intermediate step 1 + Sub- ps seq y
question 2 | Output: Intermediate step 2
Solver: Input: Original question + Intermediate steps + Final
question | Output: Final answer
Decomposer: Input: Original question | Output: Sub-question 1
Solver: Input: Original question + Sub-question 1 | Qutput: Inter-
mediate step 1 Output sub-questions
. D : Input: Original question + Sub-question 1 + Inter- : . ' .
DialCoT-S ecomposer: rpuf. Lngmal question + sub-question T and intermediate steps Fine-tuning

mediate step 1 | OQutput: Sub-question 2

Solver: Input: Original question + Sub-question 1 + Intermediate

alternately

step 1 + Sub-question 2 | Qutput: Intermediate step 2

Decomposer: /nput: Original question + Sub-questions + Inter-

mediate steps | Qutput: Final question

Solver: Input: Original question + Sub-questions + Intermediate

steps + Final question | Output: Final answer

Table 3: Detailed Comparison between DialCoT and SelfAsk. The table omits the specific details of the prompts
and instead focuses on the input-output formats of the prompts. DialCoT is fine-tuned using distinct instructions
tailored for two specialized tasks (Decomposer and Solver) on a shared model.

Method Finetune or not

Standard CoT finetune 16.1
SelfAsk all at once, finetune 21.6
SelfAsk sequencially, finetune 29.3
DialCoT-S finetune 35.2
Standard CoT without finetune 12.7
SelfAsk without finetune 11.3
DialCoT-S without finetune 10.9

Table 4: Accuracy (%) of various methods on the
GSMSK dataset. The fine-tuning dataset used for all
experiments is the GSMS8K training set. The prompt
structures corresponding to the two different fine-tuning
methods for SelfAsk are shown in Table 5.

inference time and performance needs to be con-
sidered. If faster inference speed is required, one
can opt for DialCoT-A, at the expense of some per-
formance loss. Conversely, if better performance
is the priority, DialCoT-S can be chosen, although
this would come at the cost of increased inference
time.

GSMS8K D Detailed Discussion of Three DialCoT

Variants

From Table 3, we can clearly see the differences in
the prompt structures of different methods. Com-
bined with the experimental results from Table 2,
we can draw the following conclusions: (1) In a
side-by-side comparison between standard CoT
and DialCoT-A, it becomes evident that Dial CoT-A
employs self-generated sub-problems as a strate-
gic guide for formulating intermediate steps and
solutions. The enhanced performance of DialCoT-
A over standard CoT implies that self-generated
navigation through these sub-problems can signifi-
cantly enhance the reasoning capability of Smaller
Language Models (SLMs). (2) When comparing
DialCoT-M and DialCoT-A, the former opts for a
sequential approach to answering sub-questions, as
opposed to addressing them all-at-once. The supe-
rior performance metrics of DialCoT-M in compar-
ison to DialCoT-A substantiate the claim that a se-
quential methodology for answering sub-questions
yields greater efficacy than an all-at-once approach.
(3) The primary difference between DialCoT-S
and DialCoT-M is that DialCoT-S generates sub-

8067

Method Fine-tuning Method ~ Prompt Structure

SelfAsk all at once Input: Original question | Output: Follow up: Sub-question 1
Intermediate answer: Intermediate step 1
Follow up: Sub-question 2
Intermediate answer: Intermediate step 2 + ... + Follow up: Final question
Intermediate answer: Final answer

SelfAsk sequencially Input: Original question
Follow up: | Output: Sub-question 1
Input: Original question
Follow up: Sub-question 1
Intermediate answer: | Output: Intermediate step 1
Input: Original question
Follow up: Sub-question 1
Intermediate answer: Intermediate step 1
Follow up: | Output: Sub-question 2

Input: Original question

Follow up: Sub-question 1

Intermediate answer: Intermediate step 1 + ... + Follow up: | Output: Final question
Input: Original question

Follow up: Sub-question 1

Intermediate answer: Intermediate step 1 + ... + Follow up: Final question
Intermediate answer: | Output: Final answer

Table 5: Prompt structures corresponding to the two different fine-tuning methods for SelfAsk.

Method GSM8K
SelfAsk + All-at-once finetuning 21.00
SelfAsk + Sequential finetuning 22.95

Table 6: Accuracy (%) of SelfAsk using LLaMA-7B on

the GSM8K dataset.
Method first step second step final step
CoT-FT 55.2 41.9 34.7
DialCoT-S 60.7 48.8 43.8
DialCoT-S-PPO 63.9 51.2 45.3

Table 7: Accuracy (%) of various methods using FlanT5-
XXL on the GSMSK dataset for each sub-step. CoT-FT
refers to the results obtained by replacing the original
question with different step-based sub-questions.

questions sequentially rather than generating all
sub-questions at once. Given DialCoT-S’s stronger
performance metrics, this indicates that the ap-
proach of sequentially decomposing sub-questions
is more effective than generating all sub-questions
in a single step.

8068

