
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 7935–7956
December 6-10, 2023 ©2023 Association for Computational Linguistics

Empirical Study of Zero-Shot NER with ChatGPT

Tingyu Xie1,2, Qi Li1,2, Jian Zhang1,2, Yan Zhang3∗, Zuozhu Liu2, Hongwei Wang1,2∗
1College of Computer Science and Technology, Zhejiang University, China

2ZJU-UIUC Institute, Zhejiang University, China
3National University of Singapore, Singapore

{tingyuxie, liqi177, 12221038}@zju.edu.cn, eleyanz@nus.edu.sg
zuozhuliu@intl.zju.edu.cn, hongweiwang@zju.edu.cn

Abstract
Large language models (LLMs) exhibited pow-
erful capability in various natural language pro-
cessing tasks. This work focuses on explor-
ing LLM performance on zero-shot informa-
tion extraction, with a focus on the ChatGPT
and named entity recognition (NER) task. In-
spired by the remarkable reasoning capability
of LLM on symbolic and arithmetic reason-
ing, we adapt the prevalent reasoning meth-
ods to NER and propose reasoning strategies
tailored for NER. First, we explore a decom-
posed question-answering paradigm by break-
ing down the NER task into simpler subprob-
lems by labels. Second, we propose syntactic
augmentation to stimulate the model’s interme-
diate thinking in two ways: syntactic prompt-
ing, which encourages the model to analyze the
syntactic structure itself, and tool augmentation,
which provides the model with the syntactic in-
formation generated by a parsing tool. Besides,
we adapt self-consistency to NER by proposing
a two-stage majority voting strategy, which first
votes for the most consistent mentions, then the
most consistent types. The proposed methods
achieve remarkable improvements for zero-shot
NER across seven benchmarks, including Chi-
nese and English datasets, and on both domain-
specific and general-domain scenarios. In ad-
dition, we present a comprehensive analysis of
the error types with suggestions for optimiza-
tion directions. We also verify the effectiveness
of the proposed methods on the few-shot setting
and other LLMs.1

1 Introduction

Large language models (LLMs) (OpenAI, 2022;
Thoppilan et al., 2022; Chowdhery et al., 2022)
have brought revolutions in natural language pro-
cessing (NLP) due to the remarkable zero-shot and
few-shot generalization. One of the most well-
known LLMs, ChatGPT (OpenAI, 2022) powered

∗Corresponding authors.
1Code available at: https://github.com/Emma1066/

Zero-Shot-NER-with-ChatGPT

by GPT3.5 and GPT4 (OpenAI, 2023), has ex-
hibited strong dialogue capabilities. As a closed
model, ChatGPT sparked a lot of work for its eval-
uation and application on diverse tasks and aspects
(Qin et al., 2023; Wei et al., 2023; Liang et al.,
2023).

Information extraction (IE) is a fundamental
topic in NLP, which aims to extract structured in-
formation from unstructured text, including tasks
such as named entity recognition (NER) (Yu et al.,
2020), relation extraction (RE) (Baldini Soares
et al., 2019), event extraction (EE) (Chen et al.,
2015), etc. Evaluating ChatGPT’s performance on
IE is important for understanding its capabilities in
structured prediction and language understanding
(Li et al., 2023; Wei et al., 2023).

With recent techniques for eliciting complex
multi-step reasoning (Wei et al., 2022; Wang et al.,
2022b), LLMs have shown remarkable zero-shot
reasoning ability in arithmetic and symbolic reason-
ing (Kojima et al., 2022). However, the reasoning
ability of LLM on IE remained unexplored. To mit-
igate this gap, we present a systematic empirical
study exploring the reasoning capability of LLM
on IE, with a focus on the ChatGPT and zero-shot
NER task. By adapting the prevalent reasoning
techniques (Zhou et al., 2022; Wei et al., 2022;
Wang et al., 2022b) to NER, we propose the follow-
ing strategies to stimulate the reasoning potential
of LLM on NER:

• We break down the NER task into a se-
ries of simpler subproblems by labels and
perform a decomposed-question-answering
(Decomposed-QA) paradigm, where the
model extracts entities of only one label at
a time.

• We propose syntactic augmentation of two
ways: syntactic prompting, which encour-
ages the model to first analyze the syntactic
structure of the input text itself, then recog-

7935

https://github.com/Emma1066/Zero-Shot-NER-with-ChatGPT
https://github.com/Emma1066/Zero-Shot-NER-with-ChatGPT

nize the named entities based on the syntactic
structure; tool augmentation, which provides
the syntactic information generated by a pars-
ing tool to the model.

• We tailor the self-consistency (SC) (Wang
et al., 2022b) for NER and propose a two-
stage majority voting strategy: after sam-
pling multiple responses of the model, we first
vote for the most consistent mentions, then the
most consistent types.

The main contributions of this paper include:

• We present a systematic empirical investiga-
tion of zero-shot NER with LLM, with a spe-
cific emphasis on ChatGPT as one of the most
robust LLMs available.

• We adapt prevalent reasoning methods to NER
and propose four strategies tailored for NER:
decomposed-QA, syntactic prompting, tool
augmentation, and two-stage majority voting.

• We evaluate our strategies across seven bench-
marks. Experiment results reveal that the
proposed strategies significantly facilitate
zero-shot NER across domain-specific out-
of-distribution and general-domain datasets,
including Chinese and English scenarios.

2 Related Work

2.1 Reasoning with LLM
LLM has shown remarkable zero-shot reasoning
ability, in the way of explicitly encouraging the
LLM to generate intermediate rational for solving
a problem. On the one hand, recent works, in both
the few-shot (Wei et al., 2022; Zhang et al., 2022;
Wang et al., 2022a) and zero-shot (Kojima et al.,
2022) setting, elicit chain-of-thought (CoT) from
LLM and modify the answer by step-by-step. On
the other hand, the problem decomposition, like
least-to-most prompting (Zhou et al., 2022), re-
duces complex problems to the sub-problems, and
then solves these sub-problems sequentially; the
SC strategy (Wang et al., 2022b) generates a di-
verse set of answers by sampling from LLM, and
then marginalizes out the sampled answers to de-
termine the optimal answer. In this work, we focus
on investigating the zero-shot reasoning ability of
LLM on the NER task.

2.2 LLM on IE
A few works study the performance of the pow-
erful LLM ChatGPT (Li et al., 2023; Ma et al.,

2023; Laskar et al., 2023) on IE tasks. Wei et al.
(2023) propose a two-stage chatting paradigm for
IE. At stage one, it asks ChatGPT to recognize the
types of elements; at stage two, it asks ChatGPT
to extract the mentions corresponding to each type
recognized at stage one. Han et al. (2023) presents
an analysis of ChatGPT’s performance on IE tasks
from four aspects: performance, evaluation criteria,
robustness, and errors. Wang et al. (2023) apply
in-context learning (ICL) to NER by inserting spe-
cial tokens into the demonstrations retrieved from
the training set. Wan et al. (2023) apply CoT to
relation extraction (RE) and use ChatGPT to gen-
erate intermediate rationales for demonstrations
retrieved from the training set. Different from pre-
vious works, we focus on exploring the ChatGPT
abilities for zero-shot reasoning on IE, with a fo-
cus on the NER task. We explore the prevalent
reasoning methods with LLM, which exhibited re-
markable performance on arithmetic and logical
reasoning tasks. Most importantly, these methods
are first adapted to the NER task based on the task
characteristics.

3 Method

Adapting the prevalent reasoning techniques (Zhou
et al., 2022; Wei et al., 2022; Wang et al., 2022b)
to NER, we propose four strategies to stimulate the
reasoning capabilities of LLM on NER. Examples
of the proposed methods are shown in Fig. 1.

3.1 Decomposed-QA

Inspired by least-to-most prompting (Zhou et al.,
2022), we improve zero-shot NER by decomposing
the task into a set of simpler questions. Recogniz-
ing entities of all labels at one time may be too
challenging for ChatGPT (as the vanilla zero-shot
method shown in (a) of Fig. 1), especially when
the label size is large, or the data is from a specific
out-of-distribution domain. This motivates us to
break down the NER task by labels. Given an input
sentence, the whole process of recognizing entities
is a multi-turn dialogue paradigm. Each time, Chat-
GPT is asked to recognize entities of a single label.
After ChatGPT provides its response to the current
question, we proceed to ask questions related to the
next label, incorporating all the previous questions
and answers as part of the dialogue context. Once
all questions pertaining to each label have been
addressed, we conclude the entire conversation.

We name this paradigm Decomposed-QA. The

7936

Input text: Could Tony Blair be in line for a gold medal?

Gold label: {'Tony Blair': 'Person'}

Label set: ['Person', 'Organization', 'Location', 'Facility', 'Weapon', 'Vehicle', 'Geo-Political Entity']

Given entity label set: {label set}

Based on the given entity label set, please

recognize the named entities in the given

text.

Text: {input text}

Answer: {ChatGPT response}

(a) Vanilla
Answer 1: {'Tony Blair': 'Person'}

Answer 2: {'Tony': 'Person'}

Answer 3: {'Tony Blair': 'Person'}

(f) Two-stage majority voting:

Stage one: 'Tony Blair'

Stage two: {'Tony Blair': 'Person'}

...

Given entity label set: {label set}

Based on the given entity label set, please

recognize the named entities in the given

text.

Text: {input text}

Question: What are the named entities

labeled as 'Person' in the text?

Answer: {ChatGPT response}

(questions of each label) ...

(b) Basic Decomposed-QA

Given entity label set: {label set}

Based on the given entity label set, please

recognize the named entities in the given

text.

Text: {input text}

Question: What are the named entities

labeled as 'Person' in the text?

Answer: First, let's perform Parf-of-

Speech tagging. Then, we recognize named

entities based on the Part-of-Speech tags.

{ChatGPT response}

(questions of each label) ...

(c) Syntactic Prompting

Given entity label set: {label set}

Based on the given entity label set, please

recognize the named entities in the given

text.

Text: {input text}

Question: What are the named entities

labeled as 'Person' in the text?

Answer: First, let's perform Parf-of-

Speech tagging. Then, we recognize named

entities based on the Part-of-Speech tags.

{ChatGPT response}

(questions of each label) ...

(c) Syntactic Prompting

Given entity label set: {label set}

Given the text and the corresponding

Part-of-Speech tags, please recognize the

named entities in the given text.

Text: {input text}

Part-of-Speech tags: Could/MD Tony/NN

Blair/NN be/VB in/IN line/NN for/IN a/DT

gold/NN medal/NN ?/PU

Question: What are the named entities

labeled as 'Person' in the text?

Answer: {ChatGPT response}

(questions of each label) ...

(d) Tool Augmentation

Given entity label set: {label set}

Given the text and the corresponding

Part-of-Speech tags, please recognize the

named entities in the given text.

Text: {input text}

Part-of-Speech tags: Could/MD Tony/NN

Blair/NN be/VB in/IN line/NN for/IN a/DT

gold/NN medal/NN ?/PU

Question: What are the named entities

labeled as 'Person' in the text?

Answer: {ChatGPT response}

(questions of each label) ...

(d) Tool Augmentation

Given entity label set: {label set}

Given the text and the corresponding Part-of-Speech tags,

please recognize the named entities in the given text.

Text: {input text}

Part-of-Speech tags: Could/MD Tony/NN Blair/NN be/VB

in/IN line/NN for/IN a/DT gold/NN medal/NN ?/PU

Question: What are the named entities labeled as 'Person' in

the text?

Answer: Let's infer named entities step by step from the text

based on the given Part-of-Speech tags. {ChatGPT

response}

(questions of each label) ...

(e) Tool Augmentation + Syntactic Prompting

Figure 1: Examples of proposed methods for zero-shot NER with ChatGPT. (a) Vanilla zero-shot method. (b)
Basic decomposed-QA, where the NER task is broken down into simpler subproblems. (c) Decomposed-QA
with syntactic prompting. Texts in green are the proposed syntactic reasoning hint . (d) Decomposed-QA with
tool augmentation. Texts in orange are the content of syntactic information. (e) Decomposed-QA with tool
augmentation and syntactic prompting. (f) SC with two-stage majority voting, where stage one votes for the
mentions and stage two votes for types. We use part-of-speech tags as an example syntactic information in this
figure. The detailed prompts are shown in Appendix H.

example is shown in (b) of Fig. 1.
We obtain the label order used in the multi-turn

dialogue by asking ChatGPT. For each dataset, we
provide the task requirement and the label set to
ChatGPT, then ask it to give a reasonable label or-
der based on its understanding of the labels. For
domain-specific datasets, PowerPlantFlat and Pow-
erPlantNested, which will be introduced in Section
4.1, we also use a manual label order provided by
the domain experts. The label orders are shown in
Appendix G.

3.2 Syntactic Augmentation

Aiming to guide the model to think step by step
while extracting information, we encourage Chat-
GPT to first grasp the syntactic structure of the
input text and then leverage this syntactic struc-
ture to extract relevant information. Among them,

Back
{Task instruction}
Text: {input text}

Question: {question}

Answer: {syntactic reasoning hint}.
{ChatGPT response}

Front
{Task instruction} {syntactic reasoning hint}.
Text: {input text}

Question: {question}

Answer: {ChatGPT response}

Figure 2: Two positions of syntactic reasoning hint.

five kinds of syntactic information are utilized:
word segmentation, noun phrases, Part-of-Speech
(POS) tags, constituency trees, and dependency
trees. Word segmentation is only for Chinese. We
propose the following two ways of syntactic aug-
mentation.

Syntactic Prompting. We encourage the model
to analyze the syntactic structure itself by inserting
the syntactic reasoning hint in the input instruction,
as shown in (c) of Fig. 1. We explore two positions

7937

of syntactic reasoning hint, i.e., in the back or front
of the instruction, as shown in Fig. 2.

Tool Augmentation. We first obtain the syn-
tactic information of the input text via a parsing
tool;2 Then, we feed the input text together with
the syntactic information to ChatGPT, as shown in
(d) of Fig. 1. We do not apply noun phrases in tool
augmentation since we do not obtain a parsing tool
with a reliable ability to extract noun phrases.

We further explore the combination of tool aug-
mentation and syntactic prompting. To enhance
the utilization of syntactic information from the
parsing tool, we insert a syntactic reasoning hint.
The example is shown in (e) of Fig. 1.

3.3 Self-Consistency with Two-Stage Majority
Voting

Harnessing the power of SC (Wang et al., 2022b),
we sample multiple responses from the model and
select the most acknowledged answers as the final
prediction. We design a two-stage majority voting
for NER, as shown in (f) of Fig. 1. At stage one, for
each candidate mention appeared in all responses,
we consider it as an entity if it appeared in more
than half of the responses; otherwise, we discard
this mention. At stage two, for each mention kept
in stage one, we choose the entity label predicted
by the majority of responses as the final predicted
label.

We explore two levels of SC for decomposed-
QA: question-level and sample-level. For question-
level, we sample multiple responses for the current
question and conduct majority voting; then, we fill
the voted answer into the dialogue context for all
subsequent questions. For sample-level, we run
the whole dialogue multiple times independently
and obtain the answer of each run, then conduct
majority voting on these answers.

4 Experiment

4.1 Setup

Datasets. We evaluate ChatGPT performance on
both domain-specific and general-domain datasets.
For domain-specific datasets, we present two Chi-
nese NER datasets of the electric power domain,
PowerPlantFlat (PPF) and PowerPlantNested
(PPN). The two datasets are collected from the

2We use Hanlp (He and Choi, 2021) to generate syntactic
information, since we found it performs well on both Chinese
and English in our preliminary experiments.

technical reports, which are formed during nu-
clear power plant operation and maintenance. Pow-
erPlantFlat only contains flat cases, while Pow-
erPlantNested contains nested entities. The two
datasets are formed in the vertical industrial do-
main, and thus serve as out-of-distribution data
for ChatGPT. The statistics of the two datasets are
shown in Appendix A. For general-domain datasets,
we evaluate on commonly used benchmarks,
including two English datasets, ACE05,3 and
ACE04,4 and three Chinese datasets, OntoNotes 4
(Onto. 4),5 MSRA (Zhang et al., 2006) and Weibo
NER (Peng and Dredze, 2015). For evaluation on
more datasets, please refer to Appendix E.

Model. We mainly evaluate on GPT-3.5 (gpt-3.5-
turbo) with official API.6 For Decomposed-QA, we
maintain a dialogue paradigm for each test sample.
For vanilla setting, we generate the response sepa-
rately for each test sample.

We also evaluate on GPT-3 (text-davinci-003)
(Ouyang et al., 2022) and Llama2 (Touvron et al.,
2023) to verify the effectiveness of the proposed
methods on other LLMs. We use the 13B chat
model of Llama2.7 The results of these two LLMs
are in Section 4.5.

Self-consistency. We set the temperature to 0.7
and 0 for settings with and without SC, respectively.
For cost saving, we conduct majority voting of 5 re-
sponses in our main experiments. We first conduct
both question-level and sample-level consistency
on each dataset; then, we choose the way of higher
performance for the rest of the experiments on the
corresponding dataset.

Data sampling. For syntactic augmentation, we
evaluate on the entire test sets of seven datasets. For
SC and combinations of techniques, for cost sav-
ing, we evaluate on partial datasets and randomly
sampled subsets of test sets: We evaluate on the
two domain-specific datasets, PowerPlantFlat and
PowerPlantNested, with entire test sets, and two
general-domain datasets, Ontonotes 4 and ACE05,
by randomly sampling 300 samples from the test
set three times and reporting the average results.

3catalog.ldc.upenn.edu/LDC2006T06
4catalog.ldc.upenn.edu/LDC2005T09
5catalog.ldc.upenn.edu/LDC2011T03
6The results of ChatGPT are obtained during May and

June 2023 with official API.
7https://huggingface.co/meta-llama/

Llama-2-13b-chat-hf

7938

catalog.ldc.upenn.edu/LDC2006T06
catalog.ldc.upenn.edu/LDC2005T09
catalog.ldc.upenn.edu/LDC2011T03
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

Method PPF PPN Weibo MSRA Onto. 4 ACE05 ACE04
Vanilla 27.85 20.43 30.09 45.51 33.74 28.12 20.09

Decomposed-QA 36.57 30.14 34.04 48.60 37.45 34.37 22.19

Syn.

Front

Word segmentation 38.16 30.38 32.72 47.52 37.47 - -
Noun phrases 37.46 30.02 33.93 46.05 38.31 33.22 20.99
POS tag 36.89 30.60 32.68 46.87 36.82 34.31 21.74
Constituency tree 36.21 29.88 31.85 46.02 36.52 33.22 20.86
Dependency tree 36.33 29.82 33.49 45.61 35.90 34.21 21.04

Back

Word segmentation 34.89 25.87 32.43 48.74 37.48 - -
Noun phrases 32.59 24.32 28.71 46.84 38.27 29.36 21.74
POS tag 36.18 26.11 33.51 44.40 36.82 28.84 23.88
Constituency tree 35.71 23.93 30.46 45.84 39.00 21.37 18.81
Dependency tree 31.05 21.02 27.61 44.87 38.52 25.57 21.04

Tool.

Word segmentation 39.77 33.81 36.30 53.67 39.20 - -
POS tag 38.11 30.97 35.14 51.99 37.61 34.33 22.41
Constituency tree 36.51 30.25 32.00 48.32 38.40 32.96 22.15
Dependency tree 39.50 32.12 36.16 48.82 38.05 33.38 22.37

SOTA (fully-supervised) 68.54 70.41 72.77 96.72 84.47 90.90 90.30

Table 1: Overall performance. We report the F1 values. Vanilla for vanilla zero-shot method without any techniques;
Syn. for syntactic prompting; Tool. for tool augmentation. We use the same abbreviations in the rest of this paper
when necessary. Syntactic augmentation is all conducted under the decomposed-QA setting. Numbers in bold are
the best results in the corresponding categories; Numbers underlined are the best results among all methods in the
zero-shot scenario. The proposed decomposed-QA and syntactic augmentation achieve significant improvements
for zero-shot NER on both Chinese and English datasets and on both domain-specific and general-domain scenarios.

SOTA of fully-supervised methods. For Pow-
erPlantFlat and PowerPlantNested, we use Global-
Pointer (Su et al., 2022) since it performs well on
both flat and nested cases. For other benchmarks,
we refer to corresponding papers: Weibo (Wang
et al., 2021), MSRA (Li et al., 2020), Ontonotes 4
(Li et al., 2020), ACE05 (Zhong and Chen, 2021),
ACE04 (Zhong and Chen, 2021).

4.2 Overall Performance

Table 1 summarizes the performances of
decomposed-QA and syntactic augmentation.
For the two domain-specific datasets, we use
the manual label orders as they show better
performance in preliminary experiments. For
cost saving, we explore SC and combinations of
reasoning techniques on selected datasets and
sampled test sets, which are detailed in Section 4.3

4.2.1 Effect of Decomposed-QA
From Table 1, we have the following observa-
tions: (1) Compared with the vanilla method,
decomposed-QA achieves significant improve-
ments across all benchmarks, including both Chi-
nese and English scenarios, and both domain-
specific and general-domain scenarios. This
demonstrates that decomposing by labels makes
the NER task much more manageable for Chat-
GPT. (2) Decomposed-QA exhibits more signif-
icant improvements on domain-specific datasets

(with an average 9.22% F1 gain) than on general-
domain datasets (with an average 3.82% F1 gain).
This is presumably because out-of-distribution data
are more challenging for ChatGPT. Decomposing
makes ChatGPT acquire a better understanding of
the out-of-distribution data. (3) We also explore the
effect of reasoning techniques under the vanilla set-
ting, and the results are in Table 9 of Appendix C.
We found that the vanilla setting fails to stimulate
the potential of reasoning techniques. Contrarily,
decomposed-QA stimulates the potential of syntac-
tic augmentation.

4.2.2 Effect of Syntactic Augmentation
As shown in Table 1, we draw the following conclu-
sions: (1) Syntactic prompting alone brings limited
benefits. This is presumably because conducting
syntactic analysis without any other augmentation
is challenging for ChatGPT. (2) Tool augmenta-
tion exhibits consistent improvements across six
datasets, showing that syntactic information helps
ChatGPT better understand the input text. (3) Tool
augmentation achieves more improvements on Chi-
nese than English datasets. This may be due to the
fact that Chinese is harder than English for Chat-
GPT to handle, and syntactic information provides
a clue on how to understand the Chinese input bet-
ter. (4) Different kinds of syntactic information
exhibit various performances. On Chinese datasets,
word segmentation shows the best performance.

7939

Method PPF PPN Onto. 4 ACE05
Vanilla 27.85 20.43 35.16 (1.57) 29.45 (0.69)

+ SC 28.85 20.72 35.79 (1.36) 29.37 (1.35)
Decomposed-QA - 36.57 30.14 38.79 (1.66) 35.57 (0.83)

+ SC question-level 33.46 32.15 39.57 (1.50) 31.98 (0.31)
sample-level 26.98 31.92 39.15 (0.76) 34.38 (0.85)

Syn.

Front

Word segmentation 38.16 30.38 37.67 (1.22) -
Noun phrases 37.46 30.02 38.83 (1.24) 34.63 (0.78)
POS tag 36.89 30.60 37.94 (1.49) 34.28 (0.45)
Constituency tree 36.21 29.88 38.43 (0.84) 34.47 (0.77)
Dependency tree 36.33 29.82 36.85 (1.16) 35.77 (0.45)

Back

Word segmentation 34.89 25.87 39.16 (1.52) -
Noun phrases 32.59 24.32 39.52 (0.82) 29.78 (0.64)
POS tag 36.18 26.11 37.00 (2.41) 29.72 (2.06)
on_conj 35.71 23.93 40.53 (2.54) 22.23 (0.40)
Dependency tree 31.05 21.02 39.06 (2.88) 26.65 (0.78)

Syn. + SC

Front

Word segmentation 38.64 32.32 39.23 (1.13) -
Noun phrases 38.16 32.11 40.34 (1.30) 32.35 (1.18)
POS tag 38.06 31.75 38.71 (1.91) 33.02 (1.11)
Constituency tree 37.24 31.60 38.99 (1.52) 32.00 (0.42)
Dependency tree 37.65 31.30 37.17 (2.21) 34.59 (0.14)

Back

Word segmentation 38.43 30.81 40.23 (2.59) -
Noun phrases 38.73 29.19 39.79 (2.24) 34.92 (0.72)
POS tag 38.48 30.77 40.27 (1.37) 34.40 (1.93)
Constituency tree 38.02 31.31 39.84 (1.90) 33.95 (0.90)
Dependency tree 37.24 31.20 40.15 (1.94) 34.42 (0.37)

Tool.

Word segmentation 39.77 33.81 40.78 (2.58) -
POS tag 38.11 30.97 38.15 (2.82) 35.35 (0.34)
Constituency tree 36.51 30.25 38.54 (3.19) 34.54 (2.26)
Dependency tree 39.50 32.12 38.13 (3.04) 34.34 (0.52)

Tool. + SC

Word segmentation 39.63 33.97 41.84 (2.63) -
POS tag 37.92 31.72 38.96 (4.21) 33.42 (0.64)
Constituency tree 36.59 28.35 40.40 (3.98) 34.60 (0.21)
Dependency tree 40.86 33.59 38.82 (2.61) 30.69 (0.97)

Tool. + Syn.

Front

Word segmentation 39.67 32.97 41.09 (3.19) -
POS tag 38.85 31.82 39.69 (3.98) 36.78 (1.36)
Constituency tree 36.02 30.65 39.44 (2.92) 33.51 (3.04)
Dependency tree 37.16 32.06 38.83 (3.29) 34.09 (0.78)

Back

Word segmentation 36.24 31.46 39.68 (1.15) -
POS tag 34.71 26.51 36.62 (1.05) 35.70 (1.17)
Constituency tree 33.76 29.53 39.67 (1.55) 29.64 (2.95)
Dependency tree 33.18 27.73 36.85 (0.43) 29.19 (2.17)

Tool. + Syn. + SC

Front

Word segmentation 40.31 34.85 42.46 (2.20) -
POS tag 38.21 30.89 40.86 (2.48) 33.19 (1.39)
Constituency tree 35.76 29.00 41.36 (3.58) 33.42 (2.35)
Dependency tree 39.97 33.23 40.49 (3.49) 30.29 (0.71)

Back

Word segmentation 40.83 30.78 41.40 (2.81) -
POS tag 38.00 30.64 38.58 (2.77) 30.28 (2.21)
Constituency tree 36.26 26.36 40.53 (3.38) 29.78 (1.64)
Dependency tree 41.97 32.73 40.19 (2.13) 29.87 (0.17)

SOTA (fully-supervised) 68.54 70.41 84.47 90.90

Table 2: Performance of SC and combinations of reasoning techniques. We report the F1 values. Numbers in
parentheses are the standard deviations. Numbers in bold are the best results in the corresponding categories;
Numbers underlined are the best results among all methods in the zero-shot scenario. SC with two-stage majority
voting and combinations of reasoning techniques brings further improvements.

On English datasets, POS tags boost the most. This
is presumably because simpler syntactic informa-
tion is easier for ChatGPT to understand. Com-
plex syntactic information, such as dependency
tree, though informative, can be hard to understand,
thereby, exhibiting unstable performance.

4.3 Effect of Self-Consistency and
Combinations of Reasoning Techniques

Table 2 summarizes the performance of SC and the
combinations of reasoning techniques. We visual-
ize the results on PowerPlantFlat and Ontonotes 4

7940

Vanilla QA Syn. Tool. Tool. + Syn.
Method

20

25

30

35

40

F1
-s

co
re

Without SC With SC

(a) Ontonotes 4

Vanilla QA Syn. Tool. Tool. + Syn.
Method

20

25

30

35

40

F1
-s

co
re

Without SC With SC

(b) PowerPlantFlat

Figure 3: Performance of combinations of reasoning techniques. For methods involving syntactic augmentation,
we plot the average results over all kinds of syntactic information. The vertical lines on the top part of some bars
represent the performances range over all kinds of syntactic information. With SC of two-stage majority voting, the
combinations of reasoning techniques further improve the performances.

1 3 5 10 15 20 25 30
sampled responses

37.8
38.3
38.9
39.4
39.9
40.4
41.0
41.5

F1

QA
Syn.

Tool.
Tool. + Syn.

(a) Ontonotes 4

1 3 5 10 15 20 25 30
sampled responses

36.0
37.1
38.1
39.2
40.3
41.4
42.4
43.5

F1

QA
Syn.

Tool.
Tool. + Syn.

(b) PowerPlantFlat

Figure 4: Increasing sampled responses generally im-
proves performance under SC with two-stage majority
voting.

in Fig. 3 for better analysis.
From the table and the figure, we have the fol-

lowing observations and conclusions: (1) SC shows
consistent improvements on almost all methods. As
long as the syntactic information is involved, SC
can always boost performance. This may be due
to the fact that syntactic information is helpful but
hard to understand or analyze. Thus, syntactic in-
formation gives ChatGPT the potential to perform
better but also a higher possibility of making mis-
takes. SC can filter out errors, thereby, leveraging
the advantages, and eliminating the disadvantages
of syntactic information. (2) Syntactic prompting
fails to boost tool augmentation and even hurts the
performance. However, when equipped with SC,
syntactic prompting improves tool augmentation.
This may be due to the complexity of information
provided by the combination of tool augmentation
and syntactic prompting. The complex information
leads the model to think and explore more, and of
course, it is also accompanied by more possibilities
for errors. This makes SC an effective means of fil-
tering out errors here. (3) SC improves more when
syntactic reasoning hints are put on the back than
on the front. This is presumably because the closer

Error Types Vanilla QA TS-SC
Type OOD types 4 1 1

Wrong types 141 150 156
Boundary Cotain gold. 70 54 35

Cotained by gold. 9 27 24
Overlap with gold. 0 1 0

Completely-O 334 220 176
Omitted mentions 23 41 43
OOD mentions 3 36 10
Total 585 530 444

Table 3: Numbers of error types on Ontonotes 4. "QA"
for decomposed-QA, "TS-SC" for combinations of tool
augmentation, syntactic prompting, and SC. Numbers
in bold denote the best results, i.e., the least errors. The
proposed methods significantly reduce the total amount
of error.

the reasoning hint is to the answer, the more it can
stimulate the model’s thinking. Hence, putting the
reasoning hints on the back encourages the model
to generate more diverse answers, which provides
better search spaces for majority voting.

We explore the effect of increasing sampled re-
sponses in SC, which are shown in Fig. 4. We
sample up to 30 responses for cost saving. As
seen in the figure, sampling a higher number of re-
sponses improves the performance. We conjecture
that combining diverse syntactic information may
further benefit SC on NER.

4.4 Error Analysis

4.4.1 Error Types
We take Ontonotes 4 for error analysis. Table 3
summarizes the statistics of error types. Fig. 6
visualize the percentages of error types. Below is
the introduction of error types:

Type. OOD types: predicted entity types not in
the given label set; Wrong types: predicted types

7941

Input Text: The player who temporarily ranks second is German athlete Bao
Lizzo, with a total score of 355.02 points, slightly lower than Lanwei.
Gold Label: {"German":"Geo-Political Entity", "Lanwei": "Person",
"BaoꞏLizzo": "Person"}
Vanilla Ans: {"German athlete Bao Lizzo": "Person", "Lanwei": "Person"}
TS-SC Ans: {"BaoꞏLizzo": "Person": "Person", "Lanwei": "Person",
"German": "Geo-Political Entity"}
--
Corrected Error Types: Contain gold mention
Possible Reason: Benefits from syntactic information, i.e., word segmentation
here. Involved word segmentation: ["German", "athlete", "BaoꞏLizzo"].

Input Text: Despite her natural and effortless movements, her
difficulty cannot be compared to that of Luo Li, who only
scored 9.875 points and won a silver medal.
Gold Label: {"Luo Li": "Person"}
Vanilla Ans: {"Luo Li": "Person", "Silver medal": "Location"}
TS-SC Ans: {"Luo Li": "Person"}

Corrected Error Types: Completely-O
Possible Reason: Better understanding of the input text due to
syntactic information.

Input Text: Suddenly, there was a heavy crashing sound, followed by an
exclamation of surprise. Lu Xiuqin, the leader of the research collection team,
rushed into the scene to inspect.
Gold Label: {"research collection team": "Organization", "Lu Xiuqin": "Person"}
Vanilla Ans: {"Lu Xiuqin": "Person"} (Omitted {"research collection team":
"Organization"})
TS-SC Ans: {"Lu Xiuqin": "Person", "collection team": "Organization"}
--
-
Increased Error Types: Contained by gold mention
Possible Reason: Misguided by syntactic information. Involved word
segmentation: ["research", "collection team"]. However, without the word
segmentation, the model could completely overlook this entity.
Optimization Direction: Provide more accurate and comprehensive syntactic
information. E.g., Using more powerful parsing tool and combinations of different
syntactic information.

Input Text: Xinhua News Agency, Tianjin, December 15th
(Reporter Li Jianchang, intern Ge Suhong).
Gold Label: {"Li Jianchang": "Person", "Tianjin": "Geo-
Political Entity", "Xinhua News Agency": "Organization",
"Ge Suhong": "Person"}
Vanilla Ans: {"Xinhua News Agency": "Organization",
"Tianjin": "Location", "Li Jianchang": "Person", "Ge
Suhong": "Person"}
TS-SC Ans: {"Li Jianchang": "Person", "Ge Suhong":
"Person", "Xinhua News Agency": "Organization"}
(Omitted {"Tianjin": "Geo-Political Entity"})
--
Increased Error Types: Omitted mention
Possible Reason: Inadequate understanding of entity types.
Optimization Direction: Provide entity type information.

Figure 5: Case study of error correction and error increase with the proposed methods. We translate the original
Chinese text into English in the demonstrations for readability. The upper two cases are errors corrected, and the
lower two are errors increased. Texts in blue are involved entities in the error cases. Our method shows effectiveness
on error corrections. With the suggested optimization strategies, the error increased might be eliminated.

Wrong types

24.32%

OOD types

0.70%

Cotained by gold.

1.53%

Cotain gold.
11.96%

Overlap with gold.

0.07%

Completely -O

56.90%

OOD mentions

0.53%

Omitted mention

4.00%

Error Types
Wrong types
OOD types
Cotained by gold.
Cotain gold.
Overlap with gold.
Completely -O
OOD mentions
Omitted mention

Figure 6: Percentage of different error types on
Ontonotes 4 under the vanilla method.

incorrect but in the given label set.

Boundary. Contain gold.: predicted mentions
containing gold mentions; Contained by gold.: pre-
dicted mentions contained by gold mentions; Over-
lap with gold.: predicted mentions not in the two
above situations but overlap with gold mentions.

Completely-O: predicted mentions that do not have
any of the three above boundary situations with any
gold mentions.

OOD mentions: predicted mentions that do not
appear in the input text.

As shown in Fig. 6, the majority error types are
complete-O and wrong types, which account for
over 80% of all errors. The former may be due to

the incomplete annotation or that ChatGPT would
guess entities based on its prior common knowl-
edge. The latter may be due to the inadequate
understanding of entity types. As seen in Table 3,
decomposed-QA reduces the total error numbers
by 9.4%; The combination of Tool augmentation,
Syntactic prompting and SC (TS-SC) reduces the
error numbers by 24.1%, showing remarkable ca-
pability in error corrections.

4.4.2 Case Study of Error Correction and
Error Increase

As seen in Table 3, TS-SC reduces errors mainly
in types of contain gold. and completely-O, and
increases errors mainly in types of contained by
gold. and omitted mentions. Thus, we conduct
case study on these four types, which are shown in
Fig. 5. TS-SC corrects errors of contain gold. and
completely-O presumably by providing syntactic
information and making the model better under-
stand the input text. Meanwhile, TS-SC increases
errors of contain gold. and omitted mentions pre-
sumably because of the misguiding of syntactic
information and inadequate understanding of entity
types, respectively. For the former, providing more
accurate and comprehensive syntactic information
might be a solution; for the latter, providing type
information might be a direction of optimization.

7942

Dataset Method 0-shot 3-shot 5-shot 10-shot

Ontonotes 4

Vanilla 35.16 (1.57) 38.67 (3.57) 44.51 (5.78) 52.45 (4.13)
Standard CoT - 34.34 (6.61) 41.13 (6.31) 41.90 (2.43)
Tool. w. word segmentation (Ours) 40.78 (2.58) 42.48 (3.34) 47.16 (5.42) 54.40 (2.68)
Syn. w. word segmentation (Ours) 37.94 (1.49) 43.89 (3.67) 50.70 (7.26) 56.71 (3.70)

PowerPlantFlat

Vanilla 27.85 35.81 (2.94) 37.44 (3.88) 41.13 (4.89)
Standard CoT - 30.63 (6.45) 33.95 (3.59) 38.02 (1.03)
Tool. w. word segmentation (Ours) 32.41 39.43 (1.91) 41.12 (4.35) 42.05 (4.74)
Syn. w. word segmentation (Ours) 28.09 37.84 (2.59) 39.72 (2.79) 42.52 (3.71)

Table 4: Results under few-shot setting, where the number of shots is the number of texts. We randomly sample
three sets of demonstrations and take the averages. Results for Ontonotes 4 are averaged over three sets of randomly
sampled 300 samples from the test set. We report F1 values. Numbers in parentheses are the standard deviations.
Numbers in bold are the best results. Our methods also achieve significant improvements in few-shot scenarios.

Dataset ACE05 BC5CDR
Model GPT-3.5 GPT-3 Llama2 GPT-3.5 GPT-3 Llama2
Vanilla 29.45 14.03 9.07 61.28 29.49 26.12
Decomposed-QA 35.57 23.88 15.53 65.45 38.73 28.30
Syn. w. dependency tree 26.65 27.93 16.98 59.69 41.62 34.46
Tool. w. dependency tree 34.34 27.59 17.31 62.79 43.69 39.94
Tool. + Syn. w. dependency tree 29.19 18.38 26.99 57.28 16.38 39.57

Table 5: Performance on GPT-3 (text-davinci-003) and Llama2 13B chat model. Results are averaged over three
sets of randomly sampled 300 samples from the test set. We report the F1 values. Our proposed strategies show
consistent improvements on various LLMs.

4.5 More analysis

Few-shot setting. We evaluate the proposed syn-
tactic augmentation under few-shot setting. Han
et al. (2023) investigate standard CoT on NER by
generating intermediate rationales with ChatGPT.
We take a different perspective: we encourage the
model to explore syntactic information as their in-
termediate thinking steps. Detailed adaptations of
our methods to the few-shot setting are explained in
Appendix D. For the decomposed-QA and SC, we
leave them to future work due to the cost budget.

We compared our methods to the vanilla method
and standard CoT. We use ChatGPT to generate
rationales in standard CoT, following (Han et al.,
2023). Here, we use one general domain dataset,
Ontonotes 4, and one domain-specific dataset, Pow-
erPlantFlat, for demonstrations. The results are
shown in Table 4, in which the word segmentation
is used for demonstration. The results of various
syntactic information are in Appendix D.

As observed in Table 4, the standard CoT does
not bring improvements, even hurt the performance.
This is presumably because standard CoT is very
sensitive to the rationales constructed, which is
also mentioned in (Han et al., 2023). However, our
strategies have achieved significant improvements.
This shows that the proposed methods are effective
not only in the zero-shot scenario but also in the
few-shot setting.

Other LLMs. We also evaluate our methods on
GPT-3 (text-davinci-003) (Ouyang et al., 2022) and
Llama2 (Touvron et al., 2023). Since Llama2 still
has poor support for Chinese yet, we evaluate on
two English datasets, one general-domain dataset,
ACE05, and one biomedical dataset, BC5CDR (Li
et al., 2016). The results are shown in Table 5, in
which the dependency tree is used for demonstra-
tion. The complete results are in Appendix F. The
main results of BC5CDR are in Appendix E. Table
5 shows that our methods exhibit consistent im-
provements across different LLMs, including the
close-sourced ChatGPT model series and typical
open-sourced model Llama.

5 Conclusion

We present an empirical study of zero-shot NER
with ChatGPT, with four proposed strategies to sim-
ulate the reasoning potential of ChatGPT on NER.
Inspired by the powerful reasoning capabilities of
LLM on logical and arithmetic reasoning tasks,
the proposed strategies involve task decomposition,
syntactic augmentation, and tailored SC. We verify
the effectiveness of our methods on Chinese and
English scenarios, and on both domain-specific and
general-domain datasets. We provide an analysis
of the error types with suggested solutions. Be-
sides, we verify the effectiveness of the proposed
methods on the few-shot setting and other LLMs.

7943

6 Limitations

For cost saving, we focus on the investigation of
each individual syntactic information and have not
explored the combinations of different kinds of syn-
tactic information. Also, we have not investigated
manual label orders on general-domain datasets for
the same reason. We leave them to future work.

Acknowledgments

We would like to thank the anonymous review-
ers for their insightful comments and constructive
suggestions. This research is supported by the Na-
tional Key Research and Development Program of
China (Grant No. 2020YFB1707803) and Zhejiang
Provincial Natural Science Foundation of China
(LDT23F02023F02).

References

Michael Bada, Miriam Eckert, Donald Evans, Kristin
Garcia, Krista Shipley, Dmitry Sitnikov, William A
Baumgartner, K Bretonnel Cohen, Karin Verspoor,
Judith A Blake, et al. 2012. Concept annotation in
the craft corpus. BMC bioinformatics, 13(1):1–20.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling,
and Tom Kwiatkowski. 2019. Matching the blanks:
Distributional similarity for relation learning. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2895–
2905, Florence, Italy. Association for Computational
Linguistics.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 167–176,
Beijing, China. Association for Computational Lin-
guistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,

David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Gamal Crichton, Sampo Pyysalo, Billy Chiu, and Anna
Korhonen. 2017. A neural network multi-task learn-
ing approach to biomedical named entity recognition.
BMC bioinformatics, 18(1):1–14.

Leon Derczynski, Eric Nichols, Marieke Van Erp, and
Nut Limsopatham. 2017. Results of the wnut2017
shared task on novel and emerging entity recognition.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 140–147.

Ridong Han, Tao Peng, Chaohao Yang, Benyou Wang,
Lu Liu, and Xiang Wan. 2023. Is information extrac-
tion solved by chatgpt? an analysis of performance,
evaluation criteria, robustness and errors. arXiv
preprint arXiv:2305.14450.

Han He and Jinho D. Choi. 2021. The stem cell hy-
pothesis: Dilemma behind multi-task learning with
transformer encoders. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5555–5577, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Md Tahmid Rahman Laskar, M Saiful Bari, Mizanur
Rahman, Md Amran Hossen Bhuiyan, Shafiq Joty,
and Jimmy Xiangji Huang. 2023. A systematic study
and comprehensive evaluation of chatgpt on bench-
mark datasets. arXiv preprint arXiv:2305.18486.

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei
Ye, Wen Zhao, and Shikun Zhang. 2023. Evaluating
chatgpt’s information extraction capabilities: An as-
sessment of performance, explainability, calibration,
and faithfulness. arXiv preprint arXiv:2304.11633.

Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J Mattingly, Thomas C Wiegers, and
Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database, 2016.

Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun Liang,
Fei Wu, and Jiwei Li. 2020. Dice loss for data-
imbalanced nlp tasks. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 465–476, Online. Association for
Computational Linguistics.

7944

https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://aclanthology.org/2021.emnlp-main.451
https://aclanthology.org/2021.emnlp-main.451
https://aclanthology.org/2021.emnlp-main.451
https://doi.org/10.18653/v1/2020.acl-main.45
https://doi.org/10.18653/v1/2020.acl-main.45

Yuanyuan Liang, Jianing Wang, Hanlun Zhu, Lei Wang,
Weining Qian, and Yunshi Lan. 2023. Prompting
large language models with chain-of-thought for few-
shot knowledge base question generation.

Mingyu Derek Ma, Xiaoxuan Wang, Po-Nien Kung,
P Jeffrey Brantingham, Nanyun Peng, and Wei Wang.
2023. Star: Boosting low-resource event extraction
by structure-to-text data generation with large lan-
guage models. arXiv preprint arXiv:2305.15090.

OpenAI. 2022. Introducing chatgpt.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Nanyun Peng and Mark Dredze. 2015. Named entity
recognition for Chinese social media with jointly
trained embeddings. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 548–554, Lisbon, Portugal. Asso-
ciation for Computational Linguistics.

Sampo Pyysalo, Tomoko Ohta, Rafal Rak, Dan Sul-
livan, Chunhong Mao, Chunxia Wang, Bruno So-
bral, Jun’ichi Tsujii, and Sophia Ananiadou. 2012.
Overview of the id, epi and rel tasks of bionlp shared
task 2011. In BMC bioinformatics, volume 13, pages
1–26. Springer.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver?

Erik F Sang and Fien De Meulder. 2003. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. arXiv preprint cs/0306050.

Jianlin Su, Ahmed Murtadha, Shengfeng Pan, Jing Hou,
Jun Sun, Wanwei Huang, Bo Wen, and Yunfeng Liu.
2022. Global pointer: Novel efficient span-based
approach for named entity recognition.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-
Ching Chang, Igor Krivokon, Will Rusch, Marc
Pickett, Pranesh Srinivasan, Laichee Man, Kathleen
Meier-Hellstern, Meredith Ringel Morris, Tulsee

Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc
Le. 2022. Lamda: Language models for dialog appli-
cations.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying
Liu, Haiyue Song, Jiwei Li, and Sadao Kurohashi.
2023. Gpt-re: In-context learning for relation ex-
traction using large language models. arXiv preprint
arXiv:2305.02105.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen,
You Wu, Luke Zettlemoyer, and Huan Sun. 2022a.
Towards understanding chain-of-thought prompting:
An empirical study of what matters. arXiv preprint
arXiv:2212.10001.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang.
2023. Gpt-ner: Named entity recognition via large
language models. arXiv preprint arXiv:2304.10428.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Improving named entity recognition by external con-
text retrieving and cooperative learning. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1800–1812, Online.
Association for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022b. Self-consistency improves
chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang,
Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu,
Yufeng Chen, Meishan Zhang, et al. 2023. Zero-
shot information extraction via chatting with chatgpt.
arXiv preprint arXiv:2302.10205.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In

7945

http://arxiv.org/abs/2310.08395
http://arxiv.org/abs/2310.08395
http://arxiv.org/abs/2310.08395
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/D15-1064
https://doi.org/10.18653/v1/D15-1064
https://doi.org/10.18653/v1/D15-1064
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2208.03054
http://arxiv.org/abs/2208.03054
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
https://doi.org/10.18653/v1/2021.acl-long.142
https://doi.org/10.18653/v1/2021.acl-long.142
https://doi.org/10.18653/v1/2020.acl-main.577

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.

Suxiang Zhang, Ying Qin, Juan Wen, and Xiaojie Wang.
2006. Word segmentation and named entity recog-
nition for SIGHAN bakeoff3. In Proceedings of the
Fifth SIGHAN Workshop on Chinese Language Pro-
cessing, pages 158–161, Sydney, Australia. Associa-
tion for Computational Linguistics.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Zexuan Zhong and Danqi Chen. 2021. A frustratingly
easy approach for entity and relation extraction. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 50–61, Online. Association for Computational
Linguistics.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

A Statistics of PowerPlant Datasets

Table 6 shows the overall statistics of the Power-
Plant datasets, and Table 8 displays the classwise
statistics.

Dataset Split #Sentences #Entities

Flat
Train 3087 4379
Test 401 540

Nested
Train 3047 6924
Test 492 1109

Table 6: Statistics of PowerPlant datasets.

B Statistics of Errors on PowerPlantFlat

Table 7 summarizes the statistics of error types
on PowerPlantFlat under vanilla, decomposed-QA,
and TS-SC methods. Fig. 7 shows the percent-
ages of error types on PowerPlantFlat under vanilla
method.

Error Types Vanilla QA TS-SC
Type OOD types 0 0 0

Wrong types 90 66 65
Boundary Cotain gold. 153 167 110

Cotained by gold. 31 51 76
Overlap with gold. 8 8 3

Completely-O 439 406 279
Omitted mentions 65 37 56
OOD mentions 14 32 14
Total 800 767 603

Table 7: Numbers of different error types on Power-
PlantFlat. "QA" refers to decomposed-QA, "TS-SC"
refers to the combination of tool augmentation, syntac-
tic prompting, and SC. Numbers in bold denote the best
results on PowerPlantFlat, i.e., the least errors.

Wrong types

11.29%

OOD types

0.00%

Cotained by gold.

3.90%

Cotain gold.
19.08%

Overlap with gold.

1.00%

Completely -O

54.85%

OOD mentions

1.80%

Omitted mention

8.09%

Error Types
Wrong types
OOD types
Cotained by gold.
Cotain gold.
Overlap with gold.
Completely -O
OOD mentions
Omitted mention

Figure 7: Percentage of different error types on Power-
PlantFlat under the vanilla setting.

7946

https://aclanthology.org/W06-0126
https://aclanthology.org/W06-0126
https://doi.org/10.18653/v1/2021.naacl-main.5
https://doi.org/10.18653/v1/2021.naacl-main.5

C Performance Under Vanilla Setting

We also investigate the effect of our proposed rea-
soning techniques on the standard setting. The re-
sults are shown in Table 9. From the table, we can
conclude that the potential of the syntactic informa-
tion cannot be fully exploited under the standard
setting. On the contrary, the proposed decomposed-
QA paradigm effectively utilizes the syntactic in-
formation, as shown in Tabel 2 and Figure 3.

Under standard setting, the reasoning techniques
bring limited benefits for general-domain datasets,
sometimes even hurting the performance. However,
these techniques exhibit improvements on domain-
specific datasets, i.e., out-of-distribution datasets.
This is presumably because out-of-distribution data
is much more challenging than general-domain
data for ChatGPT. The reasoning techniques lead
the model to have a better understanding of the
out-of-distribution data.

D Syntactic Augmentation Under
Few-shot Setting

The following are the adaptations of our proposed
syntactic augmentation strategies to the few-shot
setting. (1) Syntactic prompting: For the test sam-
ple, we ask the model to first perform syntactic
analysis and then recognize entities. For demonstra-
tions, we use parsing tools to generate intermediate
syntactic parsing results. (2) Tool augmentation:
We provide both the text and syntactic information
for the demonstrations and the test sample.

Table 10 shows the experiment results under the
3-shot setting.

E Evaluation on More Datasets

We additionally evaluate the proposed meth-
ods on more datasets, including general-domain
datasets, CoNLL-2003 (Sang and De Meulder,
2003), WNUT-17(Derczynski et al., 2017), and
domain-specific datasets (i.e., biomedical domain),
BC5CDR (Li et al., 2016), BioNLP11 (Pyysalo
et al., 2012), and CRAFT (Bada et al., 2012; Crich-
ton et al., 2017).

The results are shown in Table 11. We found that
the proposed reasoning techniques cannot guaran-
tee performance improvements on CoNLL-2003
and WNUT-17 and even hurt the performance. This
is presumably because the label logic of these two
datasets is not suitable for decomposition, and the
syntactic information generated for them is noisy.

Meanwhile, we conjecture that this is also due to
the fact that CoNLL-2003 and WNUT-17 contain
more numbers of shorter texts, on which the rea-
soning techniques are difficult to leverage their ad-
vantages. However, the proposed methods achieve
significant improvements in biomedical domain
datasets BC5CDR, BioNLP11, and CRAFT. This
demonstrates that the proposed methods can also
improve zero-shot NER of other challenging do-
mains besides the electric power domain. Plus the
five datasets evaluated in Table 11, we evaluate on
twelve benchmarks in total and achieve remarkable
improvements on ten datasets among them.

F Evaluation on Other LLMs

The complete results on GPT-3 and Llama2 are
shown in Table 12. These results show that our
methods exhibit consistent improvements across
different LLMs. On the smallest LLM evalu-
ated, Llama2 13B, our proposed strategies still
achieve remarkable performance improvements,
with 19.72% and 17.51% F1 improvements on
ACE05 and BC5CDR, respectively. This reveals
that our methods have wide applicability to various
sizes of LLMs, which is beneficial for low-resource
scenarios such as when only smaller LLMs are af-
fordable.

G Label Order

Table 13 displays label orders used in our main ex-
periments and the corresponding results under ba-
sic decomposed-QA. On the power plant datasets,
manual label orders provided by domain experts
achieve significantly better results. This demon-
strates that when dealing with domain-specific
datasets with ChatGPT, one may turn to domain
knowledge to boost performance.

Table 14 displays the label orders of additional
datasets.

Table 15 shows the instructions for asking Chat-
GPT to provide label orders of PowerPlantFlat and
ACE05 datasets.

H Prompts

We show all of our prompts with Ontonotes 4 and
ACE05 as examples. The prompts are in Table 16,
17, 18 and 19.

7947

Label Chinese Label Flat Nested

Train Test Train Test
System name 系统名称 132 10 143 21
System identity 系统标识 357 49 1654 270
Device name 设备名称 1239 159 1191 199
Device identity 设备标识 1517 185 1462 243
Component name 部件名称 763 97 771 108
Location name 地点 200 24 197 30
Person 人员 171 16 184 24
Reactor Status 反应堆状态 - - 88 13
Power Plant Event 电站事件 - - 1234 201

Table 8: Classwise statistics of PowerPlant datasets.

Method PPF PPN Weibo MSRA Ontonotes 4 ACE04 ACE05

Vanilla 27.85 20.43 30.09 45.51 33.74 20.09 28.12

Self-Consistency 28.85 20.72 31.02 - - 19.97 28.21

Syntactic Prompting

Front

Word segmentation 28.09 20.37 28.48 41.72 30.82 - -
Noun phrases 28.94 21.81 28.89 41.5 30.89 18.77 26.21
POS tags 30.12 22.47 27.23 41.20 30.59 19.54 28.27
Constituency Tree 26.38 20.47 28.23 40.62 30.61 19.75 28.49
Dependency Tree 27.21 20.7 28.51 40.44 30.77 19.68 28.46

Back

Word segmentation 27.37 20.58 20.10 42.92 32.03 - -
Noun phrases 31.65 21.36 17.09 42.60 31.62 19.69 26.05
POS tags 28.24 17.70 19.38 42.34 31.86 20.60 25.65
Constituency Tree 30.31 20.53 17.74 42.52 31.88 20.42 23.98
Dependency Tree 26.08 17.47 14.09 42.68 31.64 20.33 26.31

Tool augmentation

Front

Word segmentation 32.28 26.57 25.37 38.84 29.75 - -
POS tags 28.13 24.17 24.86 37.29 29.95 19.14 28.14
Constituency Tree 23.62 20.97 22.98 30.45 26.1 16.97 27.65
Dependency Tree 26.08 17.47 14.09 42.68 31.64 20.33 26.31

Back

Word segmentation 28.57 26.81 21.88 34.19 26.77 - -
POS tags 22.04 202.5 24.69 34.77 27.84 18.16 25.17
Constituency Tree 22.46 21.82 20.79 30.81 24.62 16.09 23.60
Dependency Tree 21.36 20.25 25.18 32.73 26.88 16.13 21.67

SOTA (fully-supervised) 68.54 70.41 72.77 96.72 84.47 90.3 90.9

Table 9: Performance of reasoning techniques under the vanilla setting (without decomposition). In this table,
"vanilla" specifically refers to the zero-shot method without any techniques. We report the F1 values on entire test
sets. We spare the SC on MSRA and Ontonotes 4 for cost saving.

7948

Method Ontonotes 4 PowerPlantFlat
Vanilla 38.71 (3.34) 35.81 (2.94)

Decomposed-QA 43.30 (1.84) 43.75 (3.06)

Syn.

Word segmentation 40.12 (3.22) 37.33 (2.70)
POS tag 44.11 (3.52) 36.42 (0.26)
Constituency tree 38.81 (2.38) 33.66 (2.50)
Dependency tree 35.05 (1.41) 36.16 (1.43)

Syn. + SC

Word segmentation 41.28 (3.65) 38.7 (2.27)
POS tag 44.93 (4.02) 36.19 (0.65)
Constituency tree 41.89 (3.50) 36.05 (2.65)
Dependency tree 37.98 (2.56) 39.06 (0.78)

Tool.

Word segmentation 42.33 (3.14) 39.43 (1.91)
POS tag 42.51 (2.44) 37.04 (0.72)
Constituency tree 38.51 (4.17) 35.14 (2.84)
Dependency tree 36.12 (1.93) 33.54 (1.44)

Tool. + SC

Word segmentation 40.49 (12.05) 41.09 (2.71)
POS tag 43.28 (2.69) 38.66 (2.05)
Constituency tree 40.12 (4.31) 35.54 (2.66)
Dependency tree 38.39 (2.50) 35.79 (1.87)

Tool. + Syn.

Word segmentation 43.11 (2.52) 39.69 (2.61)
POS tag 42.44 (2.67) 36.35 (1.81)
Constituency tree 38.31 (3.30) 34.45 (2.53)
Dependency tree 35.21 (2.26) 34.1 (1.06)

Tool. + Syn. + SC

Word segmentation 42.18 (2.29) 41.43 (1.78)
POS tag 41.53 (3.25) 37.95 (2.03)
Constituency tree 41.57 (4.54) 35.32 (3.82)
Dependency tree 40.33 (4.87) 35.85 (2.14)

Table 10: Performance of syntactic augmentation under 3-shot setting. We randomly sample three sets of demon-
strations and report the means and standard deviations of F1 values. Numbers in parentheses are standard deviations.
Numbers in bold are the best results in each category. The proposed syntactic augmentation exhibits significant
improvements in the few-setting.

Dataset CoNLL-2003 WNUT-17 BC5CDR BioNLP11 CRAFT
Vanilla 69.42 (0.91) 46.61 (2.97) 61.28 (3.11) 51.29 (2.48) 21.66 (1.41)
Decomposed-QA 59.67 (0.36) 42.39 (1.99) 65.45 (0.89) 55.3 (0.54) 23.99 (2.65)
Syn. (Front)
Noun phrases 57.13 (0.41) 39.75 (2.42) 64.41 (1.74) 52.73 (1.89) 22.92 (3.04)
POS tag 55.14 (0.98) 39.74 (1.98) 66.24 (2.40) 53.97 (0.99) 23.59 (2.01)
Constituency tree 56.36 (1.07) 39.66 (1.51) 64.7 (0.80) 53.98 (1.24) 23.84 (1.94)
Dependency tree 54.27 (1.54) 38.36 (0.37) 65.56 (1.20) 54.37 (0.83) 23.51 (2.06)
Syn. (Back)
Noun phrases 58.89 (1.39) 36.47 (1.10) 60.44 (0.57) 51.99 (1.27) 21.71 (1.89)
POS tag 56.12 (1.54) 38.12 (0.55) 58.19 (1.55) 54.41 (2.62) 22.69 (3.76)
Constituency tree 55.66 (2.17) 37.75 (2.04) 47.81 (1.99) 43.58 (1.44) 23.86 (1.30)
Dependency tree 58.36 (1.11) 37.49 (1.56) 59.69 (0.76) 55.23 (0.77) 22.84 (1.59)
Tool.
POS tag 62.79 (2.54) 43.81 (2.15) 66.4 (1.44) 52.38 (0.35) 24.54 (3.87)
Constituency tree 60.96 (0.34) 44.3 (1.02) 65.02 (3.00) 51.44 (0.81) 23.88 (2.24)
Dependency tree 59.23 (3.13) 41.6 (1.30) 62.79 (2.62) 42.71 (0.73) 24.86 (2.45)
Tool. + Syn. (Front)
POS tag 63.46 (1.02) 43.9 (2.21) 64.24 (1.83) 49.87 (0.85) 25.05 (2.12)
Constituency tree 59.59 (0.99) 44.68 (2.59) 65.43 (2.51) 50.6 (1.39) 24.5 (2.76)
Dependency tree 57.93 (2.05) 40.96 (3.57) 59.93 (1.88) 40.18 (1.63) 24.46 (2.50)
Tool. + Syn. (Back)
POS tag 58.08 (0.27) 39.32 (4.42) 60.84 (3.47) 47.9 (1.88) 13.71 (1.90)
Constituency tree 58.95 (2.19) 37.91 (5.46) 54.57 (1.86) 42.27 (2.78) 20.64 (1.85)
Dependency tree 54.68 (1.27) 36.7 (3.07) 57.28 (1.37) 45.62 (3.46) 24.05 (4.05)

Table 11: Performance on additional datasets. Results are averaged over three sets of randomly sampled 300 samples
from the test set. We report the means and standard deviations of F1 values. Numbers in parentheses are standard
deviations. Numbers in bold are best results in each category.

7949

Dataset ACE05 BC5CDR
Model GPT-3.5 GPT-3 Llama2 GPT-3.5 GPT-3 Llama2
Vanilla 29.45 (0.69) 14.03 (0.94) 9.07 (1.33) 61.28 (3.11) 29.49 (3.12) 26.12 (2.94)
Decomposed-QA 35.57 (0.83) 23.88 (2.21) 15.53 (1.53) 65.45(0.89) 38.73 (2.58) 28.30 (0.73)
Syn. (Front)
Noun phrases 34.63 (0.78) 21.74 (2.16) 17.30 (1.08) 64.41 (1.74) 39.38 (3.01) 36.20 (1.24)
POS tag 34.28 (0.45) 21.98 (2.90) 23.86 (6.79) 66.24 (2.40) 45.31 (1.34) 34.65 (2.35)
Constituency tree 34.47 (0.77) 22.38 (2.09) 21.76 (0.31) 64.70 (0.80) 42.09 (1.51) 36.92 (0.37)
Dependency tree 35.77 (0.45) 22.84 (2.81) 25.91 (1.20) 65.56 (1.20) 43.19 (0.93) 33.11 (0.31)
Syn. (Back)
Noun phrases 29.78 (0.64) 24.45 (2.29) 15.73 (1.93) 60.44 (0.57) 35.17 (1.88) 33.75 (1.26)
POS tag 29.72 (2.06) 30.73 (2.90) 16.51 (1.82) 58.19 (1.55) 45.17 (3.00) 34.62 (3.02)
Constituency tree 22.23 (0.40) 27.08 (2.82) 16.45 (1.74) 47.81 (1.99) 39.72 (1.96) 35.17 (0.88)
Dependency tree 26.65 (0.78) 27.93 (2.73) 16.98 (1.23) 59.69 (0.76) 41.62 (2.30) 34.46 (1.81)
Tool.
POS tag 35.35 (0.34) 24.74 (0.88) 18.00 (1.02) 66.40 (1.44) 47.04 (2.39) 40.45 (1.11)
Constituency tree 34.54 (2.26) 26.84 (2.46) 17.36 (0.65) 65.02 (3.00) 52.77 (2.73) 38.95 (0.85)
Dependency tree 34.34 (0.52) 27.59 (2.05) 17.31 (2.14) 62.79 (2.62) 43.69 (2.33) 39.94 (1.05)
Tool. + Syn. (Front)
POS tag 36.78 (1.36) 26.21 (1.88) 17.94 (1.28) 64.24 (1.83) 47.70 (2.46) 33.84 (1.63)
Constituency tree 33.51 (3.04) 29.93 (2.03) 18.11 (1.42) 65.43 (2.51) 54.12 (3.00) 30.23 (1.65)
Dependency tree 34.09 (0.78) 30.62 (1.79) 15.75 (2.38) 59.93 (1.88) 43.26 (2.11) 38.16 (4.50)
Tool. + Syn. (Back)
POS tag 35.70 (1.17) 22.08 (1.32) 24.50 (2.09) 60.84 (3.47) 17.72 (1.87) 43.63 (2.61)
Constituency tree 29.64 (2.95) 15.06 (0.23) 23.87 (1.18) 54.57 (1.86) 11.44 (1.72) 36.48 (1.91)
Dependency tree 29.19 (2.17) 18.38 (1.10) 26.99 (0.49) 57.28 (1.37) 16.38 (1.27) 39.57 (2.04)

Table 12: Complete results on various LLMs. We use gpt-3.5-turbo for GPT-3.5, text-davinci-003 for GPT-3, and
13B chat model for Llama2. For cost saving, we sample 300 samples from the test set three times, and report the
average results of F1 values. Numbers in parentheses are the standard deviations. Numbers in bold are the best
results in the corresponding categories.

7950

Dataset Label order Order generation F1

PowerPlantFlat

vanilla - 27.85

[["设备标识"],["设备名称"], ["系统标识"],
["系统名称"],["部件名称"], ["地点"],["人员"]]

manual 36.57

[["地点"],["系统名称"], "系统标识"], ["设备
名称"], ["设备标识"], ["部件名称"], ["人员"]]

ChatGPT 30.52

PowerPlantNested

vanilla - 20.43

[["设备标识"],["设备名称"], ["系统标识"],
["系统名称"],["部件名称"], ["地点"],
["人员"], ["反应堆状态"],["电站事件"]]

manual 30.14

[["地点"], ["人员"],["反应堆状态"], ["系统
名称"], ["系统标识"], ["设备名称"], ["设备
标识"], ["部件名称"], ["电站事件"]]

ChatGPT 20.16

Weibo
vanilla - 30.09

[[’人名’], [’地名’], [’机构名称’], [’地缘
政治实体’]]

ChatGPT 34.04

MSRA
vanilla - 45.51

[[’人物’], [’地点’], [’机构’]] ChatGPT 48.60

Ontonotes 4
vanilla - 33.74

[[’人名’], [’地名’], [’机构名称’], [’地缘
政治实体’]]

ChatGPT 37.45

ACE04

vanilla - 20.09

[["Person"],["Organization"],["Location"],
["Facility"], ["Weapon"],["Vehicle"], ["Geo
-Political Entity"]]

ChatGPT 22.19

ACE05

vanilla - 28.12

[["Person"],["Organization"],["Location"],
["Facility"], ["Weapon"],["Vehicle"], ["Geo
-Political Entity"]]

ChatGPT 34.37

Table 13: Label orders with corresponding performances. The results are from the entire test set. "vanilla" refers to
the standard setting without any techniques.

7951

Dataset Label order Order generation F1

CoNLL-2003
vanilla - 69.42

[["Location"], ["Organization"], ["Person"],
["Miscellaneous"]]

ChatGPT 59.67

WNUT-17
vanilla - 46.61

[["Person"], ["Location"], ["Corporation"],
["Product"], ["Creative work"], ["Group"]]

ChatGPT 42.39

BC5CDR
vanilla - 61.28

[["Chemical"], ["Disease"]] ChatGPT 65.45

BioNLP11

vanilla - 51.29

[[’Protein’], [’Organism’], [’Chemical’],
[’Regulon-operon’]]

ChatGPT 55.30

CRAFT

vanilla - 21.66

[[’Simple_chemical’], [’Gene_or_gene_product’],
[’Cellular_component’], [’Complex’]]

ChatGPT 23.99

Table 14: Label orders of additional datasets and corresponding performances. Results are averaged over three sets
of randomly sampled 300 samples from the test set.

Dataset Prompts

PowerPlantFlat
"给定实体标签集：[’系统名称’, ’系统标识’, ’设备名称’, ’设备标识’,
’部件名称’, ’地点’, ’人员’] \n我们需要按照不同标签分别识别对应
的命名实体。按什么样的标签顺序是合理的？"

ACE05

"Given entity label set: [’Person’, ’Organization’, ’Location’, ’Facility’,
’Weapon’, ’Vehicle’, ’Geo-Political Entity’] \n We need to recognize
the corresponding named entities based on different labels. What is the
reasonable label order?"

Table 15: Instructions for asking ChatGPT to provide label orders.

7952

Syntactic prompting

给定实体标签集：[’地缘政治实体’, ’机构名称’, ’地名’, ’人名’]\n请基于给定的实体标签集，
识别给定文本中的命名实体。syntactic reasoning hint (front) \n文本：中国保险监管项目在京
启动\n

问题：文本中标签为’人名’的实体有哪些？请以如下JSON格式提供答案：[{’实体名称’: ’实
体标签’}]。如果没有对应实体，请返回如下空列表：[]。\n答案：{syntactic reasoning hint
(back)}

问题：文本中标签为’地名’的实体有哪些？请以如下JSON格式提供答案：[{’实体名称’: ’实
体标签’}]。如果没有对应实体，请返回如下空列表：[]。\n答案：{syntactic reasoning hint
(back)}

问题：文本中标签为’机构名称’的实体有哪些？请以如下JSON格式提供答案：[{’实体名称’:
’实体标签’}]。如果没有对应实体，请返回如下空列表：[]。\n答案：{syntactic reasoning
hint (back)}

问题：文本中标签为’地缘政治实体’的实体有哪些？请以如下JSON格式提供答案：[{’实体
名称’: ’实体标签’}]。如果没有对应实体，请返回如下空列表：[]。\n答案：{syntactic
reasoning hint (back)}

Syntactic reasoning hint (front)

Word segmentation
首先，你应该进行分词。接着，你应该基于分词结果识别
命名实体。

Noun phrases
首先，你应该识别名词。接着，你应该基于名词识别命名
实体。

POS tagging
首先，你应该进行词性标注。接着，你应该基于标注的词
性识别命名实体。

Constituency parsing
首先，你应该进行成分句法解析。接着，你应该基于成
分树识别命名实体。

Dependency parsing
首先，你应该进行依存句法解析。接着，你应该基于依
存树识别命名实体。

Syntactic reasoning hint (back)

Word segmentation
首先，让我们进行分词。接着，我们基于分词结果识别命
名实体。

Noun phrases
首先，让我们识别名词。接着，我们基于名词识别命名实
体。

POS tagging
首先，让我们进行词性标注。接着，我们基于标注的词性
识别命名实体。

Constituency parsing
首先，让我们进行成分句法解析。接着，我们基于成分树
识别命名实体。

Dependency parsing
首先，让我们进行依存句法解析。接着，我们基于依存树
识别命名实体。

Table 16: Syntactic prompting on Ontonotes 4.

7953

Tool augmentation + syntactic prompting

给定实体标签集：[’地缘政治实体’, ’机构名称’, ’地名’, ’人名’]\n{task instruction (involving
syntactic tool)}{syntactic reasoning hint (front)}\n文本：中国保险监管项目在京启动\n{syntactic
information from tool}

问题：文本中标签为’人名’的实体有哪些？请以如下JSON格式提供答案：[{’实体名称’:
’实体标签’}]。如果没有对应实体，请返回如下空列表：[]。\n答案：{syntactic reasoning hint
(back)}

(questions of each label) ...

{Task instruction (involving syntactic tool)}

Word segmentation 给定文本和对应的分词结果，请基于实体标签集识别文本中的
命名实体。

POS tagging 给定文本和对应的词性标注，请基于实体标签集识别文本中的
命名实体。

Constituency parsing 给定文本和对应的成分树，请基于实体标签集识别文本中的命
名实体。

Dependency parsing 给定文本和对应的依存树，请基于实体标签集识别文本中的命
名实体。

{Syntactic information from tool}

Word segmentation 分词：[’中国’, ’保险’, ’监管’, ’项目’, ’在’, ’京’, ’启动’]\n

POS tagging 词性标注：中国/NR保险/NN监管/NN项目/NN在/P京/NR启
动/VV\n

Constituency parsing 成分树：(TOP\n (IP\n (NP (NP (NR中国)) (NP (NN保险) (NN
监管) (NN项目)))\n (VP (PP (P在) (NP (NR京))) (VP (VV启
动)))))\n

Dependency parsing 依存树：[[’中国’, ’项目’, ’nn’], [’保险’, ’项目’, ’nn’], [’监管’,
’项目’, ’nn’], [’项目’, ’启动’, ’nsubj’], [’在’, ’启动’, ’prep’], [’京’,
’在’, ’pobj’], [’启动’, ’启动’, ’root’]]\n

{syntactic reasoning hint (front)}

Word segmentation 请基于给定的分词结果，从文本一步步推理出命名实体。

POS tagging 请基于给定的词性标注，从文本一步步推理出命名实体。

Constituency parsing 请基于给定的成分树，从文本一步步推理出命名实体。

Dependency parsing 请基于给定的依存树，从文本一步步推理出命名实体。

{syntactic reasoning hint (back)}

Word segmentation 让我们基于给定的分词结果，从文本一步步推理出命名实体。

POS tagging 让我们基于给定的词性标注，从文本一步步推理出命名实体。

Constituency parsing 让我们基于给定的成分树，从文本一步步推理出命名实体。

Dependency parsing 让我们基于给定的依存树，从文本一步步推理出命名实体。

Table 17: Tool augmentation w. / wo. syntactic prompting on Ontonotes 4. If using syntactic prompting, fill in
{syntactic reasoning hint}; If not, discard {syntactic reasoning hint}.

7954

Syntactic prompting

Given entity label set: [’Person’, ’Organization’, ’Location’, ’Facility’, ’Weapon’, ’Vehicle’,
’Geo-Political Entity’]\n{task instruction (involving syntactic tool)}{syntactic reasoning hint
(front)} \nText: Could Tony Blair be in line for a gold medal?\n{syntactic information from tool}",

Question: What are the named entities labeled as ’Person’ in the text? Provide the answer in the
following JSON format: [{’Entity Name’: ’Entity Label’}]. If there is no corresponding entity,
return the following empty list: []. \nAnswer: {syntactic reasoning hint (back)}

(questions of each label) ...

Syntactic reasoning hint (front)

Noun phrases First, you should recognize the noun phrases. Then, you should recognize
named entities based on the noun phrases.

POS tagging First, you should perform Part-of-Speech tagging. Then, you should recognize
named entities based on the Part-of-Speech tags.

Constituency
parsing

First, you should perform constituency parsing. Then, you should recognize
named entities based on the constituency tree.

Dependency
parsing

First, you should perform dependency parsing. Then, you should recognize
named entities based on the dependency tree.

Syntactic reasoning hint (back)

Noun phrases First, let’s recognize the noun phrases. Then, we recognize named entities
based on the noun phrases.

POS tagging First, let’s perform Part-of-Speech tagging. Then, we recognize named entities
based on the Part-of-Speech tags.

Constituency
parsing

First, let’s perform constituency parsing. Then, we recognize named entities
based on the constituency tree.

Dependency
parsing

First, let’s perform dependency parsing. Then, we recognize named entities
based on the dependency tree.

Table 18: Syntactic prompting on ACE05.

7955

Tool augmentation + syntactic prompting

Given entity label set: [’Person’, ’Organization’, ’Location’, ’Facility’, ’Weapon’, ’Vehicle’,
’Geo-Political Entity’]\n{task instruction (involving syntactic tool)}{syntactic reasoning hint
(front)} \nText: Could Tony Blair be in line for a gold medal?\n{syntactic information from tool}",

Question: What are the named entities labeled as ’Person’ in the text? Provide the answer in the
following JSON format: [{’Entity Name’: ’Entity Label’}]. If there is no corresponding entity,
return the following empty list: []. \nAnswer: {syntactic reasoning hint (back)}

(questions of each label) ...

{Task instruction (involving syntactic tool)}

POS tagging Given the text and the corresponding Part-of-Speech tags, please recognize the named
entities in the given text.

Constituency
parsing

Given the text and the corresponding constituency tree, please recognize the named
entities in the given text.

Dependency
parsing

Given the text and the corresponding dependency tree, please recognize the named
entities in the given text.

{Syntactic information from tool}

POS tagging Part-of-Speech tags: Could/JJ Tony/NN Blair/NN be/NN in/P line/NN for/P a/CD
gold/NN medal/NN ?/PU\n

Constituency
parsing

Constituency tree: (TOP\n (NP\n (NP\n (NP (ADJP (JJ Could)) (NP (NN Tony) (NN
Blair) (NP (NN be))))\n (PP (P in) (NP (NN line))))\n (PP (P for) (NP (QP (CD a))
(NP (NN gold) (NN medal))))\n

Dependency
parsing

Dependency tree: [[’Could’, ’be’, ’amod’], [’Tony’, ’be’, ’nn’], [’Blair’, ’be’, ’nn’],
[’be’, ’?’, ’root’], [’in’, ’be’, ’prep’], [’line’, ’in’, ’pobj’], [’for’, ’be’, ’prep’], [’a’,
’medal’, ’nummod’], [’gold’, ’medal’, ’nn’], [’medal’, ’for’, ’pobj’], [’?’, ’be’,
’punct’]]\n

{syntactic reasoning hint (front)}

POS tagging Please infer named entities step by step from the text based on the given Part-of-
Speech tags.

Constituency
parsing

Please infer named entities step by step from the text based on the given constituency
tree.

Dependency
parsing

Please infer named entities step by step from the text based on the given dependency
tree.

{syntactic reasoning hint (back)}

POS tagging Let’s infer named entities step by step from the text based on the given Part-of-Speech
tags.

Constituency
parsing

Let’s infer named entities step by step from the text based on the given constituency
tree.

Dependency
parsing

Let’s infer named entities step by step from the text based on the given dependency
tree.

Table 19: Tool augmentation w. / wo. syntactic promptings on ACE05. If using syntactic prompting, fill in {syntactic
reasoning hint}; If not, discard {syntactic reasoning hint}.

7956

