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Abstract

Entity and Relation Extraction (ERE) is an im-
portant task in information extraction. Recent
marker-based pipeline models achieve state-of-
the-art performance, but still suffer from the
error propagation issue. Also, most of current
ERE models do not take into account higher-
order interactions between multiple entities and
relations, while higher-order modeling could
be beneficial.In this work, we propose Hyper-
Graph neural network for ERE (HGERE), which
is built upon the PL-marker (a state-of-the-art
marker-based pipleline model). To alleviate
error propagation,we use a high-recall pruner
mechanism to transfer the burden of entity iden-
tification and labeling from the NER module to
the joint module of our model. For higher-order
modeling, we build a hypergraph, where nodes
are entities (provided by the span pruner) and
relations thereof, and hyperedges encode inter-
actions between two different relations or be-
tween a relation and its associated subject and
object entities. We then run a hypergraph neu-
ral network for higher-order inference by apply-
ing message passing over the built hypergraph.
Experiments on three widely used benchmarks
(ACE2004, ACE2005 and SciERC) for ERE
task show significant improvements over the
previous state-of-the-art PL-marker. 1

1 Introduction

Entity and Relation Extraction (ERE) is a funda-
mental task in information extraction (IE), compro-
mising two sub-tasks: Named Entity Recognition
(NER) and Relation Extraction (RE). There is a
long debate on joint vs. pipeline methods for ERE.
Pipeline decoding extracts entities first and pre-
dicts relations solely on pairs of extracted entities,
while joint decoding predicts entities and relations
simultaneously.

∗This work was done when Songlin was at ShanghaiTech.
†Corresponding Author

1Source code is availabel at https://github.com/
yanzhh/HGERE

Recently, the seminal work of (Zhong and Chen,
2021) shows that pipeline decoding with a frus-
tratingly simple marker-based encoding strategy —
i.e., inserting solid markers (Baldini Soares et al.,
2019; Xiao et al., 2020) around predicted subject
and object spans in the input text — achieves
state-of-the-art RE performance. Modified sen-
tences (with markers) are fed into powerful pre-
trained large language models (LLM) to obtain
more subject- and object-aware representations for
RE classification, which is the key to the perfor-
mance improvement. However, current marker-
based pipeline models (e.g., the recent state-of-the-
art ERE model PL-marker (Ye et al., 2022)) only
send predicted entities from the NER module to the
RE module, therefore missing entities would never
have the chance to be re-predicted, suffering from
the error propagation issue. On the other hand,
for joint decoding approaches (e.g. Table Filling
methods (Miwa and Sasaki, 2014; Zhang et al.,
2017; Wang and Lu, 2020))—though they do not
suffer from the error propagation issue—it is hard
to incorporate markers for leveraging LLMs, since
entities are not predicted prior to relations. Our de-
sire is to obtain the best of two worlds, being able to
use marker-based encoding mechanism for enhanc-
ing RE performance and meanwhile alleviating the
error propagation problem. We adopt PL-marker
as the backbone of our proposed model and a span
pruning strategy to mitigate error propagation. That
is, instead of sending only predicted entity spans to
the RE module, we over-predict candidate spans so
that the recall of gold entity spans is nearly perfect
(but there also could be many non-entity spans),
transferring the burden of entity classification and
labeling from the NER module to the RE module of
PL-marker. The number of over-predicted spans is
upper-bounded, balancing the computational com-
plexity of marker-based encoding and the recall of
gold entity span. Empirically, we find this simple
strategy by itself clearly improves PL-marker.
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We further incorporate a higher-order interac-
tion module into our model. Most previous ERE
models either implicitly model the interactions be-
tween instances by shared parameters (Wang and
Lu, 2020; Yan et al., 2021; Wang et al., 2021) or
use a traditional graph neural network that mod-
els pairwise connections between a relation and an
entity (Sun et al., 2019). It is difficult for these ap-
proaches to explicitly model higher-order relation-
ships among multi-instances, e.g. the dependency
among a relation and its corresponding subject and
object entities. Many recent works in structured
prediction tasks show that explicit higher-order
modeling is still beneficial even with powerful large
pretrained encoders (Zhang et al., 2020a; Li et al.,
2020; Yang and Tu, 2022; Zhou et al., 2022, inter
alia), motivating us to use an additional higher-
order module to enhance performance.

A common higher-order modeling approach is
by means of probabilistic modeling (i.e., condi-
tional random field (CRF)) with end-to-end Mean-
Field Variational Inference (MFVI), which can be
seamlessly integrated into neural networks as a re-
current neural network layer (Zheng et al., 2015a),
and has been widely used in various structured pre-
diction tasks, such as dependency parsing (Wang
et al., 2019), semantic role labeling (Li et al., 2020;
Zhou et al., 2022), and information extraction (Jia
et al., 2022). However, the limitations of CRF
modeling with MFVI are i): CRF’s potential func-
tions are parameterized in log-linear forms with
strong independence assumptions, suffering from
low model capacities (Qu et al., 2022), ii) MFVI
uses fully-factorized Bernoulli distributions to ap-
proximate the otherwise multimodal true posterior
distributions, oversimplifying the inference prob-
lem and thus is sub-optimal. Therefore we need
more expressive tools to improve the quality of
higher-order inference. Fortunately, there are many
recent works in the machine learning community
showing that graph neural networks (GNN) can be
used as an inference tool and outperform approxi-
mate statistical inference algorithms (e.g., MFVI)
(Yoon et al., 2018; Zhang et al., 2020b; Kuck et al.,
2020; Satorras and Welling, 2021) (see (Hua, 2022)
for a survey). Inspired by these works, we employ a
hypergraph neural network (HyperGNN) instead of
MFVI for high-order inference and propose our
model HGERE (HyperGraph Neural Network for
ERE). Concretely, we build a hypergraph where
nodes are candidate subjects and objects (obtained

from the span pruner) and relations thereof, and
hyperedges encode the interactions between either
two relations with shared entities or a relation and
its associated subject and object entity spans. In
contrast, existing GNN models for IE (Sun et al.,
2019; Nguyen et al., 2021) only model the pair-
wise interactions between a relation and one of its
corrsponding entity. We empirically show the ad-
vantages of our higher-order interaction module
(i.e., hypergraph neural network) over MFVI and
tranditional GNN models.

Our contribution is three-fold: i) We adopt a
simple and effective span pruning method to mit-
igate the error propagation issue, enforcing the
power of marker-based encoding. ii) We pro-
pose a novel hypergraph neural network enhanced
higher-order model, outperforming higher-order
CRF-based models with MFVI. iii) We show great
improvements over the prior state-of-the-art PL-
marker on three commonly used benchmarks for
ERE: ACE2004, ACE2005 and SciERC.

2 Background

2.1 Problem formulation

Given a sentence X with n tokens: x1, x2, ..., xn,
an entity span is a sequence of tokens labeled with
an entity type and a relation is an entity span pair
labeled with a relation type. We denote the set of
all entity spans of the sentence with a span length
limit L by S(X) = {s1, s2, ..., sm} and define
ST(i) and ED(i) as the start and end token indices
of the span si.

The joint ERE task is to simultaneously solve the
NER and RE tasks. Let Ce be the set of entity types
and Cr be the set of relation types. For each span
si ∈ S(X), the NER task is to predict an entity
type ye(si) ∈ Ce or ye(si) = null if the span si is
not an entity. The RE task is to predict a relation
type yr(rij) ∈ Cr or yr(rij) = null for each span
rij = (si, sj), si, sj ∈ S(X).

2.2 Packed levitated marker (PL-marker)

Zhong and Chen (2021) insert two pairs of solid
markers (i.e., [S] and [\S]) to highlight both the
subject and object entity spans in a given sentence,
and this simple approach achieves state-of-the-art
RE performance. We posit that this is because LLM
is more aware of the subject and object spans (with
markers) and thus can produce better span repre-
sentations to improve RE. But this strategy needs
to iterate over all possible entity span pairs and is
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Figure 1: Illustration of our framework

thus slow. To tackle the efficiency problem, Zhong
and Chen (2021) propose an approximated vari-
ant wherein each possible entity span is associated
with a pair of levitated markers (i.e., [O] and [\O])
whose representations are initialized with the posi-
tional embedding of the span’s start and end tokens,
and all such levitated markers are concatenated to
the end of the sentence. As such, levitated-marker-
based encoding needs only one pass, significantly
improving efficiency at the cost of slight perfor-
mance drop. Zhong and Chen (2021) also propose
a masked attention mechanism such that the origi-
nal input text tokens are not able to attend to mark-
ers, while markers can attend to paired markers
(but not unpaired markers) and all input text tokens.
As a consequence, the relative positions of levitated
markers in the concatenated sentence do not matter
at all, eliminating potential implausible inductive
bias on the concatenation order.

However, marker-base encoding is only used in
RE, not in NER. To leverage marker-based encod-
ing in the NER module for modeling span inter-
relations, PL-marker (Ye et al., 2022) associates
each possible span with two levitated markers and
concatenates all of them to the end of the input sen-
tence. However, this strategy could make the input
sentence extremely long since there are quadratic
number of spans. To solve this issue, PL-marker
clusters the markers based on the starting position
of their corresponding spans, and divides them into
N groups. Then the input sentence is duplicated
N times and each group of levitated markers is
concatenated to the end of one sentence copy. Ye
et al. (2022) refers to this strategy as neighborhood-

oriented packing scheme. Furthermore, to balance
the efficiency and the model expressiveness, Ye
et al. (2022) combine solid markers and levitated
markers, proposing Subject-oriented Packing for
Span Pair in the RE module. That is, if there are
m entities, they copy the sentence for m times, and
for each copy, they use solid markers to mark a
different entity as the subject and concatenate the
levitated markers of all other entities (as objects) at
the end of the sentence.

3 Method

Overview. Our method is built upon the state-of-
the-art PL-marker. We employ a high-recall span
pruner to obtain candidate entity spans, similar to
the NER module in PL-marker. However, instead
of aiming to accurately predict all possible entity
spans, our pruner focuses on removing unlikely
candidates to achieve a much higher recall. Then
we feed the candidate span set to the RE module
to obtain entity and relation representations, which
are used to initialize the node representations of
our hypergraph neural network for higher-order
inference with a message passing scheme. Finally,
we perform NER and RE based on the refined entity
and relation representations. Fig. 1 depicts the
neural architecture of our model.

3.1 Span Pruner

We adopt the neighborhood-oriented packing
scheme from PL-marker for span encoding, except
that we simply predict entity existence (i.e., binary
classification) instead of predicting entity labels
during the training phrase. See Appendix A.4 for
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details.
To produce a candidate span set, we rank all

the spans by their scores and take top K as our
prediction Sp(X). We assume that the number of
entity spans of a sentence is linear to its length n,
so K is set to λ · n where λ is a coefficient. For a
very long sentence, the number of entity spans is
often sublinear to n, while for a very short sentence,
we wish to keep enough candidate spans, so we
additionally set an upper and lower bound: K =
max(lmin,min(λ · n, lmax)).

In practice, with our span pruner, more than 99%
gold entity spans are included in the candidate set
for all three datasets. If we predict entities as in PL-
marker instead of pruning, only around 95% and
80% gold entities are kept in the predicted entities
for ACE2005 and SciERC respectively, leading to
severe error propagation (see §5.1 for an ablation
study).

The span pruner is trained independently from
the joint ERE model introduced in the next section.
This is because the joint ERE training loss will be
defined based on candidate entity spans produced
by the span pruner. When sharing parameters, the
pruner would provide a different candidate span
set during training, leading to moving targets and
thereby destabilizing the whole training process.

3.2 Joint ERE Model: First-order Backbone
The backbone module is based on the RE mod-
ule of PL-marker. Concretely, given an input sen-
tence X = {x1, x2, ..., xn} and a subject span
si = (xST(i), xED(i)) ∈ Sp(X) provided by the
span pruner, every entity span sj ∈ Sp(X), 1 ≤
j ≤ K, j ̸= i could be a candidate object span
of si. The module inserts a pair of solid markers
[S] and [\S] before and after the subject span and
assign every object span sj a pair of levitated mark-
ers [O]j and [\O]j . As shown below, the levitated
markers are packed together and inserted at the end
of the input sequence to a PLM:

x1, ..., [S], xST(i), ..., xED(i), [\S], ..., xn,
[O]1, ..., [O]K , [\O]1, ..., [\O]K

Then we obtain the contextualized hidden represen-
tation hx of the modified input sequence and the
final subject representation is:

hs(si) = FFNs([hx([S]);hx([\S])])
FFN represents a single linear layer in this work.
The object representation of sj for the current sub-
ject si and the representation of relation rij =

(si, sj) are:

hi
o(sj) = FFNo([hx([O]j);hx([\O]j)])

hr(rij) = FFNr([hs(si);h
i
o(sj)])

Repeating K times, we get all K subject repre-
sentations and K(K − 1) relation representations.
As the object representation of sj is not identical
for different subject span si, there are K object
representation sets hi

o, 1 ≤ i ≤ K. We apply a
max-pooling layer to obtain a unique object repre-
sentation for each object span sj ∈ Sp(X):

ho(sj) = Maxpooling1≤i≤K,i̸=j(h
i
o(sj))

3.3 Joint ERE Model: Higher-order Inference
with Hypergraph Neural Networks

Hypergraph Building So far, the representations
of the entities and relations from the backbone mod-
ule do not explicitly consider beneficial interactions
among related instances. To model higher-order
interactions among a relation and its associated sub-
ject and object entities as well as between any two
relations sharing an entity, we build a hypergraph
G = (V, E) to connect the related instances.The
nodes set V is composed of candidate subjects, ob-
jects (provided by the span pruner) and all possible
pairwise relations thereof, and we denote them as
Vs = {vis|i ∈ [1,K]}, Vo = {vjs|j ∈ [1,K]} and
Vr = {vijr |i, j ∈ [1,K], i ̸= j}.

Hyperedges E capture the interactions we are
concerned with, and they can be divided into two
categories: the subject-object-relation (sub-obj-rel)
hyperedges Esor and the relation-relation (rel-rel)
hyperedges Err. Each hyperedge eijsor ∈ Esor con-
nects a subject node vis, an object node vjo and the
corresponding relation node vijr , and we refer to
these hyperedges as ternary edges (ter for short).
Each rel-rel edge eijkrr ∈ Err connects two relation
nodes with a shared subject or object entity. We
assume in a relation, the subject is the parent node
and the object is the child node, and then we can
refine rel-rel edges into three subtypes, sibling (sib,
connecting vijr and vikr ) , co-parent (cop, connect-
ing vijr and vkjr ) and grand-parent (gp, connecting
vijr and vjkr ), following the common definitions in
the dependency parsing literature.

If we incorporate all aforementioned hyperedges
into the hypergraph, we obtain the tersibcopgp vari-
ant which is illustrated in Fig. 1. By removing
some types of hyperedges we can get different vari-
ants, but without loss of generality we describe
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the message passing scheme in the following using
tersibcopgp.

As such, we can define a CRF on the hyper-
graph and leverage probabilistic inference algo-
rithms such as MFVI for higher-order inference.
However, as discussed in §1, we can use a more ex-
pressive method to improve inference quality and
introduce a HyperGraph Neural Network (HGNN)
as described next.

Initial node representation For a relation node
vijr with its associated subject node vis and object
node vjo, we use gl(vijr ),gl(vis), g

l(vjo) to denote
their respective representation outputs from the l-
th HGNN layer. Initial node representations (be-
fore being fed to a HGNN) are g0(vis) = hs(si),
g0(vjo) = ho(sj) and g0(vijr ) = hr(rij), respec-
tively (from the backbone module).

Message representation A hyperedge connect-
ing to nodes serve as the bridge for message passing
between nodes connected by it. Let Ne(v) be the
set of hyperedges connecting to a node v.

For a ter hyperedge eijter ∈ Esor connecting a
subject node vis, a object node vjo and a relation
node vijr , the message representation it carries is:

hrlij = FFNter
r (gl−1(vijr ))

hsli = FFNter
s (gl−1(vis))

holj = FFNter
o (gl−1(vjo))

ml(eijter) = FFNter
e (hrlij ◦ hsli ◦ holj)

where ◦ is the Hadamard product.
A rel-rel edge eijkz ∈ Err, z ∈ {sib, cop, gp}

connects two relations sharing an entity. For sim-
plicity, we denote them relation a and b. If we fix
a as a ≜ vijr , then as previously described, relation
b is vikr for sib edge, vkjr for cop edge, and vjkr for
gp edge. The message eijkz carries is given by,

hl
z(a) = FFNz

a(g
l−1(a))

hl
z(b) = FFNz

b(g
l−1(b))

ml(eijkz ) = FFNz
e(h

l
z(a) ◦ hl

z(b))

Node representation update We aggregate mes-
sages for each node v ∈ V from adjacent edges
Ne(v) with an attention mechanism by taking a
learned weighted sum, and add the aggregated mes-
sage to the prior node representation,

βl(e, v) = w⊤σ(W[gl−1(v);ml(e)]

αl(e, v) =
expβl(e, v)∑

e′∈Ne(v)
expβl(e′, v)

gl(v) = gl−1(v) +
∑

e∈Ne(v)

αl(e, v)ml(e)

where σ(·) is a non-linear activator and w,W are
two trainable parameters. An entity node would
receive messages only from ter edges while a re-
lation node would receive messages from both ter
edges and rel-rel edges.

Training We obtain refined gl(v) from the final
layer of HGNN. Give an entity span si ∈ Sp(X),
we concatenate the corresponding subject represen-
tation gl(vis) and object representation gl(vio) to ob-
tain the entity representation, and compute the prob-
ability distribution over the types {Ce}

⋃{null}:

Pe(ŷe|si) = Softmax(FFNcls
e ([gl(vis);g

l(vio)]))

Given a relation rij = (si, sj), si, sj ∈ Sp(X), we
compute the probability distribution over the types
{Cr}

⋃{null}:

Pr(ŷr|rij) = Softmax(FFNcls
r (gl(vijr )))

We use the cross-entropy loss for both entity and
relation prediction:

Le = −
∑

si∈Sp(X)

log(Pe(y
∗
e(si)|si))

Lr = −
∑

si,sj∈Sp(X)

log(Pr((y
∗
r (rij)|rij))

where y∗e and y∗r are gold entity and relation types
respectively. The total loss is L = Le + Lr.

4 Experiment

Datasets We experiment on SciERC (Luan et al.,
2018), ACE2004 (Doddington et al., 2004) and
ACE2005 (Walker et al., 2006). We follow Ye
et al. (2022) to split ACE2004 into 5 folds and split
ACE2005 and SciERC into train/dev/test sets. See
Appendix A.1 for detailed dataset statistics.

Evaluation metrics We report micro labeled F1
measures for NER and RE. For RE, the difference
between Rel and Rel+ is that the former requires
correct prediction of subject and object entity spans
and the relation type between them, while the latter
additionally requires correct prediction of subject
and object entity types.

2Ye et al. (2022) count a symmetric relation twice for
evaluation which is inconsistent with previous work.
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Models Encoder ACE2005 ACE2004 SciERC

Ent Rel Rel+ Ent Rel Rel+ Ent Rel Rel+

(Wadden et al., 2019)⋆

BERTB /
SciBERT

88.6 63.4 - - - - 67.5 48.4 -
(Wang et al., 2021)⋆ 88.8 - 64.3 87.7 - 60.0 68.4 - 36.9
(Zhong and Chen, 2021)⋆ 90.1 67.7 64.8 89.2 63.9 60.1 68.9 50.1 36.8
(Yan et al., 2021) - - - - - - 66.8 - 38.4
(Shen et al., 2021)⋆ 87.6 66.5 62.8 - - - 70.2 52.4 -
(Nguyen et al., 2021) 88.9 68.9 - - - - - - -
(Ye et al., 2022)⋆re 89.1 68.3 65.1 88.5 66.3 62.2 68.8 51.1 38.3
Backbone⋆ 90.0 69.8 66.7 89.5 66.6 62.1 71.3 52.3 40.2
GCN⋆ 90.2 69.6 66.5 90.0 67.6 63.5 74.1 54.8 42.9
MFVI⋆ 90.2 69.7 67.1 89.7 67.4 63.4 73.3 54.7 42.5
HGERE⋆ (our model) 90.2 70.7 67.5 89.9 68.2 64.2 74.9 55.7 43.6

(Liu et al., 2022) T53B 91.3 72.7 70.5 - - - - - -

(Wang and Lu, 2020)

ALBERT

89.5 67.6 64.3 88.6 63.3 59.6 - - -
(Wang et al., 2021)⋆ 90.2 - 66.0 89.5 - 63.0 - - -
(Zhong and Chen, 2021)⋆ 90.9 69.4 67.0 90.3 66.1 62.2 - - -
(Yan et al., 2021) 89.0 - 66.8 89.3 - 62.5 - - -
(Ye et al., 2022)⋆re 91.3 72.5 70.5 90.5 69.3 66.1 - - -
Backbone⋆ 91.5 72.9 70.2 91.6 70.2 66.6 - - -
GCN⋆ 91.7 73.1 69.9 92.0 71.5 67.9 - - -
MFVI⋆ 91.6 72.7 70.1 89.9 68.5 65.1 - - -
HGERE⋆ (our model) 91.9 73.5 70.8 91.9 71.9 68.3 - - -

Table 1: F1 scores and standard deviations on ACE2004, ACE2005 and SciERC. The models marked with ⋆ leverage
cross-sentence information. A model with subscript re means we re-evaluate the model with the evaluation method
commonly used in other work2. Backbone, MFVI and GCN are our baseline models.

Baseline Our baseline models include: i) Back-
bone. It is described in Sect. 3.2 and does not
contain the higher-order interaction module. ii)
GCN. It has a similar architecture to Sun et al.
(2019); Nguyen et al. (2021) and does not contain
higher-order hyperedges. See Appendix A.6 for a
detailed description. iii) MFVI. It defines a CRF
on the same hypergraph as our model and uses
MFVI instead of hypergraph neural networks for
higher-order inference. See Appendix A.5 for a
detailed description.

Implementation details For a fair compari-
son with previous work, we use bert-base-
uncased(Devlin et al., 2019) and albert-xxlarge-
v1(Lan et al., 2020) as the base encoders for
ACE2004 and ACE2005, scibert-scivocab-uncased
(Beltagy et al., 2019) as the base encoder for Sci-
ERC. GCN and MFVI are also built upon Back-
bone. The implementation details of experiments
are in Appendix A.3.

Main results For HGERE, we report the best
results among the following variants of hyper-
graphs with different types of hyperedges: ter, cop,
sib, gp, tersib, tercop, tergp, tersibcop, tersibgp,
tercopgp, and tersibcopgp. The best variants of
HGERE are tersibcop on SciERC and ACE2005
(BERTB); tersib on ACE2005 (ALBERT); tercop

on ACE2004. For MFVI we use the same variants
as used in HGERE.

Table 1 shows the main results. Surprisingly,
Backbone outperforms prior approaches in almost
all metrics by a large margin (except on ACE2004
with BERTB and ACE2005 with ALBERT), which
we attribute to the reduction of error propagation
with a span pruning mechanism. Our proposed
model HGERE outperforms almost all baselines in
all metrics (except the entity metric on ACE2004),
validating that using hyperedges to encode higher-
order interactions is effective (compared with GCN)
and that using hypergraph neural networks for
higher-order modeling and inference is better than
CRF-based probabilistic modeling with MFVI. Fi-
nally, we remark that HGERE obtains state-of-the-art
performances on all the three datasets.

5 Analysis

5.1 Effectiveness of the span pruner
To study the effectiveness of the span pruner, we
replace it with an entity identifier which is the orig-
inal NER module from PL-marker and is trained
only on entity existence. The performance of the
span pruner and the entity identifier (denoted by
Eid) on entity existence is shown in Table 2. We
can observe that if we replace the span pruner with
the entity identifier, the recall of gold unlabeled
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SciERC ACE2005 (BERTB)

P R F1 P R F1

Eid
train 98.8 98.2 98.5 100.0 99.9 99.9
dev 81.0 81.6 81.3 94.7 94.6 94.7
test 80.4 78.7 79.5 95.6 95.8 95.7

Pruner
train 38.0 99.2 54.9 37.2 99.9 54.2
dev 38.1 99.1 55.0 36.4 99.7 53.3
test 38.7 99.2 55.7 37.0 99.8 54.0

Table 2: Evaluation results on entity existence of the
span pruner vs. an entity identifier.

SciERC Ent Rel Rel+

Eid
Backbone 69.4 50.3 39.0
HGERE 69.4 51.5 39.5

pruner
Backbone 71.3 52.3 40.2
HGERE 74.9 55.7 43.6

ACE2005 (BERTB) Ent Rel Rel+

Eid
Backbone 89.5 68.3 65.3
HGERE 89.5 68.5 66.0

pruner
Backbone 90.0 69.8 66.7
HGERE 90.2 70.7 67.5

Table 3: F1 scores of Backbone and HGERE with and
without a pre-trained span pruner on the SciERC and
ACE2005 (BERTB) test set.

entity spans drops from 99.2 to 78.7 on the Sci-
ERC test set, and drops from 99.8 to 95.8 on the
ACE2005 test set. We further investigate how the
choice of the span pruner vs. the entity identifier
influences NER and RE performances. The results
are shown in Table 3. We can see that without a
span pruner, both NER and RE performances drop
significantly, validating the usefulness of using a
span pruner. Moreover, it has a consequent influ-
ence on the higher-order inference module (i.e.,
HGNN). Without a span pruner, the improvement
from using a HGNN over Backbone is marginal
compared to that with a span pruner. We posit that
without a pruner many gold entity spans could not
exist in the hypergraph of HGNNs, making true en-
tities and relations less connected in the hypergraph
and thus diminishing the usefulness of HGNNs.

5.2 Effect of the choices of hyperedges

We compare different variants of HGNN with dif-
ferent combinations of hyperedges. Note that if
ter is not used, entity nodes do not have any hyper-
edges connecting to them, so their representations
would not be refined. We can see that in the sib

HGERE
SciERC

Ent Rel Rel+

Backbone 71.3 52.3 40.2
ter 74.2 55.1 42.6
sib 71.7 54.3 41.7
cop 71.7 52.9 40.8
gp 71.3 51.9 40.1
tersib 74.7 55.9 43.3
tercop 74.7 55.7 43.6
tergp 74.5 54.9 42.4
tersibcop 74.9 55.7 43.6
tersibgp 74.2 54.1 41.8
tercopgp 74.7 54.0 42.3
tersibcopgp 74.3 54.6 41.7

Table 4: F1 scores of HGERE with different graph topolo-
gies on the SciERC test set.

and cop variants, the NER performance improves
slightly, which we attribute to the shared encoder
of NER and RE tasks 3. On the other hand, in
the ter variant, entity node representations are it-
eratively refined, resulting in significantly better
NER performance than Backbone (74.2 vs. 71.3).
Combining ter edges with other rel-rel edges (e.g.,
sib) is generally better than using ter alone in terms
of NER performance, suggesting that joint (and
higher-order) modeling of NER and RE indeed has
a positive influence on NER, while prior pipeline
approaches (e.g., PL-marker) cannot enjoy the ben-
efit of such joint modeling.

For RE, sib and cop have positive effects on
the performance (despite gp having a negative ef-
fect somehow), showing the advantage of modeling
interactions between two different relations. Fur-
ther combining them with ter improves RE perfor-
mances in all cases, indicating that NER also has
a positive effect on RE and confirming again the
advantage of joint modeling of NER and RE.

5.3 Inference speed of higher-order module
To analyze the computing cost of our higher-order
module, we present the inference speed of HGERE
with three baseline models Backbone, GCN and
MFVI on the test sets of SciERC and ACE2005.
Inference speed is measured by the number of
candidate entities processed per second. The re-
sults are shown in Table 5. We can observe that

3Though Zhong and Chen (2021) argue that using shared
encoders would suffer from the feature confusion problem,
later works show that shared encoders can still outperform
separated encoders (Yan et al., 2021, 2022).
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when utilizing a relatively smaller PLM, HGERE,
GCN and MFVI were slightly slower than the first-
order model Backbone. However, the difference
in speed between HGERE and the other models was
relatively small. When using ALBERT, which is
much slower than BERTB , all four models demon-
strated comparable inference speeds.

SciERC ACE2005
SciBERT BERTB ALBERT

Backbone 19.4 38.0 6.1
GCN 15.7 33.8 6.3
MFVI 16.5 36.9 6.1
HGERE 15.7 30.7 6.0

Table 5: Comparison of inference speed (#entities/sec)
between HGERE and three baseline models on test sets
of SciERC and ACE2005.

5.4 Error correction analysis
We provide quantitative error correction analy-
sis between our higher-order approach HGERE and
the first-order baseline Backbone on the SciERC
dataset in Fig. 2. We can see that most error cor-
rections of entities and relations made by HGERE
come from two categories. The first category is
where Backbone incorrectly predicts a true entity
or relation as null, and the second category is where
Backbone incorrectly assigns a label to a null sam-
ple.

6 Related Work

Entity and relation extraction The entity and
relation extraction task has been studied for a long
time. The mainstream methods could be divided
into pipeline and joint approaches. Pipeline meth-
ods tackle the two subtasks, named entity recogni-
tion and relation extraction, consecutively (Zelenko
et al., 2003; Chan and Roth, 2011; Zhong and Chen,
2021; Ye et al., 2022). By utilizing a new marker-
based embedding method, Ye et al. (2022) becomes
the new state-of-the-art ERE model. However,
pipeline models have the inherent error propagation
problem and they could not fully leverage interac-
tions across the two subtasks. Joint approaches, on
the other hand, can alleviate the problem by simul-
taneously tackling the two subtasks, as empirically
revealed by Yan et al. (2022). Various joint ap-
proaches have been proposed to tackle ERE. Miwa
and Bansal (2016); Katiyar and Cardie (2017) use
a stacked model for joint learning through shared
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Figure 2: Error correction of entity and relation types
on the SciERC dataset. Red color indicates positive
corrections and blue color indicates negative correc-
tions. Specifically, positive numbers on the diagonal
of the matrix (in red color) indicate that HGERE makes
more correct predictions compare to Backbone; nega-
tive numbers on non-diagonal entries (in red color) indi-
cate that HGERE makes fewer wrong predictions compare
to Backbone. Numbers in blue indicate the opposite.
We do not count the null-null case.

parameters. Miwa and Sasaki (2014); Gupta et al.
(2016); Wang and Lu (2020); Wang et al. (2021);
Yan et al. (2021) tackle both the NER and RE tasks
as tagging entries of a table. Fu et al. (2019); Sun
et al. (2019) leverage a graph convolutional net-
work (GCN) on an instance dependency graph to
enhance instance representations. (Nguyen et al.,
2021) propose a framework to tackle multiple Infor-
mation Extraction tasks jointly including the ERE
task where a GCN is used to capture the interac-
tions between related instances.

Another line of research is based on text-to-text
models for structure prediction including ERE. Nor-
mally they are not task-specialized and could solve
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several structure prediction tasks in a unified way
(Paolini et al., 2021; Lu et al., 2022; Liu et al.,
2022).

This work is similar to Sun et al. (2019); Nguyen
et al. (2021) for we both use a graph neural net-
work to enhance the instance representations. The
main difference is that the GCN they use cannot
adequately model higher-order relationship among
multiple instances, while our hypergraph neural
network is designed for higher-order modeling.

CRF-based higher-order model A commonly
used higher-order model utilizes approximate infer-
ence algorithms (mean-field variational inference
or loopy belief propagation) on CRFs. Zheng et al.
(2015b) formulate the mean-field variational infer-
ence algorithm on CRFs as a stack of recurrent neu-
ral network layers, leading to an end-to-end model
for training and inference. Many higher-order mod-
els employ this technique for various NLP tasks,
such as semantic parsing (Wang et al., 2019; Wang
and Tu, 2020) and information extraction (Jia et al.,
2022).

Hypergraph neural network Hypergraph neu-
ral network (HyperGNN) is another way to con-
struct an higher-order model. Traditional Graph
Neural Networks employ pairwise connections
among nodes, whereas HyperGNNs use a hyper-
graph structure for data modeling. Feng et al.
(2019) and Bai et al. (2021) proposed spectral-
based HyperGNNs utilizing the normalized hyper-
graph Laplacian. Arya et al. (2020) is a spatial-
based HyperGNN which aggregates messages in
a two-stage procedure. Huang and Yang (2021)
proposed UniGNN, a unified framework for inter-
preting the message passing process in HyperGNN.
Gao et al. (2023) introduced a general high-order
multi-modal data correlation modeling framework
to learn an optimal representation in a single hyper-
graph based framework.

7 Conclusion

In this paper, we present HGERE, a joint entity and
relation extraction model equipped with a span
pruning mechanism and a higher-order interaction
module (i.e., HGNN). We found that simply using
the span pruning mechanism by itself greatly im-
prove the performance over prior state-of-the-art
PL-marker, indicating the existence of the error
propagation problem for pipeline methods. We
compared our model with prior tranditional GNN-

based models which do not contain hyperedges
connecting multiple instances and showed the im-
provement, suggesting that modeling higher-order
interactions between multiple instances is benefi-
cial. Finally, we compared our model with the most
popular higher-order CRF models with MFVI and
showed the advantages of HGNN in higher-order
modeling.

Limitations

Our model achieves a significant improvement in
most cases (on ACE2004, SciERC datasets and
on ACE2005 with Bertbase). While on ACE2005
with stronger encoder (e.g., ALBERT) we observe
less siginificant improvements. We posit that, with
powerful encoders, the recall of gold entity spans
would increase, thereby mitigating the error propa-
gation issue and diminishing the benefit of using a
span pruning mechanism.

Another concern regarding our model is com-
putational efficiency. The time complexity of the
Subject-oriented Packing for Span Pair encoding
scheme from PL-marker grows linearly with the
size of candidate span size. Recall that we over-
predict many spans using a span pruning mech-
anism, which slows down the running time. In
practice, our model’s running time is around as
three times as that of PL-marker.
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A Appendix

A.1 Datasets
We use ACE2004, ACE2005 and SciERC datasets
in our experiments, the data statistics of each
dataset is shown in Table 6.

#sent #entity #relation

ACE2004 8683 22735 4087
ACE2005 14525 38287 7070
SciERC 2687 8094 4648

Table 6: The statistic of datasets

A.2 Bidirectional prediction of RE
Following previous work (Eberts and Ulges, 2020;
Ye et al., 2022), we establish an inverse relation for
each asymmetric relation for a bidirectional predic-
tion. The model can learn the inverse relations of
asymmetric relations and improve the performance
in this way.

A.3 Implementation details
We adopt the same cross-sentence information
incorporating method used in (Zhong and Chen,
2021; Ye et al., 2022) which extend the original
sentence to a fixed window size W with its left and
right context. We set W = 512 for SciERC, W =
384 for ACE2004 and W = 256 for ACE2005. For
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the pruner training and inference, we consider the
span length limitation L of 12 for SciERC and 8
for ACE2004 and ACE2005. For pruners of any
datasets and PLMs, the top-K ratio λ = 0.5, the
boundaries of K are lmin = 3, lmax = 18. We use
three hypergraph convolution layers for GCN, MFVI
and HGERE. As the entity recall is high enough,
pruners use on ACE2004 and ACE2005 are only
trained with BERTB . For all experiments, we run
each configuration with 5 different seeds and report
the average micro-F1 scores and standard devia-
tion.

For the pruner, the output sizes of
FFNST,FFNED and FFNq are dm = 768,
the bi-affine embedding size dbiaf = 256, the
output size of FFNattn is 256.

For the backbone module, the output
sizes of FFNs,FFNo and FFNr are tuned on
[400, 512, 768] for all datasets.

For the hypergraph neural network, the output
sizes of FFNter

r ,FFNter
s ,FFNter

o ,FFNz
a,FFNz

b are
tuned among [256, 400, 512] and fixed on 400 for
all experiments on SciERC. The output sizes of
FFNter

e ,FFNz
e are tune on [256, 400, 512, 768] for

all experiments. For GCN, MFVI and HGERE, we all
use three layers to refine the node representations.
We train our models with Adam optimizer and a
liner scheduler with warmup ratio of 0.1. We tune
the eps of Adam optimizer on [1e− 8, 1e− 9] for
ACE2005, and eps=1e− 8 for other datasets. The
batch size of all experiments are 18. The learning
rate of PLM are 2e− 5, for other module the learn-
ing rate is tune on [5e − 5, 1e − 4]. The epochs
on SciERC for Backbone are 20, and 30 for other
models. The epochs on ACE2004 and ACE2005
(BERTB) are 15, on ACE2004 and ACE2005 (AL-
BERT) are 10. We do all experiments on a A40
GPU with apex fp16 training option on.

A.4 Details of the span pruner

We obtain contextualized representations of the
tokens x and levitated marker representations xs
(for [O]) and xe (for [\O]) . Then we concate-
nate two kinds of span representations—bi-affine
(Dozat and Manning, 2016) and attentive pooling—
as the final one. For a span si consisting of tokens
xST(i), ..., xED(i), its bi-affine span representation

is a dbiaf-dimension vector,

hST(si) = FFNST(xST(i);xs(i))

hED(si) = FFNED(xED(i);xe(i))

hbiaf(si) = [hST(si); 1]
⊤Wp[hED(si); 1]

the symbol ; is the concatenation operation, FFNST
and FFNED are feed-forward layers with an out-
put size dm and Wp ∈ R(dm+1)∗dbiaf∗(dm+1) is a
learn-able weight. The attentive pooling layer is
a weighted average over the contextualize token
representations in the span,

wj = FFNq(xj);wj =
expwj∑

ST(i)≤l≤ED(i) expwl

hattn(si) =
∑

ST(i)≤j≤ED(i)

wjxj

and the final span representation is,

h(si) = FFNattn[hbiaf(si);hattn(si)]

Training and Inference Given the gold binary
tag y(si) ∈ {0, 1} (indicating the existence of a
candidate span in the gold span set), we train the
span pruner with the binary cross-entropy (BCE)
loss:

ŷ(si) = Sigmoid(FFN(h(si)))

L = −
∑

1≤i≤m

[y(si) log ŷ(si)

+ (1− y(si))(1− log ŷ(si)]

A.5 Mean-field Variant Inference

Here we introduce the method used in baseline
MFVI. The hyperedges in our graph are replaced
by factors in MFVI, so there are also four kinds of
factors: ter, sib, cop, gp.

first-order scores We use the node representa-
tions to score the entities and relations for each
label (include the null).

us
i = FFNu

s (g(v
i
s))

uo
j = FFNu

o (g(v
j
o))

ur
ij = FFNu

r (g(v
ij
r ))

us,uo ∈ R|Ce|+1, ur ∈ R|Cr|+1.
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Higher-order scores Each factor scores the joint
distribution of the node types connected to it. For a
ter factor connects a subject vis, an object vjo and a
relation vijr , the factor score f terij ∈ R|Ce+1|2|Cr+1|

is:

hs
i = FFNter

s (g(vis))

ho
j = FFNter

o (g(vjo))

hr
ij = FFNter

r (g(vijr ))

f terij = FFNter
f (hs

i ◦ ho
j ◦ hr

ij)

For a factor z, z ∈ {sib, cop, gp}which connects
two relations, we name them relation a and b for
simplicity. If relation a is vijr , then relation b is
vikr , vkjr and vjkr for sib, cop and gp respectively.
We use g(a),g(b) to refer to the relation repre-
sentations of relations a and b. The factor score
fzijk ∈ R|Cr+1|2 is defined as:

ha = FFNter
s (g(a))

hb = FFNter
o (g(b))

fzijk = FFNter
f (ha ◦ hb)

higher-order inference In the model, com-
puting the node distribution can be seen as
doing posterior inference on a Conditional
Random Field (CRF). MFVI iteratively updates
a factorized variational distribution Q to approx-
imate the posterior label distribution. We use
Qsi(e1), Qoj (e2) to refer to the probability of
subject vis and object vjo has entity type e1 and e2
respectively and Qrij (r) represents the relation
vijr has the relation type r. For simplicity, we use
usi (e1), u

o
j(e2), u

r
ij(r1), f

ter
ij (e1, e2, r1), f

z
ijk(r1, r2)

to represent the first-order and higher-order scores
when the subject vis, the object vjo have entity
type e1, e2, the relation a (vijr ), the relation b have
relation types r1, r2 respectively. Following is the
iterately updating of the distribution Qs, Qo, Qr.
For a subject vis. The message only passed from
ter factor in the l-th iteration is:

F l
si(e1) =∑

j

∑

e2

Ql−1
oj (e2)(

∑

l1

Ql−1
rij (r1)f

ter
ij (e1, e2, r1))

similarly, the message passed from ter factor to the
object vjo is:

F l
oj (e2) =∑

i

∑

e1

Ql−1
si (e1)(

∑

l1

Ql−1
rij (r1)f

ter
ij (e1, e2, r1))

For a relation vijr , the message could be passed
from four factors, we list them by the source. From
ter factor:

T l
rij (r1) =∑

e1

∑

e2

Ql−1
si (e1)Q

l−1
oj (e2)f

ter
ij (e1, e2, r1)

From sib factor:

Sl
rij (r1) =∑

k

∑

r2

Ql−1
rik

(r2)(f
sib
ijk(r1, r2) + fsib

ikj(r2, r1))

From the cop factor:

C l
rij (r1) =∑

k

∑

r2

Ql−1
rkj

(r2)(f
cop
ijk (r1, r2) + f cop

kji (r2, r1))

From the gp factor:

Gl
rij (r1) =∑

k

∑

r2

(Ql−1
rjk

(r2)f
gp
ijk(r1, r2)

+Ql−1
rki

(r2)f
gp
kij(r2, r1))

The posterior distribution of entity ei with respect
to the subject si and object oi :

Ql
si(e) ∝ exp(usi (e) + F l

si(e))

Ql
oj (e) ∝ exp(uoj(e) + F l

oj (e))

Then the entity distribution is : Ql
si +Ql

oi
We initial the Q of subject vsi , object voj , the

relation vrij by normalizing the unary potential
exp(usi ), exp(u

o
j), exp(u

r
ij) respectively. The pos-

terior distribution of the relation rij is:

Ql
rij (r) ∝ exp(urij(r) + 1terT

l
rij (r)

1sibS
l
rij (r) + 1copC

l
rij (r) + 1gpG

l
rij (r))

The symbol 1z, z ∈ {ter, sib, cop, gp} indicates
whether the factor z exists in the graph.

A.6 GCN
Here is the introduction of the baseline GCN. As
in HGERE, we also build the graph G = (V, E)
with subject, object and relation nodes, V =
Vs

⋃Vo
⋃Vr. For each relation node vijr ∈ Vr,

we build two edges connecting its subject node
vis ∈ Vs and object node vjo ∈ Vo respectively. the
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Figure 3: Illustration of an example graph of GCN

model use l convolution layers to update the node
representations. We define the neighbor set N (v)
of a node v is the nodes connected to it. The node
representation update of l-th layer is as follow:

βl(v1, v) = w⊤σ(W[gl−1(v1);m
l−1(v)]

αl(v1, v) =
expβl(v1, v)∑

v1∈N(v)
expβl(v1, v)

gl(v) = gl−1(v) +
∑

v1∈N (v)

α(v1, v)g
l−1(v1)

A.7 Performance with part of the training
data

ratio model
ACE2005 (BERTB)
Ent Rel Rel+

5%
Backbone 80.4 39.7 36.0
HGERE 79.5 42.0 38.1

10%
Backbone 83.9 51.3 47.2
HGERE 84.2 53.3 49.4

100%
Backbone 90.0 69.8 66.7
HGERE 90.2 70.1 67.3

Table 7: F1 score of HGERE on ACE2005 test set when
only provide 5% and 10% training samples.

From the main results, we can see that the HGERE
shows a significantly greater improvement in per-
formance compared to the Backbone model on the
SciERC dataset than on the ACE2005 dataset. We
guess one of the reason is the size of the train-
ing data. Because with more training data, models
could learn enough knowledge from a large number
of samples and reduce the demand of higher-order
information. So we compare HGERE to Backbone
with 5% and 10% of training data on the ACE2005
(BERTB) to see if higher-order inference is more
effectiveness with small training data. From the

SciERC
Ent Rel Rel+

max 74.0 54.7 41.4
sum 73.6 54.5 41.5
attn 74.9 55.7 43.6

Table 8: F1 scores of HGERE (the tersibcop variant) with
different aggregation functions on the SciERC test set.

results shown in Table 7 we can see that the incre-
ments of absolute F1 score on Rel+ metric from
Backbone to HGERE are 2.1%, 2.2% on 5% and 10%
of training set respectively, which are much higher
than 0.6% on full training set.

A.8 Effect of the number of HGNN layers
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Figure 4: The change of F1 scores with respect to the
number of HGNN layers .

From Fig.4 we can see that using three HGNN
layers performs the best while more layers lead to
worse results. We posit that this is because using
more HGNN layers would suffer from the well-
known over-smoothing problem (Cai and Wang,
2020).

A.9 Effect of the aggregation function in
message passing

We study the influence of using different message
aggregation functions. HGERE uses an attention
mechanism (attn) to update node representations
while it is also possible to use max-pooling (max)
or sum-pooling (sum). Table 8 shows that attn
performs the best.
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