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Abstract

The automatic Brain CT reports generation can
improve the efficiency and accuracy of diagnos-
ing cranial diseases. However, current methods
are limited by 1) coarse-grained supervision:
the training data in image-text format lacks de-
tailed supervision for recognizing subtle abnor-
malities, and 2) coupled cross-modal alignment:
visual-textual alignment may be inevitably cou-
pled in a coarse-grained manner, resulting in
tangled feature representation for report gener-
ation. In this paper, we propose a novel Patho-
logical Graph-driven Cross-modal Alignment
(PGCA) model for accurate and robust Brain
CT report generation. Our approach effectively
decouples the cross-modal alignment by con-
structing a Pathological Graph to learn fine-
grained visual cues and align them with textual
words. This graph comprises heterogeneous
nodes representing essential pathological at-
tributes (i.e., tissue and lesion) connected by
intra- and inter-attribute edges with prior do-
main knowledge. Through carefully designed
graph embedding and updating modules, our
model refines the visual features of subtle tis-
sues and lesions and aligns them with textual
words using contrastive learning. Extensive
experimental results confirm the viability of
our method. We believe that our PGCA model
holds the potential to greatly enhance the auto-
matic generation of Brain CT reports and ulti-
mately contribute to improved cranial disease
diagnosis.

1 Introduction

Writing diagnostic reports for Brain CT imaging
with multiple scans is widely applied in medicine,
to summarize the findings of cranial diseases.
Nonetheless, this traditional clinical practice could
be time-consuming and error-prone for radiologists
due to some subjective factors (e.g. fatigue and
distraction) (Brady et al., 2012). A computer-aided
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Figure 1: An example of the pathological graph. Patho-
logical elements (nodes) are summarized from reports as
tissue attribute and lesion attribute, which are connected
as the tissue graph, lesion graph, and tissue-lesion graph
with prior relations (edges). These three sub-graphs
compose the fine-grained pathological graph.

reporting system aims to automatically generate ac-
curate reports, which has the potential to lighten the
workload of physicians and economize insufficient
clinical resources in populated areas.

With the advent of deep neural networks in im-
age captioning (Vinyals et al., 2015; Anderson
et al., 2018), medical report generation (MRG)
methods are increasingly ramping up (Jing et al.,
2018; Wang et al., 2018; Li et al., 2019; Yang
et al., 2021; Yan et al., 2021; Chen et al., 2021;
Song et al., 2022; Qin and Song, 2022; Yang et al.,
2023; Li et al., 2023). Different from image cap-
tioning, MRG task focuses on subtle yet crucial
medical terminologies, with the report length typi-
cally 4-6 times longer than those of nature object
captions. This prompts MRG models to refine the
dedicated consistency of salient pathological fea-
tures between visual and textual modalities. To
achieve this, recent studies have employed vari-
ous cross-modal alignment mechanisms (Liu et al.,
2021; Wang et al., 2022; Li et al., 2023), leveraging
specific knowledge to effectively improve report
generation.
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Despite the promising achievements, previous
methods are still thwarted by the following two
concerns. 1) Coarse-grained supervision: In clini-
cal practice, brain findings are often characterized
by some subtle yet vital pathological elements that
belong to different attributes (i.e. tissues and le-
sions)(Griffin et al., 2002), see Figure 1. However,
medical images and long reports are always treated
as coarse-grained supervisory signals in the main-
stream methods. Although few recent studies have
explored the learning of fine-grained signals (Liu
et al., 2021; Wang et al., 2022) in chest X-ray
samples, it is unsuitable for Brain CT which en-
compasses more sophisticated pathology patterns.
Thus, how to leverage the intrinsic fine-grained
cranial knowledge to recognize subtle abnormali-
ties remains an open question. 2) Coupled cross-
modal alignment: Current cross-modal alignment
methods in MRG inevitably tend to couple visual-
textual representation during coarse-grained align-
ment, which is manifested as highly-similar atten-
tion maps (Yang et al., 2021) or tangled semantic
representations in instance-level contrastive learn-
ing (Yan et al., 2021), resulting in inadequate fea-
ture learning.

In this work, we propose a novel Pathologi-
cal Graph-driven Cross-modal Alignment model,
named PGCA, which introduces a detailed Patho-
logical Graph (PG) to seamlessly capture domain
knowledge in samples, and explicitly extract fine-
grained semantic correspondence between visual
regions and diagnostic texts for accurate Brain CT
report generation. Specifically, the PG contains
heterogeneous nodes of tissue and lesion attributes,
which are connected by edges with prior knowl-
edge. As shown in Figure 1, we decompose PG
into two fixed Tissue Graph and Lesion Graph
with intra-attribute knowledge (relations in each
attribute), and one dynamic Tissue-Lesion Graph
with inter-attribute knowledge (correspondences
between two attributes for each case). Then, we
respectively incorporate Tissue and Lesion Graphs
into an attribute-oriented graph convolution net-
work for dedicated node features learning, which
is jointly updated via an Intra-Attribute Classifica-
tion (IAC) loss module. While the Tissue-Lesion
graph is updated via an Inter-Correlation Align-
ment (ICA) loss module, which facilitates learning
the complex tissue-lesion connections, in turn, ben-
efits node feature representation. Finally, a cross-
modal Contrastive Learning (CL) module is pro-

posed to reconcile the learned visual features with
their corresponding word embeddings in the report,
to further boost the visual encoder and textual de-
coder in report generation.

In sum, our main contributions contain:

1. We propose a novel framework to seam-
lessly capture detailed domain knowledge
from Pathological Graph, and explicitly align
fine-grained visual and textual features of
pathology, which improves the encoder and
decoder of Brain CT report generation by shar-
ing feature learning layers.

2. We, for the first time, introduce the idea of de-
coupling cranial tissues and lesions via Patho-
logical Graph into the medical report genera-
tion area, which is capable of handling fine-
grained alignment between long-text report
and multiple scans.

3. We comprehensively validate our model on
the BCT-CHR dataset. The experimental re-
sults indicate that our method surpasses previ-
ous arts in medical report generation.

2 Related Work

2.1 Medical Report Generation With
Knowledge Graph

To mimic the expert knowledge of radiologists, the
using of Knowledge Graph (KG) can endow the
MRG model with better capabilities of abnormal
recognition and has gained increasing research in-
terest, which can be summarized into three types.
The first type focuses on stressing clinical termi-
nologies (e.g. abnormalities and diseases). Li et al.
(2019) extracts a set of chest medical terminolo-
gies from the MIMIC-CXR dataset, which are re-
garded as graph nodes. The edges linking nodes
are assigned with attention weights to depict latent
relations, which may be affected by error-updated
cases. The second type is to build a universal graph
that contains lesion nodes with stable edges ac-
quired by prior knowledge (Zhang et al., 2020; Liu
et al., 2021). Such relationships are stored in the
adjacency matrix and learned by graph convolution
networks. As an extension of this graph, Li et al.
(2023) proposes to dynamically add characterized
nodes for each sample, but still limits to represent
another detailed attribute, i.e. pathological tissues.
The last type utilizes NLP-rule based methods to
extract detailed triplets from the training corpus
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and build a clinical graph (Li et al., 2022). The
sample-related triplets are restored to learn specific
knowledge, though the triplets may be wrong ex-
tracted.

Our pathological graph seamlessly combines the
advantages of the last two types. We first separately
construct two fixed tissue and lesion graphs as the
way in the second type for dedicated pathology
representing, and then extract structured triplets for
each case to depict fine-grained relations between
paired attributes.

2.2 Cross-modal Feature Alignment

Learning medical semantics across visual and tex-
tual modalities is essential for MRG model to gen-
erate logical and accurate reports. Thus, the cross-
modal feature alignment has attracted growing in-
terest in recent studies, which can be roughly di-
vided into three stages. In the early stage, vari-
ous attention mechanisms (Jing et al., 2018; Wang
et al., 2018; Xue et al., 2018; Yang et al., 2021)
are adopted to extract abnormal visual features and
guide the generation of diagnostic texts. However,
the attention map updated by naive cross-entropy
loss could not sufficiently represent the complex
cross-modal patterns. For the second stage, Chen
et al. (2021) introduces the memory vector to re-
store multi-modal relations, which is further ex-
tended with reinforcement learning (Qin and Song,
2022) and class-related prototypes (Wang et al.,
2022). Since the visual and textual features across
different samples are highly similar, it is still chal-
lenging to capture the essence of abnormal clues.
Parallel to the second stage, the incorporation of
contrastive learning can effectively distinguish sim-
ilar features, which paves the next phase. Yan et al.
(2021); Yang et al. (2023) utilize instance-level con-
trast (i.e. image-report pairs from same cases are
positives, otherwise are negatives) in MRG models
to enhance the consistency of multi-modal features.
Li et al. (2023) further improves the visual repre-
sentation with graph features and benefits the report
generation. Our PGCA follows the third stage. Dif-
ferent from previous methods, we refine complex
visual features into dedicated node features, which
are contrasted with related medical word features
for fine-grained feature alignment.

3 Methodology

As shown in Figure 2, our framework contains two
parallel branches, namely Brain CT report gener-

ation and Pathological Graph-driven Cross-modal
Alignment (PGCA), which interact by the shared
visual and textual embedding layers.

3.1 Brain CT Report Generation

Given the input scans S = {si,..., sy}, where
N denotes the number of scans in each sample,
the target of this branch is to generate a diag-
nostic report Y = {y1,...,yar} with M words.
The report generation model follows the tradi-
tional encoder-decoder pipeline. Firstly, we ap-
ply the ResNetl101 (He et al., 2016) to extract
visual features of S that contain global features
F ={f1,....fn} € RVX (N = 24, d = 2048)
and grid features G = {g1,...,gn} € RV*Hxd
(H = 196). Then, F' and GG are embedded by a
visual encoder, resulting in global and spatial vi-
sual feature embeddings V; and V, respectively.
Finally, visual features V' = {V},V;} is used to
generate long reports in the decoder, which con-
tains a textual embedding layer and a language
model with keywords-driven interactive recurrent
network (Yang et al., 2021). We train the parame-
ters # by minimizing the cross-entropy loss, which
can be expressed as:

M
Ly==Y logps(xm|V,z1m-1), (1)

where p(z, |V, £1.m—1) denotes the predicted prob-
ability for the m-th word based on visual features V'

and previous word embeddings x1, x2, ..., Tim—_1.

3.2 Pathological Graph-driven Cross-modal
Alignment

To boost the report generation, we propose to learn
fine-grained visual-textual representations to im-
prove the encoder and decoder by co-training with
PGCA, which contains graph construction, graph
embedding and updating, and cross-modal con-
trastive learning.

3.2.1 Pathological Graph Construction

The knowledge graph is widely adopted to repre-
sent the relationship of medical entities. Differ-
ent from previous Chest report generation meth-
ods (Zhang et al., 2020; Liu et al., 2021) with only
1-2 images and fewer pathological entities for di-
agnosis, generating Brain CT reports from multi-
ple scans meets more challenges. Regularly, ele-
ments to be reported from scans contain some key
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Figure 2: An overview of the proposed model, which comprises (a) Brain CT report generation and (b) Pathological
Graph-driven Cross-modal Alignment. Communicated by the shared visual and textual embedding layers, both (a)
and (b) are simultaneously used in the training stage while only (a) is used for testing.

brain tissues and their associated lesions, which
are depicted as fundamental brain findings (Grif-
fin et al., 2002). Motivated by this, we propose
to organize a Pathological Graph (PG) to cover
clinically important elements in Brain CT sam-
ples. We first obtain a set of critical tissues and le-
sions, denoted as T" = {t1, ..., tn, }(IV: = 19) and
L = {li,...,In,}(IN; = 13) respectively, where
Ny and N; are the numbers of selected tissues and
lesions , based on the knowledge of experts and the
word frequency in training corpus. These elements
serve as the nodes in our PG. Given the heteroge-
neous nature of the nodes (i.e., tissue and lesion
attributes), we proceed to link them using edges
derived from various prior knowledge, such as re-
lations in tissues, relations in lesions, and relations
between tissues and lesions, as shown in Figure 1.
This process effectively partitions the PG into three
distinct sub-components: the Tissue Graph, Lesion
Graph, and Tissue-Lesion Graph. Next, we mainly
introduce the building of these three components.

1) Tissue Graph: Clinically, physicians often
divide Brain CT scans into 8 layers to facilitate
the diagnosis of different brain tissues. Follow-
ing this diagnostic pattern, we enhance the cor-
relation of tissues that existed in the same layer
by prior medical knowledge (more details see Ap-
pendix A.l), and then define the Tissue Graph
G = (Y™ £M) with N; clinically essential
tissue nodes and a global node, where V(T), £M
denote the nodes and edges connecting them.

2) Lesion Graph: Following the conclusion that
lesions diagnosed in the same tissue are more re-
lated (Zhang et al., 2020), we extract adequate

<tissue,leston> pairs from each sentence in the
training corpus with artificial refining, and thereby
relations in lesions can be summarized with tissues
as a bridge (more details see Appendix A.2). Then,
we define the Lesion Graph G/ = (VL) (1))
with V] lesion nodes and a global node, where V(L),
£ denote the nodes and edges, respectively.

3) Tissue-Lesion Graph: Since Tissue and Le-
sion Graphs are fixed to learn stable semantics,
Tissue-Lesion Graph is designed to depict detailed
attributes’ interconnections for each case. We
modify the extracted <tissue,lesion> pairs into
<tissue,relation,lesion> triplets, where the rela-
tion € {0, 1} denotes whether the tissue is paired

with the lesion. For each tissue node vl(T) e g’
its associated lesions can be denoted as a local Le-
sion Graph Q(Li) S Q(L), and we represent the
Tissue-Lesion Graph as (G(T), {G(L)}) to store
the inter-attribute correlations for each instance.
As an aggregation of three subgraphs, the PG
encapsulates a wealth of medical knowledge. Next,
we will explore how to represent this knowledge

within the model.

3.2.2 Pathological Graph Embedding

Different from previous single-attribute learning
methods (Zhang et al., 2020; Liu et al., 2021), we
adopt an attribute-oriented graph convolution net-
work in parallel for both Tissue and Lesion Graphs.
Specifically, we first initialize the graph features
by spatial visual features V;; as (Zhang et al., 2020)
to initially map each pathological node v; to dif-
ferent spatial regions, resulting in initialized tissue
graph feature T}] and lesion graph feature Lg)p. More
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details are in Appendix A.4. Then, our graph con-

volution network follows Zhang et al. (2020); Liu
et al. (2021) to propagate two graph features as:

I+1  _

Ty =

41 _

Ly =

update, (T]lc, mSgel(T]lc7 Ar)), (2)
updates (Llf, msges (Llf, Ar)), 3)

where T}, Llf respectively denote the tissue and
lesion graph features in the [-th layer, and Ap,Af,
are the normalized Laplacian of adjacency matrixes
according to Tissue and Lesion Graph. msges,
msges are feature aggregation functions based on
the adjacency matrix, while update; and updates
propagate node features in PG.

After 2-layer propagation, we obtain the tis-
sue graph embedding Ty = {T%,...Tfy,} €
RNtxNxdg and lesion graph embedding Ly =
{Lfy-Lyy}t € RNXNxdg - where Ty, €
R4 and Ly, € RN*4s respectively denote the
i-th tissue and lesion node embedding. Afterward,
we use a global average pooling on T and L to
converge the information of [V scans and obtain the
generalized node features of tissues 7, € R™Nt*dg
and lesions L, € RN *dg,

3.2.3 Pathological Graph Updating

Since the tissues and lesions are sparse and se-
mantically correlated in Brain CT, node features
in PG are supposed to be updated with the follow-
ing concerns: 1) Concrete semantics of pathology
groundings; 2) Tissue-lesion relations. Note that
the updating is only the tuning of graph node fea-
tures and does not involve any new connections
within the tissue and lesion subgraphs.

To accurately represent the medical semantics of
each node, we introduce an Intra-Attribute classi-
fication (IAC) module to dynamically update the
node features. Separate IAC modules are employed
for tissue and lesion nodes. Here, we take the tissue
nodes as an example to illustrate IAC. We design
a classification head, which takes 7} as input, to
predict the tissue labels C*t € RN, We then use
BCE loss to optimize the IAC module as:

Nt .
Liac, ==Y Wiag,[Ci'log Cy' "

+(1 - C)log(1 — G,
where C; € Rt denotes the ground tissue labels

extracted from reports, W4, is a weight matrix
for tissue node updating, and ¢ denotes the current

tissue index. Following this way, we can acquire
the fine-grained pathology-grounded node features
for both tissues and lesions.

While IAC captures the semantics of single at-
tribute nodes, learning the inter-attribute relations
between tissues and lesions is also essential, as our
task is to generate reports with complex cranial
findings rather than a simple classification. There-
fore, we design an Inter-Correlation Alignment
(ICA) module to match the correct tissue-lesion
pairs via BCE loss. Specifically, we first extract
the triplets in Tissue-Lesion Graph to depict tissue-
lesion relations in a current case. As such, each
sample is equipped with an attribute alignment ma-
trix M, € {0, 1}V*N as the ground-truth label,
where the matrix element e;; = 1 denotes the i-th
tissue is associated with the j-th lesion in this sam-
ple. Afterward, we use dedicated node features (7},
and L) to predict the inter-correlation matrix as:

M, = Sigmoid((T,LDYWT +b,) € RN>*N
5
where W,,b, are parameters. The mutual informa-
tion between two attributes is finally preserved by
minimizing the following ICA loss:

Ny N, )
Lica=—>Y Wica}[M}log M, ©
L]

i

+(1 = M) log(1 — My)],
where Wi 4 is a learnable weight matrix, and Ma;
Ma; denote the (i-th.j-th) value in the ground-truth
and predicted attribute matrix, respectively.

3.2.4 Cross-modal Contrastive Learning

Considering that detailed medical information is
significant to find subtle pathological clues that
depict critical medical conditions, the goal of our
Contrastive Learning (CL) module is to represent
the alignment of fine-grained pathological seman-
tics from visual and textual modalities. To achieve
this, we regard the nodes learned by IAC and ICA
as fine-grained visual semantics since they compre-
hensively considered the intra- and inter-attribute
knowledge and focused on salient pathological re-
gions. Then, we extract textual features of corre-
sponding words in the report via the shared textual
embedding layers in textual decoder and map each
node feature to its matched textual embeddings by
contrastive learning. Specifically, we use tissue
nodes for example. Given the j-th sample with N
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Methods | Bl B2 B3 B4 M RG C | P R Fl
Show-Tell(Vinyals et al., 2015)f | 37.2 255 18.0 129 258 356 166|514 534 490
Soft ATT(Xu et al., 2015)f 420 284 197 139 276 351 185|51.8 655 55.1
HRNN(Krause et al., 2017)f 39.0 263 183 13.0 28.8 347 16.3|53.6 37.7 40.6
Up-Down(Anderson et al., 2018) | 40.7 27.6 19.1 13.5 27.0 354 20.1|519 63.3 545
MRMA(Xue et al., 2018)f 39.7 269 188 134 29.0 349 15.6]53.0 59.0 52.7
R2Gen(Chen et al., 2020)f 431 275 183 124 281 341 158|522 573 519
WCL(Yan et al., 2021)' 426 286 199 14.1 274 349 175|523 609 52.7
R2Gen-CMN(Chen et al., 2021)f | 40.1 25.1 16.0 103 262 323 13.9|51.1 502 46.5
CMMRL(Qin and Song, 2022)' 33,5 19.5 11.7 7.3 223 285 10.0|493 454 440
XProNet(Wang et al., 2022)} 40.1 27.1 189 132 26.1 352 179|520 613 5338
WGAM(Yang et al., 2021)' |43.6 293 204 145 279 351 183529 665 559
Ours |45.0 30.8 21.6 155 28.7 36.5 19.9|53.6 67.7 57.2

Table 1: The performance of our PGCA compared with previous state-of-the-art models on the Brain CT report
generation dataset BCT-CHR. The best results are highlighted in bold. 1 denotes our re-implementation results.

scans and a report, we first project node features
and associated word embeddings into a latent space

N
resulting in V;; = {Vt§-1)7Vt§~2), ( K }
Rtj = {Rt§1)7 Rt§'2)7 seey Rtg'th }’ Where Wg) S

dg, Rty) € R% denote the projected visual
and textual features, and th is the number of tis-
sues reported in the j-th sample. We then use the
loss function similar to temperature-normalized In-
foNCE (van den Oord et al., 2018) loss for visual-
textual alignment'

o p(s( t R (u)))
X
L E lo ,
CLy — g Nf s(V, () R U))
E exp(ij I
v=1,u#v

(N
where s(.) measures the cosine similarity between
cross-modal vectors, and 7 is the temperature hy-
perparameter. Following the same process of tissue
semantic alignment, we can also obtain the lesion
contrastive learning loss Lo, .

3.3 Opverall objective function

Finally, our model is optimized by the total loss
regarding the report generation branch and PGCA
branch, which is defined as:

L=Ly+ M Lrac+ MLica+ NsLcr, (8)

where L1740 and L, are calculated by the sum of
tissue and lesion aspects. A, Az, and A3 are the
coefficients to balance the total loss.

4 Experiments

4.1 Dataset

We evaluate our model on the Brain CT report
generation dataset BCT-CHR (Yang et al., 2021).

There are 49,152 CT scans and 2048 Chinese re-
ports from 2048 anonymous samples, and each
sample includes 24 scans over multiple patholog-
ical layers for various abnormal detection and a
paired patient report. Following Yang et al. (2021),
the dataset is split by 7 : 2 : 1 for training, testing,
and validation, respectively. When tokenizing re-
ports, the words with less than 2 occurrences are
dropped, counting to 798 words in the vocabulary.
Notably, the English translations are only for better
understanding and are not used in training.

4.2 Evaluation Metrics

We fully evaluate the performance on the NLG
(Natural Language Generation) and CE (Clini-
cal Evaluation) metrics. NLG metrics contains
BLEU (Papineni et al., 2002), METEOR (Lavie
and Agarwal, 2007), ROUGE-L (Lin, 2004) and
CIDEr (Vedantam et al., 2015), which are denoted
as B1, B2, B3, B4, M, RG, and C. Then, accord-
ing to the pathological knowledge obtained by ra-
diologists, we use 24 keywords (“basal ganglia",

“edema", “lateral ventricle", etc.) to evaluate the CE

metrics: P (Precision), R (Recall), and F1 score.

4.3 Implementation Details

We set the scan number N = 24 for each sample
and reshape the size of scans to 512 x 512. The
scan features are extracted by ResNet101 (He et al.,
2016), which is pretrained on ImageNet (Deng
et al., 2009) and fine-tuned on CQ500 dataset (Chil-
amkurthy et al., 2018). The hyperparameters
are tuned via the validation set. Empirically,
the loss coefficients {\j, A2, A3}, temperature
value 7 and graph node dimension d, are set to
{0.3,0.001, 0.2}, 0.4 and 512, respectively. We
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Methods | Attributes Module Loss Bl B2 B3 B4 M RG C
tissue ‘ lesion | Lrac ‘ Lioa ‘ Lot
Baseline | X | X | X | X | X |407 275 192 138 264 353 163
) X X X X /(418 284 199 142 271 357 187
(b) v X v X X 425 289 203 146 273 357 180
© v X v X v/ 435 296 207 149 27.8 359 197
() v v v X X 439 297 208 148 283 360 21.3
@ v v v X v/ 441 298 208 148 27.8 359 19.3
Ous | v | v | < | < | < [450 308 216 155 28.7 365 199

Table 2: Ablation studies of our proposed method. The Baseline model is an encoder-decoder framework with
attention mechanism that is similar to (Yang et al., 2021). (a), (b), (c), (d) and (e) respectively denote the adding of
different pathological graph knowledge (i.e. tissue and lesion) and module losses.

train the model with Adam optimizer (Kingma and
Ba, 2015) on an NVIDIA RTX 3090 GPU with a
batch size of 4 for 60 epochs. The learning rate is
initially set to 4e-4 in the first 30 epochs, and we
decrease it by a 0.8 rate per 3 epochs after that.

4.4 Results and Discussion

4.4.1 Comparison Study

Besides the only Brain CT report generation
method WGAM (Yang et al., 2021), we also re-
produce some SOTA models in image captioning
(Show-Tell (Vinyals et al., 2015), Soft ATT (Xu
et al., 2015), HRNN (Krause et al., 2017), Up-
Down (Anderson et al., 2018)) and chest X-ray
Report generation (MRMA (Xue et al., 2018),
R2Gen (Chen et al., 2020), WCL (Yan et al., 2021),
R2Gen-CMN (Chen et al., 2021), CMMRL (Qin
and Song, 2022), XProNet (Wang et al., 2022)) on
BCT-CHR dataset for comprehensive comparisons.

As shown in Table 1, our method outperforms
the competitors on almost all evaluation metrics.
Specifically, the negative results in Show-Tell in-
dicate that complex medical semantics may not be
fully captured without an efficient cross-modal in-
teraction. Benefit from the cross-modal attention
(Soft ATT, Up-Down, and WGAM) and instance-
level contrastive learning (WCL), the models gain
improving results. Unexpectedly, by simply us-
ing memory vectors without domain knowledge,
R2Gen-CMN and CMMRL perform poorly on
most metrics, while XProNet adds class-related
knowledge and gets better results. This reflects the
effect of knowledge and the difficulties of our task.
WGAM benefits from weakly-guided attention to
capture visual features of Brain CT and achieves
higher BLEU scores. Despite these successes, de-
tailed visual and textual features are not sufficiently
learned in MRG systems, which fails to generate ac-
curate Brain CT reports. With the use of pathologi-

cal graph and fine-grained cross-modal alignment,
our PGCA achieves the best performance in con-
trast with previous arts. Especially, compared with
the only work WGAM for Brain CT report genera-
tion, PGCA gains remarkable improvement in B3
(20.4% — 21.6%), RG (35.1% — 36.5%), and F1
(55.9% — 57.2%), which justifies that PGCA does
not confuse the learning of some essential patho-
logical details, but generating sentences with more
accurate topics. It is worth noting that PGCA is
slightly inferior on CIDEr, which is more sensitive
to word frequency. The reason may be that our
graph contains some high-frequency terms, leading
to more occurrences of them in generated reports
and slightly decreasing the CIDEr.

4.4.2 Ablation Study

Table 2 summarizes the results of ablation studies
to verify the contributions of graph knowledge in-
jection and fine-grained contrastive learning. We
remove the supervision of attention in WGAM as
our Baseline, and then progressively add attribute
components (fissue and lesion) and the module
losses (Lrac, Lica and L), respectively de-
noting the incorporation of two types of attribute
knowledge in pathological graph and the utilization
of proposed modules (i.e. IAC, ICA, and CL).

As shown in Table 2, the advantages of adding
tissue and lesion attributes can be well reflected by
the improvement from Baseline to (b) and further
to (d), which justifies our assumption for learn-
ing subtle tissues and lesions. The comparison
between (b) and (c) also indicates the contributions
brought by fine-grained contrastive learning. Note
that, (a) denotes the Baseline model with the incor-
poration of CLIP loss (Radford et al., 2021) that
directly uses image-text pairs for coarse-grained
contrastive learning. We can observe that, only
with fine-grained tissues for detailed feature align-
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Figure 3: Comparison of pathological elements classification with different model settings and classic ResNet
model. The left-top chart shows the ROC curves of IAC module without the effect of other modules, and each
curve denotes one pathological element. Based on the first model, CL and ICA modules are gradually added and
corresponded to the following charts. The last chart shows the classification performance of classic ResNet.
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Figure 4: Parameter sensitivity tests for the loss function. Each hyperparameter is evaluated in a specific range, with

the other two kept at their optimal values.

ment, (c) has already surpassed (a) by a large mar-
gin, and when the lesion attribute is considered, (e)
gains further improvements. This indicates the ef-
fectiveness of our fine-grained cross-modal feature
alignment idea in MRG. Compared with (d), (e)
gains inferior results on METEOR, ROUGE and
CIDEtr, the reason may be that pathological seman-
tics in two attributes are separately learned without
a clinically important interaction. With the incor-
poration of ICA, our final model achieves the best
performance. These results verify the capabilities
of our modules to boost report generation.

To further confirm the module contributions for
pathology identification, in Figure 3, we visualize
the ROC curves for the classification of 10 essential

pathological elements summarized by experienced
physicians. Since classification is only performed
by our IAC module, the left chart shows the perfor-
mance of the model only with IAC and the report
generation branch. With the progressive addition
of CL and ICA modules, the model gains better
performance, which further indicates that CL and
ICA can help enhance the node feature represen-
tation and boost the recognition of pathological
elements. Besides, we also compare the classifica-
tion performance with the classic ResNet101 (He
et al., 2016) model. It is noticeable that our model
outperforms the ResNet by a large margin, which
not only indicates the effectiveness of our graph
learning and cross-modal alignment methods but
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Figure 5: Example of reports generated by the Baseline, WGAM, and our proposed model. The correct tissues,
lesions, and error-predicted pathological elements are marked in green, purple and red, respectively. English
translations of the Chinese reports are given for better understanding.
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Figure 6: Visualization of fine-grained pathology recog-
nition. Given a sentence, Grad-CAM is used to ground
salient visual regions of pathological elements.

also hints report generation and classification can
boost each other.

To examine the impact of hyperparameters of
loss (i.e., A1, A2 and A3 in Eq. 8) on our model,
we provide parameter sensitivity experiments in
Figure 4, where we fix two optimal hyperparam-
eters and vary the third within a specific range.
We can observe that too low or too high values of
hyperparameters decrease the performance. The
reason may be because the too low score of A1, Ao,
and A3 respectively lead to inadequate pathologi-
cal semantic learning, inter-attribute matching, and
visual-textual alignment, which degrades the fea-
ture representation. Too high Aq, A2, and A3 may
weaken the training of report generation-related
parameters and cause sub-optimal results.

4.4.3 Qualitative Analysis

Figure 5 visualizes the generated reports from a
qualitative perspective, we list the ground truth
image-report pairs with pathological labels, pre-
dicted labels generated by IAC module, and the
reports generated by Baseline, WGAM, and our
PGCA. It is observed that Baseline and WGAM
suffer from generating suboptimal reports with
inaccurate cranial tissues and wrong-matched le-
sions. With the incorporation of our enriched graph

knowledge and fine-grained cross-modal feature
alignment, PGCA can not only recognize complex
relations of pathologies and correctly predict la-
bels, but also generate high-quality reports based
on the understanding of pathological elements. We
also visualize the ability to recognize fine-grained
pathology semantics in Figure 6, the salient regions
grounded by our IAC module are generally consis-
tent with human-labeled boxes. These qualitative
analyses further demonstrate the superiority of our
PGCA model.

5 Conclusion

We propose a Pathological Graph-driven Cross-
modal Alignment model for Brain CT report gener-
ation. First, we construct a Pathological Graph that
incorporates detailed medical knowledge, allowing
for the injection of this knowledge into dedicated
node features through graph embedding and updat-
ing, thereby achieving fine-grained visual represen-
tations. Second, we align the learned node features
with the corresponding word embeddings by cross-
modal contrastive learning, to further boost report
generation. Extensive experiments demonstrate
that our model achieves superior performance in
generating clinically accurate reports.

Limitations

This paper is mainly toward Brain CT medical re-
port generation and may not generalize well to
other medical imaging, such as chest datasets (e.g.
MIMIC-CXR and IU-Xray) and ophthalmology
datasets (e.g. FFA-IR), without further adaption.
Besides, we only focus on mining detailed tissue
and lesion elements in brain findings and build-
ing fine-grained visual-textual alignment based
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on them, which lacks the consideration of more
specific details like tissue orientation or lesion
size. In the future, explorations of how to incorpo-
rate useful medical knowledge with different types
and granularity into the medical report generation
model will substantially contribute to this field.
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A Appendix

A.1 Details of Tissue Graph Construction

In the Tissue Graph, nodes are defined as V; tissue
terms, which are summarized in two aspects: 1)
The knowledge and expertise of experienced radi-
ologists; 2) The frequency of tissue words in the
training corpus. We present these tissues in Table 3.
Then, with the given nodes, a rule-based algorithm
is designed to assign the connecting edges via the
prior domain knowledge, i.e. tissues in the same
scan layer are more related, otherwise not. Inspired
by Li et al. (2022), our algorithm contains the fol-
lowing three steps:

1) Knowledge Formatting: We format the ex-
pert knowledge into <layer,tissue> pairs, where
layer indicates a layer name (e.g. “canthus earline
layer", “suprasellar cistern layer", “upper cerebral
cortex layer", etc.), and tissue denotes the tissue
that can be observed in this layer.

2) Dependency Parsing: With the formatted
knowledge pairs, for each layer, we collect a set
of paired tissues and then parse the dependency of
these tissues into <tissuei,tissues> pairs, where
tissuey, tissues denotes two different tissues
paired with the same layer. We traverse all the
layers and finally obtain a large set of tissue depen-
dency pairs.

3) Entity Linking: A matrix E;, € RNtxVe
is set to store the relation of NN; tissue nodes,
which is initialized as an identity matrix. Then,
we traverse the extracted tissue dependency pairs
<tissuey,tissuez>, and add the weight by 0.2
to update the bidirectional edges of tissue; and
tissues for each time. If the edge between two dif-
ferent tissues reaches 0.8, we stop to add it. Finally,
we add a column and a row with the weight of 1.0
to depict the fully connected edges of a global node,
resulting in the edge matrix £; € R(Ne+Dx(Net1),

In total, the Tissue Graph contains 133 tissue
dependency pairs, and more information are listed
in Table 4.

A.2 Details of Lesion Graph Construction

We comprehensively combine the expert opinions
and the word frequency in the training corpus to
extract /NV; lesion terms as our lesion nodes, which
are presented in Table 5. Similar to the linking of
tissue nodes, we use the same rule-based algorithm
to build lesion edges. Different from the knowledge
utilized in constructing the Tissue Graph, here we
follow the assumption of Zhang et al. (2020): le-

ID ‘ Tissue

1 | M= (lateral ventricle)
2 | Ffivi(thalamus)

3 | EJET7 X (basal ganglia)
4 | T (brainstem)

5 | TRt (parietal lobe)

6 | Bt (temporal lobe)

7 | &t (frontal lobe)

8 | ®tHt(occipital lobe)

9 fiti = (ventricle)

10 | H%&(midline structure)

11 | 5 =f% (third ventricle)

12 | Z5VUMNZE (fourth ventricle)

13 | hess (sphenoid sinus)

14 | %% (ethmoid sinus)

15 | A% (maxillary sinus)

16 | FiRLH (temporal occipital lobe)
17 | FIR[E L) (centrum semiovale)
18 | A2 Fi(brain parenchyma)

19 | Fiéii&(sulcus cerebri)

Table 3: Components of tissue terms in our Tissue
Graph, which are summarized by the knowledge of radi-
ologists and the word frequency. English translations of
the Chinese words are given for better understanding.

Number
Tissue 19
Layer 8
<layer,tissue> 61
<tissuey,tissues> 133

Table 4: Statistics of our Tissue Graph, contain-
ing the number of tissue entities, layer categories,
<layer,tissue> pairs, and <tissuey,tissues> pairs.

sions diagnosed in the same tissue are more related,
otherwise not.

In Knowledge Formatting, we extract ade-
quate <tissue,lesion> pairs from each sentence
in the training corpus, and manually adjust the
pairs to ensure correctness. In Dependency Pars-
ing, we parse the dependencies of lesions into
<lesiony,lesions>, where lesiony, lesiong de-
notes two different lesions paired with the same
tissue. In Entity Linking, we store the relation of
N lesion nodes in Ej, € RN*N:which is initial-
ized as an identity matrix. We traverse the collected
<lesiony,lesiony> pairs and add the weight by 0.1
to update the bidirectional edges of lesion; and
lesions for each time until the score reaches 0.9.
Finally, a column and a row with the weight of 1.0
are added to represent the fully connected edges

6628



Case (I) for Brain CT report generation
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Case (II) for Brain CT report generation
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Figure 7: More cases of reports generated by the Baseline, WGAM, and our proposed model. English translations

of the Chinese reports are given for better understanding.

of one global node, resulting in the edge matrix
E € ROVi+1)x (N +1)

In total, our Lesion Graph includes 652 lesion
dependency pairs, and more details are shown in
Table 6.

ID ‘ Lesion

%%E?ﬁ(high density)
K% % (low density)
% % (compressed)

4 5% (widen)

A5 (increase)

34 (thicken)

7K B (edema)
TH{K(decrease)

% 57 (density shadow)
FEA (shift)

11 | ZF%E (narrow)

12 | ZEF(left shift)

13 | ik (swell)

O 00 1N Nk~ W~

—
=)

Table 5: Components of lesion terms in our Lesion
Graph, which are summarized by the knowledge of
physicians and the word frequency. English translations
of the Chinese words are given for better understanding.

Number
Lesion 13
Tissue 19
<tissue,lesion> 159
<lesiony,lesiong> 652

Table 6: Statistics of our Lesion Graph, contain-
ing the number of lesion entities, associated tissues,
<tissue,lesion> pairs, and <lesioni,lesions> pairs.

A.3 More Cases of Brain CT Report
Generation

More cases of Brain CT report generation are pre-
sented in Figure 7. The correct tissues, lesions, and
error-predicted pathological elements are marked
in green, purple and red, respectively.

A.4 Details of Graph Features Initialization

To map the graph features into pathology-related
spatial regions, we follow the feature initializa-
tion method in Zhang et al. (2020) with some
modifications. Given the spatial visual feature
V, € RW=H)xds (N = 24, H = 196, d, = 512),
where N, H,d, denote the number of scans, grids,
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and channels, we duplicate it twice for initializ-
ing tissue and lesion graph features separately. We
mainly take the tissue graph feature initialization
for example.

First, we transform the channel dimension of V,
into tissue number [V; as:

Vigy = Relu(VuW! +by)), 9)
Vigy = Relu(Vig, W, +by,),  (10)
Vigs = Relu(Vig,W,, +bg,), (11

where Relu(.) denotes the RelLU activation func-
tion. th c ]R(N*H)X512, th c R(N*H)XIQS’
Wi, € RW*H)XNt are learnable weights. by, by,
by, are learnable biases. We use the transformation
result Vi, € RN*H) XNt t represent the graph
information.

Then, to bind the graph information Vi, with
specific visual regions, we perform the multiplica-
tion of matrices V; and Vi, along the dimension
of spatial grids, resulting in V;, € RN*H*Ne T
this way, each row of V;, can depict one specific
tissue region, and we represent it as one tissue node
feature. Afterward, we conduct average pooling
on the dimension of node number [V, to obtain
the global node feature Vigopar € RN*XH for the
tissue graph, which contains general node repre-
sentations. Finally, we concat Vi and V}gi0pq1, and
reshape it as the initialized tissue graph feature
T](c] c R(Nt+1) X(N*H) )

As the same process, the lesion graph feature is
initialized as L?c e RWiHDX(N«H) where N is
the number of lesion nodes.
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