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Abstract

The tremendous growth of social media users
interacting in online conversations has led to
significant growth in hate speech affecting peo-
ple from various demographics. Most of the
prior works focus on detecting explicit hate
speech, which is overt and leverages hateful
phrases, with very little work focusing on
detecting hate speech that is implicit or de-
notes hatred through indirect or coded language.
In this paper, we present CoSyn, a context
synergized neural network that explicitly incor-
porates user- and conversational-context for de-
tecting implicit hate speech in online conversa-
tions. CoSyn introduces novel ways to encode
these external contexts and employs a novel
context interaction mechanism that clearly cap-
tures the interplay between them, making inde-
pendent assessments of the amounts of informa-
tion to be retrieved from these noisy contexts.
Additionally, it carries out all these operations
in the hyperbolic space to account for the scale-
free dynamics of social media. We demonstrate
the effectiveness of CoSyn on 6 hate speech
datasets and show that CoSyn outperforms all
our baselines in detecting implicit hate speech
with absolute improvements in the range of
1.24% - 57.8%. We make our code available'.

1 Introduction

Hate speech is defined as the act of making utter-
ances that can potentially offend, insult, or threaten
a person or a community based on their caste, re-
ligion, sexual orientation, or gender (Schmidt and
Wiegand, 2019). For social media companies like
Twitter, Facebook, and Reddit, appropriately deal-
ing with hate speech has been a crucial challenge
(Tiku and Newton, 2015). Hate speech can take the
form of overt abuse, also known as explicit hate
speech (Schmidt and Wiegand, 2017), or can be ut-
tered in coded or indirect language, also known as

"https://github.com/Sreyan88/CoSyn
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In #LOC, some believers have been going to cow shelters once a week to
cover their bodies in cow dung and urine in the hope it will boost their
immunity against, or help them recover from, COVID-19. | #NAME
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Figure 1: Illustration of a social media conversation
tree with implicit hate speech. User 1 posts a factual
statement about practices people follow in a certain
location. In response, User 2 implies hate through a
sarcastic statement, to which User 3 elaborates with
a positive stance. Clearly, these utterances are even
difficult for humans to classify as hate or not without
the proper conversational context.

implicit hate speech (Jurgens et al., 2019). Fig.1 il-
lustrates a Twitter conversation where users convey
hate implicitly through sarcasm and conversational
context.

Societal Problem and Impact. Though a consid-
erable amount of research has been done on de-
tecting explicit hate speech (Schmidt and Wiegand,
2019), detecting implicit hate speech is a greatly
understudied problem in the literature, despite the
social importance and relevance of the task. In the
past, extremist groups have used coded language
to assemble groups for acts of aggression (Gubler
and Kalmoe, 2015) and domestic terrorism (Piazza,
2020) while maintaining deniability for their ac-
tions (Dénigot and Burnett, 2020). Because it lacks
clear lexical signals, implicit hate utterances evade
keyword-based detection systems (Wiegand et al.,
2019), and even the most advanced neural architec-
tures may not be effective in detecting such utter-
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ances (Caselli et al., 2020).

Current Challenges. Current state-of-the-art hate
speech detection systems fail to effectively detect
implicit and subtle hate (Ocampo et al., 2023). De-
tecting implicit hate speech is difficult for multi-
ple reasons: (1) Linguistic nuance and diversity:
Implicit hate can be conveyed through sarcasm,
humor (Waseem and Hovy, 2016), euphemisms
(Magu and Luo, 2018), circumlocution (Gao and
Huang, 2017), and other symbolic or metaphorical
languages (Qian et al., 2018). (2) Varying context:
Implicit hate can be conveyed through everything
from dehumanizing comparisons (Leader Maynard
and Benesch, 2016), and stereotypes (Warner and
Hirschberg, 2012) to threats, intimidation, and in-
citement to violence (Sanguinetti et al., 2018; For-
tuna and Nunes, 2018). (3) Lack of sufficient lin-
guistic signals: Unlike parent posts, which con-
tain sufficient linguistic cues through background
knowledge provided by the user, replies or com-
ments to the parent post are mostly short and
context-less reactions to the parent post. These
factors make implicit hate speech difficult to detect
and emphasize the need for better learning systems.

Why prior work is insufficient. (ElSherief et al.,
2021) define implicit hate speech as “coded or in-
direct language that disparages a person or group.”
They also propose the first dataset, Latent Hatred,
to benchmark model performance on implicit hate
speech classification and show that existing state-
of-the-art classifiers fail to perform well on the
benchmark. Though Latent Hatred builds on an ex-
haustive 6-class taxonomy, it ignores implicit hate
speech that is conversational-context-sensitive even
though it accounts for a majority of implicit hate
speech online (Modha et al., 2022; Hebert et al.,
2022). Lin (2022) builds on Latent Hatred and pro-
pose one of the first systems to classify implicit
hate speech leveraging world knowledge through
knowledge graphs (KGs). However, beyond the
fact that their system is restricted to only English
due to the unavailability of such KGs in other lan-
guages, their system also fails to capture any kind
of external context, which is vital for effective hate
speech detection (Sheth et al., 2022). Thus, we
first extend the definition of implicit hate speech
to include utterances that convey hate only in the
context of the conversational dialogue (example in
Fig.1). Next, we propose a novel neural learning
system to solve this problem.

Main Contributions. In this paper, we propose
CoSyn, a novel neural network architecture for de-
tecting implicit hate speech that effectively incorpo-
rates external contexts like conversational and user.
Our primary aim is to classify whether a target ut-
terance (text only) implies hate or not, including
the ones that signal hate implicitly. CoSyn jointly
models the user’s personal context (historical and
social) and the conversational dialogue context in
conversation trees. CoSyn has four main compo-
nents: (1) To encode text utterances, we train a
transformer sentence encoder and promote it to
learn bias-invariant representations. This helps us
to handle keyword bias, a long-standing problem
in hate speech classification (Garg et al., 2022). (2)
We start by modeling the user’s personal historical
context using a novel Hyperbolic Fourier Atten-
tion Network (HFAN). HFAN models diverse and
scale-free user engagement of a user on social me-
dia by leveraging Discrete Fourier Transform (Coo-
ley and Tukey, 1965) and hyperbolic attention on
past user utterances. (3) We next model the user’s
personal social context using a Hyperbolic Graph
Convolutional Network (HGCN) (Chami et al.,
2019). HGCN models the scale-free dynamics of
social networks using hyperbolic learning, leverag-
ing the social connections between users, which act
as edges in the graph. (4) Finally, to jointly model
a user’s personal context and the conversational
dialogue context, we propose a novel Context Syn-
ergized Hyperbolic Tree-LSTM (CSHT). CSHT
effectively models the scale-free nature of conver-
sation trees and clearly captures the interaction
between these context representations in the hy-
perbolic learning framework. We describe all our
components in detail in Section 2.7. To summarize,
our main contributions are as follows:

* We introduce CoSyn, the first neural network
architecture specifically built to detect implicit
hate speech in online conversations. CoSyn
leverages the strengths of existing research
and introduces novel modules to explicitly
take into account user and conversational con-
text integral to detecting implicit hate speech.

» Through extensive experimentation, we show
that CoSyn outperforms all our baselines
quantitatively on 6 hate speech datasets with
absolute improvements of 1.24% - 57.8%.

* We also perform extensive ablative experi-
ments and qualitative comparisons to prove
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the efficacy of CoSyn.

2 Methodology

Fig. 3 provides a clear pictorial representation of
our proposed model architecture (algorithm shown
in Algorithm 1). We provide an overview describ-
ing various operations in Hyperbolic Geometry in
Appendix 2.2; and we request our readers to re-
fer to that for more details. In this section, we
describe the three constituent components of our
proposed CoSyn, which model different aspects
of context, namely, the author’s personal histori-
cal context, the author’s personal social context,
and both the personal historical and social contexts
with the conversational context.

2.1 Background, Notations, and Problem
Formulation.

Let’s suppose we have N distinct conversation
trees, where each tree is denoted by T, €
T = {Ty, -+, Tn, -, Tn}. Each tree T, has
JTn individual utterances denoted by 7, =
{tg”, e ,th”, e ,t?i}. Each individual utterance
t?” is authored by one of the L users in the dataset
denoted by v € {ug,---,uy,---,ur}. The pri-
mary aim of CoSyn is to classify each utterance ¢
into its label y9* € {0,1} where 0 and 1 indicate
whether the utterance is hateful or not. Addition-
ally, each hateful utterance (yft = 1) is labeled
with y? € {0, 1} where 0 and 1 indicate whether
the hateful utterance is explicitly or implicitly hate-
ful. y* is used only for analysis. In the following
subsections, "user" refers to the author of an utter-
ance in a conversation tree to be assessed.

2.2 Hyperbolic Geometry: Background

Hyperbolic Geometry. A Riemannian manifold
is a D-dimensional real and smooth manifold
defined with an inner product on tangent space
gz @ TeM X TzM — R at each point x € M,
where the tangent space 7, M is a D-dimensional
vector space representing the first-order local ap-
proximation of the manifold around a given point
x. A Poincaré ball manifold is a hyperbolic space
defined as a constant negative curvature Rieman-
nian manifold, denoted by (H”, g) where manifold
HP = {@ € R”: ||z||< 1} and the Riemannian
metric is given by g = A2g” where g = I'p de-
notes the identity matrix, i.e., the Euclidean metric
tensor and A\, = W To perform opera-
tions in the hyperbolic space, the exponential map

exp, : TzHP” — HP and the logarithmic map
log,, : HP — T,HP are used to project Euclidean
vectors to the hyperbolic space and vice versa re-
spectively.

exp,(v) ==z ® <tanh (Aﬂv“) HZH> (1)

—T®y
=z @yl

2 _
log,,(y) := — tanh Y(l—z®yll)

2

where z, y € HP, v € T,HP. Further, to
perform operations in the Hyperbolic space, the
following basic hyperbolic operations are described
below:

Mobius Addition & adds a pair of points x,y €
HP as,

(L+2(z,y) + lyl?) z+ (1= ll=[) y
1+ (z,y) + [l=)? /|yl

TDy =

Moébius Multiplication ® multiplies vectors x €
HP and W € RP*D given by,

W @z := exp, (W logy(z)) @

Mobius Element-wise Multiplication ©® performs
element-wise multiplication on z,y € HP,

x @y := tanh <||xy|| tanh1(||y])> |||TyH| %)
) )

Hyperbolic Distance between points x, y € H”
is given by:

dg := 2tanh™ (|- @ y|) (6)

Fourier Transform. The Fourier transform breaks
down a signal into its individual frequency com-
ponents. When applied to a sequence x,, with
n € [0, N — 1], the Discrete Fourier Transform
(DFT) generates a new representation X, for each
value of k, where 0 < k < N — 1. DFT ac-
complishes this by computing a sum of the origi-
nal input tokens x,,, multiplied by twiddle factors
[e=2mkn/N] "where n is the index of each token in
the sequence. Thus, DFT is expressed as:
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N—-1
Xp=> ape /N 0<E<N-1 ()

n=0
2.3 Bias-invariant Encoder Training

CoSyn, like other works in literature, builds on the
assumption that linguistic signals from text utter-
ances can effectively enable the detection of hate
speech in online conversations. Thus, our primary
aim is to learn an encoder ¢(. ) that can effectively
generate vector representations R for a text utter-
ance where d is the dimension of the vector. Specif-
ically, we fine-tune a SentenceBERT (Reimers and
Gurevych, 2019) and solve an additional loss pro-
posed in (Mathew et al., 2021) using self-attention
maps and ground-truth hate spans. Keyword bias
is a long-standing problem in hate speech classi-
fication, and solving the extra objective promotes
learning bias-invariant sentence representations.

2.4 Modeling Personal User Context

Modeling personal user context, in the form of au-
thor profiling, for hate speech classification has
shown great success in the past because hateful
users (users prone to making hate utterances) share
common stereotypes and form communities around
them. They exhibit strong degrees of homophily
and have high reciprocity values (Mathew et al.,
2019). We hypothesize that this will prove to be
especially useful in classifying conversational im-
plicit hate speech, which on its own lacks clear
lexical signals or any form of background knowl-
edge. Thus, our primary aim is to learn a vector
representation I/, € R? for the user « who has
authored the utterance ¢ to be assessed, where d is
the dimension of the vector. For our work, we also
explore the importance of the personal historical
context of a user to enable better author profiling.
Studies show that past social engagement and lin-
guistic styles of their utterances on social media
platforms play an important role in assessing the
user’s ideology and emotions (Xiao et al., 2020).
Thus we propose a novel methodology for author
profiling that is more intuitive, explainable, and
effective for our task. Our primary aim is to model
the user’s (author of the utterance to be assessed)
personal context and generate user representations
U, which can then be used for hate speech classi-
fication. To achieve this, we first encode a user’s
historical utterances /"*** using our Hyperbolic

(b) Frequency distri-
bution for conversa-
tion trees.

(a) Frequency distri-
bution for the social
graph.

Property Social Graph  Conversation Tree
Mean Degree 18.22 22
Node Degree 2.66E-03 2.89E-04
[ 15 0.3
Power Law P(x) ~x7V

Y 2.81 239

(c) Properties of the social graph
and conversation trees.

Figure 2: Various properties of the social graph and
conversation trees averaged across datasets. The fit-
ting of the node distribution in the power law (y €
[2, 3]) (Choromariski et al., 2013) and low hyperbolicity
(Barabasi and Bonabeau, 2003) J indicates the scale-
free nature of conversations and social graphs.

Fourier Attention Network (HFAN) followed by
modeling the user’s social context by passing 245
through a Hyperbolic Graph Convolution Network
(HGCN). To be precise, learning personal user con-
text takes the form of e( HistoricalUtterances)
— HFAN — Y%t — HGCN — U,,. We next de-
scribe, in detail, HFAN and HGCN.

2.5 Hyperbolic Fourier Attention Network

User engagement on social media is often diverse
and possesses scale-free properties (Sigerson and
Cheng, 2018). Thus to account for the natural
irregularities and effectively model a user’s per-
sonal historical context, we propose a novel Hyper-
bolic Fourier Attention Network (HFAN). The first
step is to encode historical utterances, H", using
our encoder ¢(.), made by the user u, denoted by
H" € {h§,---,hY,---, h&}. Next, we apply 2D
DFT to the embeddings (1D DFT along the tempo-
ral dimension and 1D DFT along the embedding
dimension) to capture the most commonly occur-
ring frequencies (ideologies, opinions, emotions,
etc.) in the historical utterances made by the user
using:

UL = exp (F (F (logg (e(H™)))  (®)

where F is the DFT operation. The 2D DFT
operation helps highlight the most prominent fre-
quencies, which signifies a holistic understanding
of the user’s sociological behavior. Next, we hy-
pothesize that the frequencies most relevant to a
conversation can act as the most important clues to
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Context-Synergized Hyperbolic Tree LSTM cell

Figure 3: Illustration of CoSyn. CoSyn detects if a target utterance, authored by a social media user, implies hate or
not leveraging three main components: (1) HFAN: This models the user’s personal historical context by employing
Fourier Transform and Hyperbolic Attention on the user’s historical tweets. (2) HGCN: This models the user’s
social context through hyperbolic graph learning on its relations with other users. (3) CSHT: This jointly models
the user’s personal context and the conversational context to finally classify if the utterance is hateful.

assessing how a user would react to other utterances
in the conversation tree (for e.g., a user’s stance on
the contribution of a particular political party to a
recent riot in discussion). Additionally, these fre-
quencies may change over time. Thus, to account
for the latter factor first, we pass the embeddings
through a Hyperbolic GRU (Zhang and Gao, 2021),
which first projects these embeddings from the Eu-
clidean to the hyperbolic space using a Poincaré
ball manifold and then effectively captures the se-
quential temporal context on time-aligned historic
user utterances. The Hyperbolic GRU is a modi-
fied version of the conventional GRU, which per-
forms Mobius operations on the Poincaré model
(addition, multiplication, and bias). We request
our readers to refer to (Zhang and Gao, 2021) for
more details. Next, to account for the former factor,
we perform Hyperbolic Attention (Zhang and Gao,
2021), which first linearly projects the utterance
embeddings within Poincaré space and then con-
structs the final user embedding &% via Einstein
midpoint:

(€))

a; = exp (—Budc (cne, i) — cp)

ugist — Z

S

oy (hgzc)
>y ( %L/c)

where h,, and hgg are the utterance encoding
of utterance h obtained from Uy """ projected
from the Poincaré space into the Lorentz space and
Klein space for computational convenience (Zhang

u

ik (10)

and Gao, 2021). c, is the sentence centroid, which
is randomly initialized and learnable.

2.6 Hyperbolic Graph Convolutional Network

After obtaining the user representations /"5 for
every user u in the dataset, we model social rela-
tionships between the users as a graph G = (V, £).
Each edge e = {u;,u;} € & represents one of
the four types of relations: 1) User u; retweets a
tweet posted by u;, 2) User u; mentions user u; in
a tweet t, 3) User u; replies to a post by user u; or
4) User u; follows user u;. Each vertex v € V rep-
resents the user representations U,,. HGCN (Chami
et al., 2019) modifies the conventional GCN and
performs neighbor aggregation using graph convo-
lutions in the hyperbolic space to enrich a user’s
historical context representations learned through
HFAN using social context. Social network con-
nections between users on a platform often possess
hierarchical and scale-free structural properties (de-
gree distribution of nodes follows the power law as
seen in Fig 2 and decreases exponentially with a
few nodes having a large number of connections
(Barabasi and Bonabeau, 2003)). To model such
complex hierarchical representations, HGCN per-
forms all operations in the Poincaré space. We first
project our representations U/ onto the hyperbolic
space using a Poincaré ball manifold (exp™(.)
with a sectional curvature -1/K. Formally, the fea-
ture aggregation based at the i*® HGCN layer is
denoted by:
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0 = ;@1 (FM (AOU—UW@))) (11)

where -1/K;_ and -1/K; are the hyperbolic cur-
vatures at layers ¢ - 1 and i, respectively. A =
D~1/2AD~1/2 is the degree normalized adjacency
matrix, W is a trainable network parameter , O° is
the output of the i*" layer and FM is the Frechet
Mean operation. o®" 1 s the hyperbolic non-
linear activation allowing varying curvature at each
layer.

2.7 Context-Synergized Hyperbolic
Tree-LSTM

To model the conversational context in con-
versation trees effectively, we propose Context-
Synergized Hyperbolic Tree-LSTM (CSHT).
CSHT presents several modifications and improve-
ments over Tree-LSTM (Tai et al., 2015), includ-
ing (1) incorporating both the user’s personal con-
text and the conversation context while clearly cap-
turing the interactions between them, and (2) op-
erating in the hyperbolic space, unlike the origi-
nal TreeLSTM, which operates in the Euclidean
space. Conversation trees on social media pos-
sess a hierarchical structure of message propaga-
tion, where certain nodes may have many replies;
e.g., nodes that include utterances from popular
users. Such phenomena lead to the formation
of hubs within the conversation tree, which in-
dicates scale-free and asymmetrical properties of
the conversation tree (Avin et al., 2018). The
conversation tree is 1" represented using 7 = (V,
&), where vertex v € V represents the encoded
utterance X; = e(t;) (¢ is part of the conversa-
tion tree 1) and edge e € & represents one of
the three relations between the utterances: (1)
parent-comment, (2) comment-reply or (3) reply-
reply. CSHT is modeled as a Bi-Directional Tree-
LSTM [CS@ (X5 Uy) ,Wm(}g;uﬂ)} where
U, is the user representation of the user u who au-
thored the utterance to be assessed obtained from
the HGCN.

In order to understand the signals in CHST, we
focus on a specific node ¢;. We gather informa-
tion from all input nodes t;, where {tx,t;} € &,
and combine their hidden states hj using Einstein’s
midpoint to produce an aggregated hidden state
h; for node t;. We use the hyperbolic represen-
tation of the current post, denoted as X;, as well

as the user embeddings of the author of the post,
denoted as U,,, to define computational gates oper-
ating in the hyperbolic space for CSHT cells. As
defined in Subsection2.2 ®, &, ® represent Mobius
Dot Product, Mobius Addition and M6bius matrix
multiplication, respectively.

Considering multiple input nodes tj, {t,t;} €
£, we implement multiple hyperbolic forget gates
incorporating the outputs hj of the input nodes
with the current node’s combined user and post
representation r;.

rj = W(fx) X Xj D W(fg) R Uy,

[k = exp, (U (logo (’”j e U0 @y @ bm)))
(12)

The input gate 7; and the intermediate memory
gate u; corresponding to the representation for the
current utterance are given by:

ij = €Xp, 0 (logo (W(i) ® X; ® U @

h; @ b(i)>>
uj = exp, (tanh (logo (W(“) ® X; @ UWe
)

(14)

The input gate m; and the intermediate memory

gate s; corresponding to the user representation
from the social graph are given by:

m; = exp, (0 <10go (W(m) ® Uy®

U™ @ h; e b(m>>))
5j = exp, (tanh (logo (W(S) ® Uy B

U® @y @b(s)>>>

The output gate for the tree cell is then calculated
as follows:
0j = exp, (a (logo (W(O) QU, dU @ hy @ b(°)>)>
an
The parameters W™ UMW) bW are learnable
parameters in the respective gate w. We obtain the
cell state for the current cell ¢; by combining the
representations from the multiple forget gates f,
kVty, st {tg, t;} € £, as well as gates correspond-
ing to the tweet and user representations as follows:

(13)

(15)

(16)

¢j =15 O u, @ijSjEBijkQCk (18)
k
These equations are applied recursively by blend-
ing in tree representations at every level. The out-
put of the current cell, h; is given by:
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CHST(X]',U]') = hj = 0j © exp, (tanh (Cj))
(19)
Final Prediction Layer. We concatenate the
node output from CSHT h;, projected to the Eu-
clidean space, with the Euclidean utterance fea-
tures for the given tweet, X; to form a robust
representation incorporating features of the tweet
along with social and conversational context de-
rived from the CSHT network of CoSyn. This
concatenated representation is passed through a
final classification layer to obtain the final predic-
tion 9" = Softmax (MLP ([log, (h;) ; j])). For
training, we optimize a binary cross-entropy loss.

3 Experiments and Results

3.1 Dataset

We evaluate CoSyn on 6 conversational hate speech
datasets; namely, Reddit (Qian et al., 2019), GAB
(Qian et al., 2019), DIALOCONAN (Bonaldi et al.,
2022), CAD (Vidgen et al., 2021), ICHCL (Modha
et al., 2021) and Latent Hatred (ElSherief et al.,
2021). Appendix A provides dataset statistics. Ta-
ble 1 reports the micro-F; scores averaged across 3
runs with 3 different random seeds.

Implicit Hate Annotations. The original datasets
do not have annotations to indicate if an utterance
denotes implicit or explicit hate speech. Thus, for
our work, we add extra annotations for evaluat-
ing how CoSyn fares against our baselines in un-
derstanding the context for detecting implicit hate
speech. Specifically, we use Amazon Mechani-
cal Turk (MTurk) and ask three individual MTurk
workers to annotate if a given utterance conveys
hate implicitly or explicitly. The primary factor
was the requirement of conversational context to
understand the conveyed hate. At stage (1), we
provide them with the definition of hate speech and
examples of explicit and implicit hate speech. At
stage (2), we provide complete conversations and
ask them to annotate implicit or explicit in a binary
fashion. Cohen’s Kappa Scores for inter-annotator
agreement are provided with the dataset details in
Appendix A.

3.2 Baselines

Due to the acute lack of prior work in this space,
beyond just hate speech classification, we also com-
pare our method with systems proposed in the thriv-
ing fake news detection literature, which consid-
ers conversational and user contexts to detect fake
news. Some of these systems had to be adapted

to our task, and we describe about the working of
each baseline in detail in Appendix B. Specifically,
we compare CoSyn with Sentence-BERT (Reimers
and Gurevych, 2019), ConceptNet, HASOC (Fa-
rooqi et al., 2021), Conc-Perspective (Pavlopoulos
et al., 2020), CSI (Ruchansky et al., 2017), GCAN
(Lu and Li, 2020), HYPHEN (Grover et al., 2022),
FinerFact (Jin et al., 2022), GraphNLI (Agarwal
et al., 2022), DUCK (Tian et al., 2022), MRIL
(Sawhney et al., 2022a) and Madhu (Madhu et al.,
2023).

3.3 Hyperparameters

We decide on the best hyper-parameters for CoSyn
based on the best validation set performance us-
ing grid search. The optimal hyperparameters are
found to be, batch-size b = 32, HGCN output em-
bedding dimension g = 512, hidden dimension
of CHST h = 768, latent dimension of HFAN
| = 100, learning rate Ir = 1.3e~2, weight decay
$ = 3.2¢~4, and dropout rate § = 0.41.

3.4 Results and Ablations

Table 1 compares the performance of CoSyn with
all our baselines on 6 hate speech datasets. As we
see, Cosyn outperforms all our baselines both on
the entire dataset and on the implicit subset, thus
showing its effectiveness for implicit hate speech
detection. Despite the ambiguous nature of implicit
hate speech, CoSyn has high precision scores for
implicit hate speech, thus implying that it mitigates
the problem of false positives better than other base-
lines. One common observation is that our bias
invariant SentenceBERT approach emerges as the
most competitive baseline to CoSyn, thereby re-
inforcing that most prior work do not effectively
leverage external context.

When evaluated on the entire dataset, CoSyn
achieves absolute improvements in the range of
5.1% - 35.2% on Reddit, 4.0% - 45.0% on CAD,
4.8% - 22.4% on DIALOCONAN, 3.9% -42.7% on
GAB, 9.7% - 38.4% on ICHCL and 5.8% - 31.6%
on Latent Hatred ober our baselines. When eval-
uated on the implicit subsets, CoSyn achieves ab-
solute improvements in the range of 5.1% - 57.9%
on Reddit, 8.6% - 31.3% on CAD, 18.2% - 40.7%
on DIALOCONAN, 2.9% - 28.5% on GAB, 8.2%
- 19.5% on ICHCL and 1.2% - 18.1% on Latent
Hatred.

Table 2 ablates the performance of CoSyn, re-
moving one component at a time to show the sig-
nificance of each. All results have been averaged
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| Overall | Implicit I Overall | Implicit I Overall | Implicit

| " | » | R | | P | R |CF|RF| F | P | R|F |P|R|CF|RF|F | P | R|F | P | R |CF|RF
Baseline | Reddit I CAD I DIALOCONAN
SentenceBert 7112 6335 8L06 | 7605 77.01 75.11 2245 18.06 || 46.89 5130 43.18 | 49.01 4803 50.03 3540 - || 4623 3720 60.70 | 3475 2646 50.60 49.98 29.55
ConceptNet 5825 5872 5873|2643 3257 2223 3334 2217 || 56.68 5422 59.37 | 3942 4250 3675 2872 - | 3945 3422 4656 | 24.53 2590 2329 35.15 1572
HASOC 5621 5186 61.35| 289 3148 2671 3550 2035 | S0.11 4754 5297 | 40.61 4675 3589 3029 - [ 43.67 3245 6674 | 2722 23.80 3178 2845 17.02
Conc-Perspective | 5621 51.86 6135 [ 2575 29.65 2275 27.25 2450 || 40.11 42.50 37.97 | 3334 3560 3134 2889 - || 3533 3216 39.19 | 2233 2065 2430 31.20 18.92
cs1 5277 5090 54.80 | 33.40 3025 38.28 34.00 20.50 | 65.80 63.18 68.64 | 43.14 4425 4200 3035 - [ 4223 4501 39.77 | 2625 28.90 24.05 30.60 17.55
GCAN 5475 57.94 51.89 2325 30.00 1898 13.13 1550 | 69.31 7100 67.69 | 44.34 4560 43.13 3378 - [ 3133 3110 3267 | 3133 3280 2998 3470 18.60
HYPHEN 5344 5512 5438 (2500 27.10 23.20 2740 20.00 | 42.65 40.11 4550 | 32.80 3022 3586 2998 - [ 34.67 3880 31.34 | 1640 20.00 13.89 19.19 12.30
FinerFact 6325 6214 6440 | 27.11 3025 2456 40.55 2570 || 6536 64.00 66.77 | 2625 30.12 2326 1822 - [ 3070 28.89 3270 | 1560 1820 13.60 2115 18.11
Graph NLI 41.04 5702 3202|2603 4250 1976 5501 4500 || 2825 68.10 17.82 | 47.40 45.66 49.27 2275 - | 3235 3144 3331 [ 2411 2189 2683 39.02 1650
DUCK 60.10 61.89 5840|3423 2626 49.15 4055 3230 | 30.66 3250 29.02 [ 28.11 2425 3343 2215 - [ 28.60 2820 29.01 | 2045 1823 2328 2689 14.40
HCN 56.01 5564 5638 | 0.03 3118 2896 2690 21.67 | 34.63 37.18 3241 [27.65 2230 3637 23.87 39.65 34.67 4630 [ 2531 2389 2691 22.19 1590
MRIL 5891 57.30 60.61 | 3176 30.12 33.58 36.67 32.05 | 3441 3527 3359 | 40.65 4290 38.62 21.35 40.82 3945 4228 2509 2231 2866 20.77 1631
Madhu 70.58 6528 76.82 (7679 7779 7581 2739 2334 | 5047 5572 46.13 | 5177 5067 5291 36.63 4645 4006 5526 | 3696 29.44 49.64 47.62 33.82
CoSyn (ours) 7623 79.07 7358 | 8112 8015 8212 6023 59.12 || 7326 70.07 7675 | 5759 5927 5601 3819 - || 5102 5292 4925 5298 54.67 5139 4877 54.00

| GAB | ICHCL | Latent Hatred
SentenceBert 5031 42.67 61.28 | 40.03 49.78 3347 2406 13.10 | 79.86 81.03 78.82 | 37.32 36.33 38.11 36.69 37.11 || 58.82 4545 83.33 3846 3125 5000 27.05 -
ConceptNet 4782 4872 4695|1929 2523 1561 1612 1012 | 69.11 6823 70.01 | 2829 2827 28.31 2891 27.89 || 48.12 4687 4943 | 3723 3445 4049 2256 -
HASOC 3945 4344 3613|1654 2201 1321 1519 1271 || 72.53 7267 7251 [ 3431 3509 3356 3528 3211 | 5047 5222 48.83 | 39.82 3722 4281 3521 -
Conc-Perspective | 5147 4723 56.54 | 1823 2054 1638 2429 1845 || 7118 70.14 7225 | 3118 29.59 3294 3046 29.82 || 51.22 5379 48.88 | 40.11 38.12 4231 3437 -
cst 49.62 5122 47.17 | 20.60 2224 19.18 23.50 1834 [ 69.47 7520 64.55 2650 24.01 30.15 23.64 1931 || 5625 5311 59.70 | 42.06 32.80 5859 2125 -
GCAN 2400 3200 27.00 | 2647 3025 23.53 1720 1536 || 7422 7211 7645 3522 3620 3429 3214 2647 | 56.80 5455 59.24 | 4024 3165 5523 2071 -
HYPHEN 4832 4519 5192|2350 2521 2200 2860 1945 || 7272 67.11 7441 | 3334 27.66 4195 3466 3421 || 5320 5160 5490 4240 47.89 3804 3411 -
FinerFact 53.00 52.65 53.35| 1850 24.00 1505 23.68 1504 || 69.11 6743 70.87 [ 32.27 3382 3085 2490 1865 | 52.11 4832 56.54 | 5204 42.67 66.68 3200 -
Graph NLI 50.00 5322 47.15 (4212 4500 39.58 47.00 3200 | 5117 4298 6322 2653 2129 3519 27.65 28.15 | 33.10 2524 48.07 | 4825 3924 62.63 3300 -
DUCK 6278 6050 65.30 | 3570 36.85 34.62 3620 24.60 || 78.36 7842 7830 | 37.88 37.64 3812 3648 3559 || 5600 5850 5375|3515 3000 4244 2616 -
HCN 5251 53.88 S1.21|41.60 46.11 37.89 2425 2897 | 6536 6045 71.14 | 27.66 27.03 2832 2503 27.99 | 5047 52.39 4868 | 30.11 3296 27.71 2132
MRIL 6121 6075 61.67 | 4092 33.65 5219 4201 33.89 | 6671 67.87 65.59 [ 30.22 31.65 2891 29.01 29.89 | 5732 54.88 59.98 | 40.16 37.80 42.83 37.61
Madhu 5294 45.19 6391|4115 4872 3561 2684 17.77 | 8201 84.63 79.55 [ 39.56 39.00 40.14 39.81 39.72 | 59.52 47.14 80.72 | 40.72 33.56 5175 28.19
CoSyn (ours) 66.71 6443 69.15|4500 37.01 57.38 4622 3829 | 89.53 90.55 88.53 | 46.03 4626 4582 4685 4589 | 64.65 6192 67.63 5328 47.66 5549 4012 -

Table 1: Result comparison of CoSyn with our baselines on 6 hate speech datasets. We compare performance on both the overall
dataset and the implicit subset. C.F; and R.F; indicate F; scores measured on only comments and replies, respectively. CoSyn
outperforms all our baselines with absolute improvements in the range of 3.4% - 45.0% when evaluated on the entire dataset and
1.2% - 57.9% when evaluated on only the implicit subset. — indicates conversation trees in the dataset did not have replies.

across all 6 datasets. Some major observations in-
clude (1) CoSyn sees a steep drop in performance
when used without user context (we model only
the conversation context with a vanilla Tree-LSTM
in the hyperbolic space). This proves the effec-
tiveness of the user’s personal context. Addition-
ally, modeling user context with HFAN and HGCN
proves to be more effective than just feeding mean-
pooled historical utterance embeddings into CSHT.
(2) Modeling in the Euclidean space results in an
overall F1 drop of 3.8%. We reinforce the effective-
ness of modeling in the hyperbolic space through
our findings in Fig. 2.

3.5 Results Analysis

In Fig. 4, we show test set predictions from 4 differ-
ent conversation trees from the ICHCL dataset with
an attempt to study the effect of conversational and
author context for target utterance classification.
We notice that hateful users possess high degrees
of homophily and are predominantly hateful over
time. It also reveals a limitation of CoSyn where
insufficient context from the parent leads to a false
positive (comment in the 4th example).

4 Related Work

Prior research on identifying hate speech on social
media has proposed systems that can flag online
hate speech with remarkable accuracy (Schmidt
and Wiegand, 2019). However, as mentioned

Ablations I Overall TImplicit
| R P R F, P R CommentF; ReplyF,;
CoSyn (ours) 70.23 69.83 70.82 | 56.00 54.17 58.04 46.73 49.32
- DFT 67.54 68.24 69.29 | 54.52 52.57 57.34 45.22 46.92
- HFAN 66.62 65.32 6623 | 54.68 51.78 58.04 45.44 47.04
- HGCN 66.56 6698 6592 | 53.28 52.02 56.98 45.12 46.32
- HFAN - HGCN 6529 64.71 6555|5214 51.12 5638 4291 46.29
- User Context 6231 62.94 6421 | 4872 48.94 4953 39.88 41.19
BiCHST — UniCHST 68.67 6823 68.36 | 55.29 52.78 57.89 46.09 47.53
Hyperbolic — Euclidean | 66.47 66.48 67.21 | 54.83 54.14 56.41 45.44 47.41
Table 2: Ablation study on Cosyn. Results are averaged

across all 6 datasets.

earlier, prior efforts have focused primarily on
classifying overt abuse or explicit hate speech
(Schmidt and Wiegand, 2019) with little or no
work on classifying implicit hate speech or that
conveyed in coded language. The lack of research
on this topic can also be attributed to existing
datasets being skewed towards explicitly abusive
text (Waseem and Hovy, 2016). Recently, this
area of research has seen growing interest, with
several datasets and benchmarks released for
evaluating the performance of existing hate speech
classifiers in identifying implicit hate speech
(Caselli et al., 2020; ElSherief et al., 2021; Sap
et al., 2019). One common observation is that
most prior systems from literature fail to identify
implicit hate utterances (ElSherief et al., 2021).
Lin et al. (Lin, 2022) proposes one of the first
systems to classify implicit hate speech leveraging
world knowledge. However, they evaluate their
performance on only Latent Hatred, which lacks
conversational context. Additionally, acquiring
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User 1

Today respected #PERSON called. He only spoke his mind. It would be
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Comment.
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User 7
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&

User 8
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High level meeting was the excuse I made in college events I was
1 3

ﬁ

©

&

©

User 4

Parent Post

In #LOC, some believers have been going to cow shelters once a
week to cover their bodies in cow dung and urine in the hope it will
boost their immunity against, or help them recover from, COVID-19 |

#NAME. V‘Z/e/

Comment

M

User 5

&7

¥ e

1, 2 3
All thanks to the highly educated ruling party..! €& > > X

User 6 Reply

L You can save Oxygen by not breathing. Think about
i 1
1

S5 4

E

[ |

Parent Post

User 10

I am COVID positive and recovering. Your love ...

44

Comment
E

(-

User 11

[—

organizing, when there was a problem 2 In which JAMAT did <NAME> ji go? 1, 2 3
XX v O X X X
User 9 reply \‘ 3 User 12 el
Thank you #LOC f**** sake. About time. #LOC needs " " s
to learn from this and be well prepared for these types O O bettr than standing with t3rrorists , #NAME1 ‘2/ 3
of events. 1 2,3 X
X ¥V O
Hateful Engagement Scale 2 3 Predictions made by: 1. SentenceBert w/ Classification Head E . Explcit

Historical Hateful
Engagement

‘ Non-hateful 'Tg

Halespeech

2. CoSyn without User Context 3. CoSyn.

0 1 X \/ / / represents correct prediction _ represents wrong prediction I HaleSecn

Figure 4: We study 4 conversation trees in the ICHCL dataset, including the prediction of different classifiers on the
utterance to be assessed, the historical engagement of the author of the utterance, and the social relations between

the different authors.

world knowledge through knowledge graphs
(KGs) requires language-specific KGs, and short
utterances in conversation trees make the retrieval
weak. In the past, to classify context-sensitive
hate speech in existing open-source datasets,
researchers incorporated conversational context
for hate speech classification (Gao and Huang,
2017; Pérez et al., 2022). However, these sys-
tems employ naive fusion and fail to leverage
structural dependencies between utterances in the
conversation tree. Another line of work explores
author profiling using community-based social
context (connections a user has with other users)
(Pavlopoulos et al., 2017; Mishra et al., 2018).
However, the representations are not learned
end-to-end and employ naive fusion.

Hyperbolic networks have been explored
earlier for tasks that include modeling user
interactions in social media, like suicide ideation
detection (Sawhney et al., 2021b, 2022b), fake
news detection (Grover et al., 2022), online time
stream modeling (Sawhney et al., 2021a), etc. All
these works show that modeling the hierarchical
and scale-free nature of social networks and data
generated online benefits from modeling in the
hyperbolic space over Euclidean space.

5 Conclusion

In this paper, we present CoSyn, a novel learning
framework to detect implicit hate speech in online
conversations. CoSyn jointly models the conversa-
tional context and the author’s historical and social
context in the hyperbolic space to classify whether
a target utterance is hateful. Leveraging these con-
texts allows CoSyn to effectively detect implicit
hate speech ubiquitous in online social media.
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Limitations

In this section, we list down some potential limita-
tions of CoSyn:

1. Lacking world knowledge is one of CoSyn’s
potential limitations. The inclusion of world
knowledge could serve as a crucial context,
enhancing CoSyn’s performance in this task
(Sheth et al., 2022). We would like to explore
this as part of future work.

2. Table 2 clearly demonstrates that CoSyn’s ef-
fectiveness relies on the cohesive integration
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of all its components. Therefore, as a direc-
tion for future research, our focus will be on
enhancing the performance of individual com-
ponents.

Ethics Statement

Our institution’s Institutional Review Board (IRB)
has granted approval for this study. In the annota-
tion process, we took precautions by including a
cautionary note in the instructions, alerting annota-
tors to potentially offensive or distressing content.
Annotators were also allowed to discontinue the
labeling process if they felt overwhelmed.

Additionally, in light of the rapid proliferation of
offensive language on the internet, numerous AO-
based frameworks have emerged for hate speech
detection. Nevertheless, a significant drawback
of many current hate speech detection models is
their narrow focus on explicit or overt hate speech,
thereby overlooking the identification of implicit
expressions of hate that hold equal potential for
harm. CoSyn could ideally identifying implicit
hate speech with remarkable accuracy, preventing
targeted communities from experiencing increased
harm online.
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A Dataset Details

Reddit. The Reddit hate speech intervention
dataset (Qian et al., 2019) has 5,020 conversations,
including 22,324 comments. On average, each con-
versation consists of 4.45 comments, and the length
of each comment is 58.0 tokens. 5,257 comments
are labeled hate speech, and 17,067 are labeled non-
hate speech. Most conversations, 3,847 (76.6%),
contain hate speech. Each conversation with hate
speech has 2.66 responses on average, for a to-
tal of 10,243 intervention responses. The average
length of the intervention responses is 17.96 tokens.
User history, the timestamp for each post, and the
username for each post were fetched using the Red-
dit API?. Dataset statistics can be found in Table
3. The Cohen’s Kappa Scores for inter-annotator
agreement for 3 pairs of annotators annotating for
implicit hate speech were 0.78, 0.74, and 0.71.

GAB. The GAB (Qian et al., 2019) 11,825 con-
versations, consisting of 33,776 posts. On average,

Zhttps://www.reddit.com/dev/api/
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each conversation consists of 2.86 posts, and the
average length of each post is 35.6 tokens. 14,614
posts are labeled hate speech, and 19,162 are la-
beled non-hate speech. Nearly all the conversa-
tions, 11,169 (94.5%), contain hate speech. 31,487
intervention responses were originally collected for
conversations with hate speech, or 2.82 responses
per conversation on average. The average length
of the intervention responses is 17.27 tokens. User
history was fetched using the GAB API®. The meta-
data for each fetched post provides information like
the author and timestamp for a post. Dataset statis-
tics can be found in Table 6. The Cohen’s Kappa
Scores for inter-annotator agreement for 3 pairs of
annotators annotating for implicit hate speech were
0.85, 0.82, and 0.91.

DIALOCONAN. The DIALOCONAN dataset
(Bonaldi et al., 2022) has more than 3K dialog-
ical interactions between two interlocutors, one
acting as the hater and the other as the NGO op-
erator, for a total of more than 16K turns. The
previous tweets of a particular user were consid-
ered to be the history for that. Dataset statistics can
be found in Table 7. The Cohen’s Kappa Scores for
inter-annotator agreement for 3 pairs of annotators
annotating for implicit hate speech were 0.79, 0.78,
and 0.79.

CAD. The CAD dataset (Vidgen et al., 2021) is an
annotated dataset of =~ 25,000 Reddit entries. The
dataset is labeled with 6 conceptually different cate-
gories, including Identity-directed, Person-directed,
Affiliation-directed, Counter Speech, Non-hateful
Slurs, and Neutral. The dataset is also annotated
with salient subcategories, such as whether per-
sonal abuse is directed at a person in the conversa-
tion thread or someone outside it. This taxonomy
offers greater coverage and granularity of abuse
than previous work. Each entry can be assigned to
multiple primary and/or secondary categories. The
dataset is also annotated in context, where each en-
try is annotated in the context of the conversational
thread it is part of. Every annotation also has a la-
bel for whether contextual information was needed
to make the annotation. User history, the times-
tamp for each post, and the username for each post
were fetched using the Reddit API*. Dataset statis-
tics can be found in Table 5. The Cohen’s Kappa
Scores for inter-annotator agreement for 3 pairs of
annotators annotating for implicit hate speech were

3https://www.npmjs.com/package/gab-api
*“https://www.reddit.com/dev/api/

Algorithm 1 CoSyn: Implicit Hatespeech Detection

Given:

N distinct conversation trees 7" indexed by 77,

L distinct users where each user is indexed by u;

historical utterances of user u, H"

T

each tree T,,, = {tOT"7 .- -7t_7.T”7 sy tyt}
Initialize:

e(.) « e(JTm) >Bias-invariant Encoder Training

I/{:L"L"S” — e(H"l) >Encode historical utterances using HFAN.

Uy, + HGCNU"))
Process:

Considering t?” belonging to user u;

X e(t]™)

hj < CSHT(X;,Uy,)

y9" = Softmax (MLP ([log, (h;); X;]))
return y? ¢

>J T utterances

>Modeling Personal User Context

>CSHT
>Final Prediction

0.65, 0.73, and 0.69.

ICHCL. The ICHCL dataset (Modha et al., 2021)
(Identification of Conversational HateSpeech in
Code-Mixed Languages) consists of hind-english
code-switched Twitter conversations. The primary
task is to identify comments and replies that can
be considered acceptable when considered alone
but may appear hateful, profane, or offensive when
the context of a parent tweet is considered. Binary
classification of such contextual posts was consid-
ered in this subtask. Around 7,000 code-mixed
postings in English and Hindi were downloaded
from Twitter and annotated in-house by the authors.
User history was fetched using the Twitter API°.
Dataset statistics can be found in Table 8. The Co-
hen’s Kappa Scores for inter-annotator agreement
for 3 pairs of annotators annotating for implicit
hate speech were 0.72, 0.81, and 0.74.

Latent Hatred. The Latent Hatred dataset (E1Sh-
erief et al., 2021) is a hate speech dataset of 27K
Gab messages annotated according to a 6-class tax-
onomy that includes White Grievance, Incitement
to Violence, Inferiority Language, Irony, Stereo-
types and Misinformation, and Threatening and
Intimidation. Comments for every post, the user’s
user history, and the timestamp for each post were
fetched using the Twitter API®. Dataset statistics
can be found in Table 4. The Cohen’s Kappa Scores
for inter-annotator agreement for 3 pairs of annota-
tors annotating for implicit hate speech were 0.91,
0.96, and 0.89.

B Baseline Descriptions

Sentence-BERT w/ Classification Head We use
our bias-invariant Utterance Encoder trained and

Shttps://developer.twitter.com/en/docs/twitter-api
®https://developer.twitter.com/en/docs/twitter-api

6171



Split Convs. Comments Replies | Hate Non-Hate | Implicit Explicit Split Convs. Comments Replies | Hate Non-Hate | Implicit Explicit
Train 13382 3604 6755 | 2065 11317 1160 905 Train 4643 3094 1483 | 2389 2254 1006 1383
Val 4461 1155 2314 653 3808 388 265 Val 1348 684 397 695 653 388 307
Test 4461 1181 2280 706 3755 400 306 Test 1097 849 483 452 645 184 268

Table 3: Dataset statistics for the Reddit dataset.

Split Convs. Comments Replies | Hate Non-Hate | Implicit Explicit
Train 12485 418 - 3836 8649 3246 590
Val 4162 83 - 1309 2853 1096 213
Test 4162 76 - 2373 1789 2138 235

Table 4: Dataset statistics for the Latent Hatred Dataset.

Split  Convs. C Replies | Hate Non-Hate | Implicit Explicit
Train 13584 12704 - 2511 11073 1004 1507
Val 4526 4169 - 834 3692 375 459
Test 5307 4884 - 965 4342 405 560

Table 5: Dataset statistics for the CAD dataset

Split Convs. Comments Replies | Hate Non-Hate | Implicit Explicit
Train 18300 5264 6948 | 6088 12212 2435 3653
Val 6100 1789 2336 1975 4125 737 1238
Test 6100 1809 2315 1976 4124 741 1235

Table 6: Dataset statistics for the Gab dataset

Split Convs. Comments Replies | Hate Non-Hate | Implicit Explicit
Train 11675 2141 7393 | 5837 5838 1575 4262
Val 2436 458 1520 | 1218 1218 365 853
Test 2514 460 1594 | 1257 1257 336 921

Table 7: Dataset statistics for the DIALOCONAN
dataset.

inferred on utterances in isolation for this baseline.

ConceptNet Similar to Sentence-BERT but fused
with world knowledge from ConceptNet inspired
from (ElSherief et al., 2021; Lin, 2022).

HASOC (Farooqi et al., 2021) We use the system
proposed by the winning solution in the HASOC
2021 challenge. The authors propose to train
a transformer encoder by concatenating parent-
comment-reply chains separated by the SEP token.
Conc-Perspective (Pavlopoulos et al., 2020) Simi-
lar to HASOC, but context concatenation is done
only during inference and not during training.

CSI (Ruchansky et al., 2017) Capture, Score, and
Integrate (CSI), originally proposed for fake news
classification, implements a neural network to
jointly learn the temporal pattern of user activity on
a given utterance, and the user characteristic based
on the behavior of users.

GCAN (Lu and Li, 2020) Graph-aware Co-
Attention Network (GCAN), originally proposed
for fake news classification, implements a neu-
ral network that uses the target utterance and its

Table 8: Dataset statistics for the ICHCL dataset.

propagation-based user’s features.

HYPHEN (Grover et al., 2022) HYPHEN or
Discourse-Aware Hyperbolic Fourier Co-Attention,
proposed for social-text classification and incor-
porates conversational discourse knowledge with
Abstract Meaning Representation graphs and em-
ploys co-attention in the hyperbolic space.
FinerFact (Jin et al., 2022) FinerFact, originally
proposed for fake news detection, incorporates a
fine-grained reasoning framework by introducing
a mutual reinforcement-based method for incorpo-
rating human knowledge and designs a prior-aware
bi-channel kernel graph network to model subtle
differences between pieces of evidence.
GraphNLI (Agarwal et al., 2022) Graph-based
Natural Language Inference Model (GraphNLI)
proposes a graph-based deep learning architecture
that effectively captures both the local and the
global context in online conversation trees through
graph-based walks.

DUCK (Tian et al., 2022) Rumour detection with
user and comment networks (DUCK), similar to
CoSyn, employs graph attention networks to jointly
model the contents and the structure of social media
conversation trees, as well as the network of users
who engage in these conversations.

C Additional Details

Model Parameters: Sentence-BERT has ~ 110M
parameters with 12-layers of encoder, 768-hidden-
state, 2048 feed-forward hidden-state and 8-heads.
CoSyn has ~ 18M parameters.

Compute Infrastructure: All our experiments are

conducted on a single NVIDIA A100 GPU. An
entire CoSyn training pipeline takes ~ 40 minutes.

Implementation Software and Packages: We im-
plement all our models in PyTorch 7 and use the
HuggingFace ® implementations of SentenceBERT.

Potential Risks: CoSyn relies on training data that
may contain biases inherent in the data sources.

"https://pytorch.org/
8https://huggingface.co/
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The detection system may inadvertently amplify
or reinforce existing societal biases if these biases
are not adequately addressed. For example, if the
training data is biased towards specific demograph-
ics or ideologies, the model might exhibit unfair
treatment or misclassification of certain groups,
leading to potential discrimination or harm. Un-
derstanding the contextual nuances of language is
a complex task. CoSyn might also be prone to
over-generalization, potentially resulting in false
positives or misclassification of non-hateful speech.
The risk is that legitimate expressions of opinion
or controversial yet non-hateful statements may be
mistakenly flagged as hate speech. This could in-
advertently lead to censorship or suppression of
freedom of speech, limiting open dialogue and crit-
ical discussions on important social issues.
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