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Abstract

End-to-end task-oriented dialogue (EToD) can di-
rectly generate responses in an end-to-end fashion
without modular training, which attracts escalat-
ing popularity. The advancement of deep neural
networks, especially the successful use of large
pre-trained models, has further led to significant
progress in EToD research in recent years. In this
paper, we present a thorough review and provide
a unified perspective to summarize existing ap-
proaches as well as recent trends to advance the
development of EToD research. The contributions
of this paper can be summarized: (1) First survey:
to our knowledge, we take the first step to present
a thorough survey of this research field; (2) New
taxonomy: we first introduce a unified perspective
for EToD, including (i) Modularly EToD and (ii)
Fully EToD;, (3) New Frontiers: we discuss some
potential frontier areas as well as the corresponding
challenges, hoping to spur breakthrough research
in EToD field; (4) Abundant resources: we build
a public website!, where EToD researchers could
directly access the recent progress. We hope this
work can serve as a thorough reference for the
EToD research community.

1 Introduction

Task-oriented dialogue systems (ToD) can assist
users in achieving particular goals with natural
language interaction such as booking a restaurant
or navigation inquiry. This area is seeing grow-
ing interest in both academic research and indus-
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(c) Fully end-to-end task-oriented dialogue framework.

Figure 1: Pipeline Task-oriented Dialogue System (a),
Modularly End-to-end Task-oriented Dialogue System
(b) and Fully End-to-end Task-oriented Dialogue Sys-
tem. The dashed box denotes separately trained while
the solid line box represents end-to-end training.

try deployment. As shown in Figure 1(a), con-
ventional ToD systems utilize a pipeline approach
that includes four connected modular components:
(1) natural language understanding (NLU) for ex-
tracting the intent and key slots of users (Qin
et al., 2020a, 2021b); (2) dialogue state tracking
(DST) for tracing users’ belief state given dialogue
history (Balaraman et al., 2021a; Jacqmin et al.,
2022a); (3) dialogue policy learning (DPL) to de-
termine the next step to take (Kwan et al., 2022);
(4) natural language generation (NLG) for generat-
ing dialogue system response (Wen et al., 2015; Li
et al., 2020).

While impressive results have been achieved in
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Figure 2: Taxonomy for End-to-end Task-orient Dialogue (EToD).

previous pipeline ToD approaches, they still suffer
from two major drawbacks. (1) Since each mod-
ule (i.e., NLU, DST, DPL, and NLG) is trained
separately, pipeline ToD approaches cannot lever-
age shared knowledge across all modules; (2) As
the pipeline ToD solves all sub-tasks in sequential
order, the errors accumulated from the previous
module are propagated to the latter module, result-
ing in an error propagation problem. To solve these
issues, dominant models in the literature shift to
end-to-end task-oriented dialogue (EToD). A criti-
cal difference between traditional pipeline ToD and
EToD methods is that the latter can train a neural
model for all the four components simultaneously
(see Fig. 1(b)) or directly generate the system re-
sponse via a unified sequence-to-sequence frame-
work (see Fig. 1(c)).

Thanks to the advances of deep learning ap-
proaches and the evolution of pre-trained models,
recent years have witnessed remarkable success
in EToD research. However, despite its success,
there remains a lack of a comprehensive review of
recent approaches and trends. To bridge this gap,
we make the first attempt to present a survey of
this research field. According to whether the inter-
mediate supervision is required and KB retrieval
is differentiable or not, we provide a unified tax-
onomy of recent works including (1) modularly
EToD (Mehri et al., 2019; Le et al., 2020) and (2)
fully EToD (Eric and Manning, 2017; Wu et al.,
2019; Qin et al., 2020b). Such taxonomy can cover

all types of EToD , which help researchers to track
the progress of EToD comprehensively. Further-
more, we present some potential future directions
and summarize the challenges, hoping to provide
new insights and facilitate follow-up research in
the EToD field.

Our contributions can be summarized as follows:

(1) First survey: To our knowledge, we are the
first to present a comprehensive survey for
end-to-end task-oriented dialogue system;

(2) New taxonomy: We introduce a new taxon-
omy for EToD including (1) modularly EToD
and (2) fully EToD (as shown in Fig. 2);

(3) New frontiers: We discuss some new frontiers
and summarize their challenges, which shed
light on further research;

(4) Abundant resources: we make the first at-
tempt to organize EToD resources including
open-source implementations, corpora, and
paper lists at https://etods.net/.

We hope that this work can serve as quick access
to existing works and motivate future research?.

2 Background

This section describes the definition of modu-
larly end-to-end task-oriented dialogue (Modularly

Due to the page limitation, the detailed related work sec-
tion can be found in the Appendix B.
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EToD §2.1) and fully end-to-end task-oriented dia-
logue (Fully EToD §2.2), respectively.

2.1 Modularly EToD

Modularly EToD typically generates system re-
sponse through sub-components (e.g., dialog state
tracking (DST), dialogue policy learning (DPL)
and natural language generation NLG)). Unlike tra-
ditional ToD which trains each component (e.g.,
DST, DPL, NLG) separately, modularly EToD
trains all components in an end-to-end manner
where the parameters of all components are op-
timized simultaneously.

Formally, each dialogue turn consists of a user
utterance v and system utterance s. For the n-th
dialog turn, the agent observes the dialogue his-
tory H = (u1,s1), (u2,52), ..oy (Un—1,Sn—1), Un
and the corresponding knowledge base (KB) as
KCB while it aims to predict a system response S,
denoted as S.

Modularly EToD first reads the dialogue history
‘H to generate a belief state 3:

B = Modularly_EToD(H), (1)

where B consists of various slot value pairs (e.g.,
price: cheap) for each domain.

The generated belief state B is used to query
the corresponding ICI5 to obtain the database query
results D:

D = Modularly_EToD(B, KB), ()

Then, H, B, and D is used to decide dialogue
action A. Finally, modularly EToD generates the
final dialogue system response S conditioning on
H, B, D and A:

S = Modularly_EToD(H, B, D, A), 3)

2.2 Fully End-to-end Task-oriented Dialogue

In comparison to modularly EToD, Fully
EToD (Eric and Manning, 2017) has two crucial
differences: (1) modularly EToD leverages the
generated beliefs as API to query KB, which
is non-differentiable. In contrast, fully EToD
directly encodes KB and uses a neural network
to query the KB in a differentiable manner. (2)
Unlike modularly EToD which requires modular
annotation (e.g., DST, DPL annotation) for
intermediate supervision, fully EToD can directly
generate system response given only dialogue
history and the corresponding KB;

Formally, fully EToD can be denoted as:

S = Fully_EToD(H, KB). 4)

3 Taxonomy of EToD Research

This section describes the progress of EToD ac-
cording to the new taxonomy including modularly
EToD (§3.1) and Fully EToD (§3.2).

3.1 Modularly EToD

We further divide the modularly EToD into two
sub-categories (1) modularly EToD without a pre-
trained model (§3.1.1) and (2) modularly EToD
with a pre-trained model (§3.1.2) according to
whether or not a pre-trained model is used, which
are shown in Fig. 3 (a) and (b).

3.1.1 Modularly EToD without PLM

One line of work mainly focuses on optimizing
the whole dialogue with supervised learning (SL)
while another line considers incorporating a rein-
forcement learning (RL) approach for optimizing.

Supervised Learning. Liu and Lane (2017) first
presented an LSTM-based (Hochreiter and Schmid-
huber, 1997) model which jointly learns belief
tracking and KB retrieval. Wen et al. (2017) also
proposed an EToD model with a modularized de-
sign, in which each module transmits its latent rep-
resentation instead of predicted labels to the next
module. Lei et al. (2018) introduced Sequicity,
a two-stage CopyNet (Gu et al., 2016), merg-
ing belief tracking and response generation in a
sequence-to-sequence model. MOSS (Liang et al.,
2019) expanded Sequicity with NLU and DPL
modules for comprehensive dialogue supervision.
Shu et al. (2019) modeled language understand-
ing and state tracking tasks jointly using a unified
seq2seq approach and separate GRUs for different
slot types. Mehri et al. (2019) explicitly incorpo-
rated the dialogue structure information into EToD,
enhancing the domain generalizability. Zhang et al.
(2019) considered multiple appropriate responses
under the same context in ToD and improved dia-
logue policy diversity by balancing the valid output
action distribution. LABES (Zhang et al., 2020b)
leveraged unlabeled dialogue data (i.e., without be-
lief state labels) to achieve semi-supervised learn-
ing of ToD.
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Figure 3: Three categories for EToD, including (a) Modularly EToD without PLM; (b) Modularly EToD with PLM
and (c) Fully EToD. Modularly EToD generates the system response with modularized components and train all
components in an end-to-end fashion (see (a) and (b)). Meanwhile, the KB retrieval of modularly EToD is by API
call that is non-differentiable. In contrast, fully EToD can directly generate system response given the dialogue
history and KB, which does not require the modularized components (see (c)). Besides, the KB retrieval process in
fully EToD is differentiable and can be optimized together with other parameters in EToD.

Reinforcement Learning. Reinforcement Learn-
ing (RL) has been explored as a supplement to su-
pervised learning in dialogue policies optimization.
Li et al. (2018) demonstrated less error propaga-
tion using RL-optimized networks than SL settings.
SL signals have also been incorporated into RL
frameworks, either by modifying rewards (Zhao
and Eskenazi, 2016) or adding SL cycles (Liu et al.,
2017). Approaches like LAVA (Lubis et al., 2020),
LaRL (Zhao et al., 2019), CoGen (Ye et al., 2022)
and HDNO (Wang et al., 2021) have explored the
modeling of latent representations. Work on RL-
optimized EToD training with human intervention
includes HCNs (Williams et al., 2017), human-
corrected model predictions (Liu et al., 2018; Liu
and Lane, 2018), and determining optimal time for
human intervention (Rajendran et al., 2019; Wang
et al., 2019).

3.1.2 Modularly End-to-end Task-oriented
Dialogue with Pre-trained Model

There are two main streams of PLM for modularly
EToD including (1) Decoder-only PLM (Radford
et al.) and (2) Encoder-Decoder PLM (Lewis et al.,
2019; Raffel et al., 2020).

Decoder-only PLM. Some works adopted GPT-
2 (Radford et al.) as the backbone of EToD mod-
els. Budzianowski and Vuli¢ (2019) first attempted
to employ a pretrained GPT model for EToD,
which considers dialogue context, belief state, and
database state as raw text input for the GPT model
to generate the final system response. Wu et al.

(2021b) introduced two separate GPT-2 models
to learn the user and system utterance distribu-
tion effectively. Hosseini-Asl et al. (2020) pro-
posed SimpleToD, recasting all ToD subtasks as
a single sequence prediction paradigm by optimiz-
ing for all tasks in an end-to-end manner. Wang
et al. (2022) re-formulated the task-oriented dia-
logue system as a natural language generation task.
UBAR (Yang et al., 2020b) followed the similar
paradigm with SimpleTOD. The core difference
is that UBAR incorporated all belief states in all dia-
logue turns while SimpleToD only utilized belief
states of the last turn.

Another series of works tried to modify the
pre-training objective of autoregressive transform-
ers. To this end, Li et al. (2019) replaced sys-
tem response ground truth with random distrac-
tor at a possibility during training and leveraged
a next utterance classifier to distinguish them.
Soloist (Peng et al., 2021) proposed an aux-
iliary task where the target belief state is replaced
with the belief state from unrelated samples for con-
sistency prediction. Kulhdnek et al. (2021) further
augmented GPT-2 by presenting a new dialogue
consistency classification task. The experimental
results show that these more challenging training
objectives bring significant improvements.

Encoder-decoder PLM. PLMs with an encoder-
decoder architecture such as BART (Lewis
et al., 2019), T5 (Raffel et al., 2020) and
UniLM (Dong et al., 2019) are also explored in
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Multiw0Z2.0 MultivOZ2.1
Model Inform (%) Success (%) BLEU Combined | Inform (%) Success (%) BLEU Combined
Modularly End-to-end Task-oriented Dialogue without Pre-trained Model
MD-Sequicity (Lei et al., 2018) - - - - 66.4 453 15.5 71.4
SFN+RL (Mehri et al., 2019) 73.8 58.6 16.9 83.0 73.8 58.6 16.9 83.0
DAMD (Zhang et al., 2019) 76.3 60.4 16.6 85.0 76.4 60.4 16.6 85.0
UniConv (Le et al., 2020) - - - - 72.6 62.9 19.8 87.6
LABES (Zhang et al., 2020b) - - - - 78.1 67.1 18.1 90.7
LAVA (Lubis et al., 2020) 91.8 81.8 12.0 98.8 - - - -
Modularly End-to-end Task-oriented Dialogue with Pre-trained Model

SimpleToD (Hosseini-Asl et al., 2020) 84.4 70.1 15.0 92.3 85.0 70.5 15.2 93.0
UBAR (Yang et al., 2020b) 954 80.7 17.0 105.1 95.7 81.8 16.5 105.3
MinTL-BART (Lin et al., 2020) 84.9 74.9 17.9 97.8 - - - -
AuGPT (Kulhdnek et al., 2021) 83.1 70.1 17.2 93.8 83.5 67.3 17.2 92.6
SOLOIST (Pengetal., 2021) 85.5 72.9 16.5 95.7 85.5 72.9 16.5 95.7
MTTOD (Lee, 2021) 91.0 82.6 21.6 108.3 91.0 82.1 21.0 107.5
PPTOD (Su et al., 2021) 89.2 79.4 18.6 102.9 87.1 79.1 19.2 102.3
SimpleToD-ACN (Wang et al., 2022) 85.8 72.1 15.5 94.5 - - - -
GALAXY (He et al., 2022b) 94.4 85.3 20.5 1104 95.3 86.2 20.0 110.8
SPACE3 (He et al., 2022a) 95.3 88.0 19.3 111.0 95.6 86.1 19.9 110.8
BORT (Sun et al., 2022) 93.8 85.8 18.5 108.3 - - - -

Table 1: Modularly EToD performance on MultiW0Z2.0 and MultiWOZ2.1. The highest scores are marked with
underlines. We adopted reported results from published literature (Zhang et al., 2020b, 2019; He et al., 2022b).

Model Match Success BLEU
Modularly EToD without Pre-trained Model
NDM (Wen et al., 2017) 90.4 83.2 21.2
Sequicity (Leietal., 2018) 92.7 854 25.3
FSDM (Shu et al., 2019) 93.5 86.2 25.8
MOSS (Liang et al., 2019) 95.1 86.0 259
LABES-S2S (Zhang et al., 2020b)  96.4 82.3 25.6
Modularly EToD with Pre-trained Model
ARDM (Wu et al., 2021b) - 86.2 254
SOLOIST (Peng et al., 2021) - 87.1 25.5
BORT (Sun et al., 2022) - 89.7 259
SPACE3 (He et al., 2022a) 97.7 88.2 23.7

Table 2: Modularly EToD performance on
CamRest676 (Wen et al.,, 2017) . We adopted
reported results from published literature (Zhang et al.
(2020b); Sun et al. (2022)). Match metric measures
whether the entity chosen at the end of each dialogue
aligns with the entities specified by the user.

EToD. MinTL (Lin et al., 2020) considered train-
ing EToD with PLMs in the Seq2Seq manner,
where two different decoders are introduced to
track belief state and predict response, respectively.
PPToD (Su et al., 2021) recast ToD subtasks into
prompts and leveraged the multitask transfer learn-
ing of TS5 (Raffel et al., 2020). Huang et al. (2022)
embedded KB information into the language model
for implicit knowledge access.

In addition, another series of works devised
unique pre-training objectives for encoder-decoder
transformers. GALAXY (He et al., 2022b) intro-
duced a dialog act prediction pre-training task for
policy optimization. Godel (Peng et al., 2022)
leveraged a new phase of grounded pre-training

designed to improve adaptation ability. BORT (Sun
et al., 2022) added a denoising reconstruction task
to reconstruct the original context from generated
dialogue states. MTToD (Lee, 2021) introduced a
span prediction pre-training task. SPACE-3 (He
et al., 2022a) further improved over GALAXY with
UniLM backbone, where five pre-training objec-
tives are applied to better understand semantic in-
formation for task-oriented dialogue. Recently,
encoder-decoder PLMs have shown the potential
of converting EToD into other task forms like
QA (Tian et al., 2022; Xie et al., 2022).

3.1.3 Leaderboard and Takeaway.

Leaderboard: Leaderboard for the widely used
datasets: MultiWOZ2.0, MultiwOZ2.1 and
Camrest 676 is shown in Table 1 and Table 2.
The widely used metrics are BLEU, Inform,
Success, and Combined. Detailed descriptions
of datasets and metrics are shown in Appendix A.1.

Takeaway: As seen, we have the following ob-
servations: (1) PLM Attains Improvement. We ob-
serve that most modularly EToD with PLM outper-
forms the modularly EToD without PLM, which in-
dicates that knowledge inferred from a pre-trained
model can benefit EToD; (2) Shared Knowledge
Leverage. Since each module (i.e., NLU, DST, PL,
NLG) is highly related, modularly EToD can en-
able the model to fully utilize shared knowledge
across all modules.
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Embedding Technique

Related Work

IMustration

a. Entity Triplet Representation

MemN2N (Bordes et al., 2017) , KVRet (Eric
and Manning, 2017), Mem2Seqg (Madotto
et al., 2018), BossNet (Raghu et al., 2019),
GLMP (Wu et al., 2019), DDMN (Wang
et al.,, 2020), DFNet (Qin et al., 2020b),
IR-Net (Maet al., 2021), WMM2Seq (Chen
et al., 2019b), MCL (Qin et al., 2021a)

b. Row-level Representation

KB-InfoBot (Dhingra et al., 2017),
MLM (Reddy et al., 2018), CDNet (Raghu

M= ==)

et al., 2021), DSR (Wen et al., 2018), ‘ s
KB-Retriever (Qin et al, 2019b), R"WZ
HM2Seq (Zeng et al., 2022)

c. Graph Representation GraphDialog (Yang et al, 2020a),

Fg2seq (He et al., 2020b), DialoKG (Rony
et al.,, 2022), GraphMemDialog (Wu
et al.,, 2021a), COMET (Gou et al., 2021),

MAKER (Wan et al., 2023)

Table 3: Three types of KB Representation in EToD, including (a) entity triple representation; (b) row-level

representation and (c) graph representation.

3.2 Fully EToD

In the following, we describe the recent dominant
fully EToD works according to the category of KB
representation, which is illustrated in Fig. 3(c).

3.2.1 Triplet Representation.

Specifically, given a knowledge base (KB), triplet
representation stores each KB entity in a (subject,
relation, object) representation. For example, all
triplets can be formularized as (centric entity of i
row, slot title of j" column, entity of i row in j™
column). (e.g., (Valero, Type, Gas Station)).

The KB entity representation is calculated by the
sum of the word embedding of the subject and rela-
tion using bag-of-words approaches. It is one of the
most widely used approaches for representing KB.
Specifically, Eric and Manning (2017) employed
a key-value retrieval mechanism to retrieve KB
knowledge triplets. Other works treat KB and dia-
logue history equally as triplet memories (Madotto
et al., 2018; Wu et al., 2019; Chen et al., 2019b;
He et al., 2020a; Qin et al., 2021a). Memory net-
works (Sukhbaatar et al., 2015) have been applied
to model the dependency between related entity
triplets in KB (Bordes et al., 2017; Wang et al.,
2020) and improves domain scalability (Qin et al.,
2020b; Ma et al., 2021). To improve the response
quality with triplet KB representation, Raghu et al.
(2019) proposed BOSS—NET to disentangle NLG
and KB retrieval and Hong et al. (2020) generated

responses through a template-filling decoder.

3.2.2 Row-level Representation.

While triplet representation is a direct approach for
representing KB entities, it has the drawback of
ignoring the relationship across entities in the same
row. To migrate this issue, some works investigated
the row-level representation for KB.

In particular, KB—InfoBot (Dhingra et al.,
2017) first utilized posterior distribution over KB
rows. Reddy et al. (2018) proposed a three-step re-
trieval model, which can select relevant KB rows in
the first step. Wen et al. (2018) used entity similar-
ity as the criterion for selecting relevant KB rows.
Qin et al. (2019b) employed a two-step retrieving
procedure by first selecting relevant KB rows and
then choosing the relevant KB column. Recently,
Zeng et al. (2022) proposed to store KB rows and
dialogue history into two separate memories.

3.2.3 Graph Representation

Though row-level representation achieves promis-
ing performance, they neglect the correlation be-
tween KB and dialogue history. To solve this issue,
a series of works focus on better contextualizing
entity embedding in KB by densely connecting enti-
ties and corresponding slot titles in dialogue history.
This can be done with either graph-based reasoning
or attention mechanism, where entity presentations
are fully aware of other entities or dialogue con-
text. To this end, Yang et al. (2020a) facilitated
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‘ Multiw0Z2.1

I SMD
|

Model BLEU EntF1(%) Sch.F1(%) Wea.F1(%) Nav.F1(%) H BLEU EntF1(%) Res.F1(%) AttF1(%) HotF1(%)
Entity Triplet Representation
KVRet (Eric and Manning, 2017) 13.2 48.0 62.9 533 445 - - - - -
Mem2Seq (Madotto et al., 2018) 12.6 334 49.3 32.8 20.0 6.6 21.6 224 22.0 21.0
GLMP (Wu et al., 2019) 14.8 60.0 69.6 62.6 53.0 6.9 324 38.4 244 28.1
BossNet (Raghu et al., 2019) 83 359 50.2 345 21.6 57 253 26.2 24.8 234
KB-Transformer (E. et al., 2019) 13.9 37.1 51.2 48.2 233 - - - - -
DDMN (Wang et al., 2020) 177 55.6 65.0 58.7 47.2 124 314 30.6 329 30.6
DFNet (Qin et al., 2020b) 14.4 62.7 73.1 57.6 57.9 9.4 35.1 409 28.1 30.6
TToS (He et al., 2020a) 17.4 55.4 63.5 64.1 45.9 - - - - -
IR-Net (Maetal., 2021) 16.3 63.2 - - - 10.9 375
MCL (Qin et al., 2021a) 17.2 60.9 70.6 62.6 59.0 - -
Row-level Representation
DSR (Wen et al., 2018) 12.7 51.9 52.1 50.4 52.0 9.1 30.0 334 28.0 27.1
MLM (Reddy et al., 2018) 15.6 55.5 674 54.8 45.1 9.2 27.8 29.8 274 25.2
KB-retriever (Qinetal.,, 2019b) 13.9 53.7 55.6 522 54.5 - - - -
HM2Seq (Zeng et al., 2022) 14.6 63.1 73.9 644 562
Graph Representation
Fg2Seq (He et al., 2020b) 16.8 61.1 733 574 56.1 13.5 36.0 40.4 41.7 30.9
GraphDialog (Yang et al., 2020a) 13.7 60.7 72.8 55.2 542 - - - - -
GraphMemDialog (Wu et al., 2021a) 18.8 64.5 75.9 623 563 14.9 40.2 428 48.8 364
GPT2+KE (Madotto et al., 2021) 17.4 59.8 72.6 57.7 53.5 - - - - -
COMET (Gou et al., 2021) 17.3 63.6 71.6 583 56.0 - - - - -
Modularized Pre-Training (Qin et al., 2023b) 18.8 63.8 75.0 58.4 59.1 13.6 36.3 41.5 36.2 31.2
DialoKG (Rony et al., 2022) 20.0 65.9 - - - - - - - -
UnifiedSKG (Xie et al., 2022) - 67.9 - -
MAKER (Wan et al., 2023) 259 713 18.8 54.7

Table 4: Fully EToD performance on SMD and MultiwWoOZ2.1. Ent.F1, Sch.F1, Wea.F1, Nav.F1, Res.F1, Att
Fl.and Hot.F1 stand for the abbreviation of Entity F1, Schedule F1, Weather F1, Navigation F1, Restaurant F1 and
Hotel F1, respectively. We adopted reported results from published literature (Qin et al., 2020b; Wu et al., 2021a;

Wang et al., 2020; Gou et al., 2021)

entity contextualization by applying graph-based
multi-hop reasoning on the entity graph. Wu et al.
(2021a) proposed a graph-based memory network
to yield context-aware representations. Another
series of works leveraged transformer architecture
to learn better entity representation, where the de-
pendencies between dialogue history and KB were
learned via self-attention (He et al., 2020b; Gou
et al., 2021; Rony et al., 2022; Qin et al., 2023b;
Wan et al., 2023).

3.2.4 Leaderboard and Takeaway

Leaderboard: A  comprehensive  leader-
board for the widely used dataset: SMD and
Multi-WOZ2 .1 is shown in Table 4. The widely
used metrics for fully EToD are BLEU and F1.
Detailed information of datasets and metrics are
shown in Appendix A.2.

Takeaway: Compaunderline to modular EToD,
fully EToD brings two major advantages. (1) Hu-
man Annotation Efforts Underlineuction. Modu-
larly EToD still requires modular annotation data
for intermediate supervision. In contrast, fully
EToD only requires the dialogue-response pairs,
which can greatly underlineuce human annotation
efforts; (2) KB Retrieval End-to-end Training. Un-
like the non-differentiable KB retrieval in mod-
ularly EToD, fully EToD can optimize the KB
retrieval process in a fully end-to-end paradigm,
which can enhance the KB retrieval ability.

4 Future Directions

This section will discuss new frontiers for EToD,
hoping to facilitate follow-up research in this field.

4.1 LLM for EToD

Recently, Large Language Models (LLMs) have
gained considerable attention for their impressive
performance across various Natural Language Pro-
cessing (NLP) benchmarks (Touvron et al., 2023;
OpenAl, 2023; Driess et al., 2023). These models
are capable to execute predetermined instructions
and interface with external resources, such as APIs
(Patil et al., 2023) and knowledge databases. This
positions LLMs as promising candidates for end-
to-end dialogue systems (EToD). Existing research
has also explored to apply LLMs in task-oriented
dialogue (ToD) scenarios, using both few-shot and
zero-shot learning paradigms (Pan et al., 2023;
Heck et al., 2023; Hudevcek and Dusek, 2023;
Parikh et al., 2023).

However, several critical challenges remain to
be addressed in EToD in future research. We sum-
marize the main challenges as follows:

1. Safety and Risk Mitigation: LLMs like chat-
bots can sometimes generate harmful or bi-
ased responses (OpenAl, 2023), posing seri-
ous safety concerns. It is crucial to improve
their controllability and interpretability. One
promising approach is integrating human feed-
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back during training (Bai et al., 2022; Chung
et al., 2022).

2. Complex Conversations Management:
LLMs have limitations in managing complex,
multi-turn dialogues (Heck et al., 2023; Pan
et al., 2023). EToDs often require advanced
context modeling and reasoning abilities,
which is an area ripe for improvement.

3. Domain Adaptation: For task-oriented di-
alogue, LLMs need to gain specific domain
knowledge. However, simply suppling knowl-
edge with finetuning or prompting may lead
to problems like catastrophic forgetting or bi-
ased attention (Liu et al., 2023). Finding a
balanced approach for knowledge adaptation
remains a challenge.

In addition to these challenges, there are also
emerging opportunities that could further enhance
the capabilities of LLMs in EToD systems. These
opportunities are summarized below:

1. Meta-learning & Personalization: LLMs
can adapt quickly with limited examples. This
paves the way for personalized dialogues
through meta-learning algorithms.

2. Multi-agent Collaboration & Self-learning
from Interactions: The strong language mod-
eling capabilities of LLMs make self-learning
from real-world user interactions more fea-
sible (Park et al., 2023). This can advance
collaborative, task-solving dialogue agents

4.2 Multi-KB Settings

Recent EToD models are limited to single-KB set-
tings where a dialogue is supported by a single KB,
which is far from the real-world scenario. There-
fore, endowing EToD with the ability of reasoning
over multiple KBs for each dialogue plays a vital
role in a real-world deployment. To this end, Qin
et al. (2023a) take the first meaningful step to the
multi-KB EToD.

The main challenges for multi-KB settings are
as follows: (1) Multiple KBs Reasoning:
How to reason across multiple KBs to retrieve rele-
vant knowledge entries for dialogue generation is a
unique challenge; (2) KB Scalibility: When
the number of KBs becomes larger in real-world
scenarios, how to effectively represent all the KBs
in a single model is non-trivial.

4.3 Pre-training Paradigm for Fully EToD

Pre-trained Language Models have shown remark-
able success in open-domain dialogues. ((Bao et al.,
2021; Shuster et al., 2022)). Howeyver, there is rel-
atively little research addressing how to pre-train
a fully EToD. We argue that the main reason for
hindering the development of pre-training fully
EToD is the lack of large amounts of knowledge-
grounded dialogue for pre-training.

We summarize the core challenges for pre-
training fully EToD: (1) Data Scarcity:
Since the annotated KB-grounded dialogues are
scarce, how to automatically augment a large
amount of training data is a promising direction;
(2) Task-specific Pre-training: Un-
like the traditional general-purpose mask language
modeling pre-training objective, the unique chal-
lenge for a task-oriented dialogue system is how
to make KB retrieval. Therefore, how to inject KB
retrieval ability in the pre-training stage is worth
exploring.

4.4 Knowledge Transfer

With the development of traditional pipeline task-
oriented dialogue systems, there exist various pow-
erful modularized ToD models, such as NLU (Qin
et al., 2019a; Zhang et al., 2020a), DST (Dai
et al., 2021; Guo et al., 2022; Chen et al., 2022),
DPL (Chen et al., 2019a; Kwan et al., 2022) and
NLG (Wen et al., 2015; Li et al., 2020). A natural
and interesting research question is how to transfer
the dialogue knowledge from well-trained modu-
larized ToD models to modularly or fully EToD.

The main challenge for knowledge transfer is
Knowledge Preservation: How to balance
the knowledge learned from previous modularized
dialogue models and current data is an interesting
direction to explore.

4.5 Reasoning Interpretability

Current fully EToD models perform knowledge
base (KB) retrieval via a differentiable attention
mechanism. While appealing, such a black-box re-
trieval method makes it difficult to analyze the pro-
cess of KB retrieval, which can seriously hurt the
user’s trust. Inspired by Wei et al. (2022); Zhang
et al. (2022), employing a chain of thought in KB
reasoning in fully EToD is a promising direction to
improve the interpretability of KB retrieval.

The main challenge for the direction is design
of reasoning steps: how to propose an ap-
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propriate chain of thought (e.g., when to retrieve
rows and when to retrieve columns) to express the
KB retrieval process is non-trivial.

4.6 Cross-lingual EToD

Current success heavily relies on large amounts
of annotated data that is only available for high-
resource language (i.e., English), which makes it
difficult to scale to other low-resource languages.
Actually, with the acceleration of globalization,
task-oriented dialogue systems like Google Home
and Apple Siri are required to serve a diverse user
base worldwide, across various languages, which
cannot be achieved by the previous monolingual
dialogue. Therefore, zero-shot cross-lingual di-
rection that can transfer knowledge from high-
resource language to low-resource languages is a
promising direction to solve the problem. To this
end, Lin et al. (2021) and Ding et al. (2022) in-
troduced BiToD and GlobalWoZ benchmarks to
promote cross-lingual task-oriented dialogue.

The main challenge for zero-shot cross-
lingual EToD includes: (1) Knowledge base
Alignment: A unique challenge for cross-
lingual EToD is the knowledge base (KB) align-
ment. How to effectively align the KB struc-
ture information across different languages is an
interesting research question to investigate; (2)
Unified Cross-lingual Model: Since
different modules (e.g., DST, DPL, and NLG) have
heterogeneous structural information, how to build
a unified cross-lingual model to align dialogue in-
formation across heterogeneous input in all lan-
guages is a challenge.

4.7 Multi-modal EToD

Current dialogue systems mainly handle plain text
input. Actually, we experience the world with
multiple modalities (e.g., language and image).
Therefore, building a multi-modal EToD system
that is able to handle multiple modalities is an im-
portant direction to investigate. Unlike the tradi-
tional single-modal dialogue system which can be
supported by the corresponding KB, multi-modal
EToD requires both the KB and image features to
yield an appropriate response.

The main challenges for multi-modal EToD
are as follows: (1) Multimodal Feature
Alignment and Complementary: How to
effectively make a multimodal feature alignment
and complementary to better understand the dia-
logue is a crucial ability for multi-modal EToD; (2)

Benchmark Scale Limited: Current multi-
modal dataset such as MMConv (Liao et al., 2021)
and SIMMC 2.0 (Kottur et al., 2021) are slightly
limited in size and diversity, which hinders the de-
velopment of multi-modal EToD. Therefore, build-
ing a large benchmark plays a vital role for promot-
ing multi-modal EToD.

5 Conclusion

We made a first attempt to summarize the progress
of end-to-end task-oriented dialogue systems
(EToD) by introducing a new perspective of recent
work, including modularly EToD and fully EToD.
In addition, we discussed some new trends as well
as their challenges in this research field, hoping to
attract more breakthroughs on future research.
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Limitation

This study presented a comprehensive review and
unified perspective on existing approaches and re-
cent trends in end-to-end task-oriented dialogue
systems (EToD). We have also created the first
public resources website to help researchers stay
updated on the progress of EToD. However, the
current version primarily focuses on high-level
comparisons of different approaches, such as over-
all system performance, rather than a fine-grained
analysis. In the future, we intend to include more
in-depth comparative analyses to gain a better un-
derstanding of the advantages and disadvantages
of various models, such as comparing KB retrieval
results and performance across different domains.
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A Datasets and Metrics

A.1 Datasets and Metrics for Modularly
EToD

A.1.1 Dataset

Three commonly used datasets for modularly
EToD are CamRest676, MultiWo0z2.0, and
MultiwoOz2.1.

CamRest 676 (Wen et al., 2017) is a relatively
small-scale restaurant domain dataset, which con-
sists of 408/136/136 dialogues for training/valida-
tion/test.

MultiwO0Z2.0 (Budzianowski et al., 2018) is
one of the most widely used ToD dataset. It con-
tains over 8,000 dialogue sessions and 7 different
domains including: restaurant, hotel, attraction,
taxi, train, hospital and police domain.

Multiwo0z2.1 (Eric et al.,, 2019) is an im-
proved version of MultiWOZ2 .0, where incor-
rect slot annotations and dialogue acts were fixed.

A.1.2 Metrics

The widely used metrics for modularly EToD are
BLEU, Inform, Success, and Combined.

BLEU (Papineni et al., 2002) is used to measure
the fluency of generated response by calculating
n-gram overlaps between the generated response
and the gold response.

Inform and Success (Budzianowski et al.,
2018). Inform measures whether the system pro-
vides an appropriate entity and Success mea-
sures whether the system answers all requested
attributes.

Combined (Budzianowski et al., 2018) is
a comprehensive metric considering BLEU,
Inform, and Success, which can be calculated
by: Combined = (Inform+ Success ) x 0.5
+ BLEU).

A.2 Datasets and Metrics for Fully EToD

A.2.1 Dataset

SMD  (Eric and Manning, 2017) and
MultiwOz2.1 (Qin et al.,, 2020b) are two
popular datasets for evaluating fully EToD.

SMD Eric and Manning (2017) proposed a Stan-
ford Multi-turn Multi-domain Task-oriented Dia-
logue Dataset, which includes three domains: navi-
gation, weather, and calendar.

MultiwOz2.1. Qin et al. (2020b) introduces
an extension of MultiWOZ2 . 1 where they anno-
tate the corresponding KB for each dialogue.

A.2.2 Metrics

Fully EToD adopts BLEU and Entity F1 toeval-
uate the fluent generation and KB retrieval ability,
respectively.

BLEU has been described in Section A.1.1.

Entity F1 Eric and Manning (2017) is used
to measure the difference between entities in the
system and gold responses by micro-averaging the
precision and recall.

B Related Work

Modular task-oriented dialogues typically consist
of spoken language understanding (SLU), dialogue
state tracking (DST), dialogue manager (DM) and
natural language generation (NLG), which have
achieved significant success. Recently, numerous
surveys summaries the recent progress of modu-
lar task-oriented dialogue systems. Specifically,
Louvan and Magnini (2020); Larson and Leach
(2022) and Qin et al. (2021¢) summarize the re-
cent progress of neural-based models for SLU.
On DST, Balaraman et al. (2021b) and Jacqmin
et al. (2022b) review the recent neural approaches
and highlight the need for greater exploration on
generalizability within the field. In terms of dia-
logue management, Dai et al. (2020) concentrates
on challenges like model scalability, data scarcity,
and improving training efficiency. For natural lan-
guage generation (NLG), Santhanam and Shaikh
(2019) provides a comprehensive overview of the
past, present, and future directions of NLG. Finally,
Chen et al. (2017), Zhang et al. (2020c) and Ni et al.
(2023) provide an overarching review of the dia-
logue system as a whole, emphasising the impact
of deep learning technologies.

Compared to the existing work, we focus on
the end-to-end task-oriented dialogue system. To
the best of our knowledge, this is the first com-
prehensive survey of the end-to-end task-oriented
dialogue system. We hope that this survey can
attract more breakthroughs on future research.
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