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Abstract
Automatic Speech Recognition (ASR) systems
are instrumental across various applications,
with their performance being critically tied to
user satisfaction. Conventional evaluation met-
rics for ASR systems produce a singular aggre-
gate score, which is insufficient for understand-
ing specific system vulnerabilities. Therefore,
we aim to address the limitations of the previ-
ous ASR evaluation methods by introducing the
Korean Error Explainable Benchmark Dataset
for ASR and Post-processing (KEBAP). KE-
BAP enables comprehensive analysis of ASR
systems at both speech- and text levels, thereby
facilitating a more balanced assessment encom-
passing speech recognition accuracy and user
readability. KEBAP provides 37 newly defined
speech-level resources incorporating diverse
noise environments and speaker characteris-
tics categories, also presenting 13 distinct text-
level error types. This paper demonstrates de-
tailed statistical analyses of colloquial noise
categories and textual error types. Furthermore,
we conduct extensive validation and analysis
on commercially deployed ASR systems, pro-
viding valuable insights into their performance.
As a more fine-grained and real-world-centric
evaluation method, KEBAP contributes to iden-
tifying and mitigating potential weaknesses in
ASR systems.

1 Introduction

Automatic speech recognition (ASR) is a task that
recognizes speech and converts it into text, and
it is getting more and more attention with the de-
velopment of voice interface applications and de-
vices such as Alexa, Siri, and Cortana (Williams
and Young, 2007; Wang et al., 2018, 2020). In the
real world, the ASR result has a trade-off between
recognition accuracy1 and user readability. Even

∗ Equally contributed, ‡ Corresponding author
1Recognition accuracy is the measure of accurately per-

ceiving phonemes as they are externally expressed, regardless
of user input quality (Liao et al., 2022).

Conventional
(WER, CER)

0.45

KEBAP

Error 
types

Explainability

Figure 1: An example of using KEBAP to evalu-
ate weaknesses in ASR results. The above approach
with conventional evaluation methods lacks explana-
tory power. Evaluation using KEBAP below enables a
detailed description of the weaknesses.

if the ASR model accurately recognizes the input
voice, the user’s readability may decrease. This is
because humans do not always utter perfect sen-
tences in the real world (e.g., incomplete utterances,
sighs, etc.). To achieve balanced ASR results in this
trade-off situation, it is required to consider both
recognition accuracy and user readability.

In terms of recognition accuracy, various
ASR evaluation metrics such as word error rate
(WER) (Woodard and Nelson) and character er-
ror rate (CER) (Morris et al., 2004) have been
prevalent. Also, readability is considered in ASR
post-processing (ASRP) tasks, where the goal is to
improve the clarity and comprehension of speech
recognition outputs without modifying the under-
lying model architecture (Mani et al., 2020b; Liao
et al., 2020; Leng et al., 2021). The ASRP task
relies on quantitative metrics, such as BLEU (Pa-
pineni et al., 2002) and GLEU (Napoles et al.,
2015), similar to the ASR evaluation using WER
and CER.

However, it is crucial to recognize that even if
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quantitative evaluation scores are similar, the quali-
tative aspects of the ASR results may not necessar-
ily align. Conventional research methods, which fo-
cus on accuracy or user readability, compute quan-
titative scores based on the degree of alignment
between inputs and outputs. This approach falls
short in classifying potential error types or pinpoint-
ing the model’s specific weaknesses, thus lacking
explanatory power for real-world ASR model out-
puts. This deficiency hinders the establishment of
clear directions for model improvement. To this
end, datasets that aim to enhance the explanatory
power of ASR evaluations by considering noisy
environments or speaker characteristics have been
published recently (Sikasote and Anastasopoulos,
2022; Lakomkin et al., 2019; Gong et al., 2022; Dai
et al., 2022). However, these datasets still focus on
accuracy and provide a limited set of error types,
thereby leading to insufficiency in diagnosing spe-
cific weaknesses within ASR models.

Therefore, we introduce the novel Korean Error
Explainable Benchmark Dataset for ASR and Post-
processing (KEBAP)2. It encompasses speech-
level distraction-based resources and text-level er-
ror types relevant to real-world ASR applications.
These diverse error types of KEBAP can lead to
improved explanatory capability compared to the
previous examination methods, as illustrated in
Figure 1. In particular, speech-level noise types
are bifurcated into two categories: noisy environ-
ments and speaker characteristics, comprising 37
distinct types. Additionally, KEBAP includes 13
types of textual errors pertinent in ASR contexts.
The dataset stands out in its authenticity since all
speech samples are recorded by human speakers,
and background noises are derived from real-world
environments. Also, We annotate the difficulty lev-
els to all types, enhancing the interpretability of the
ASR model.

We employ KEBAP to conduct an empirical
analysis of the correlations between speech-level
noise types and textual error types. Moreover, lever-
aging ChatGPT (OpenAI-Blog, 2022), we explore
the potential of language models in discovering the
vulnerabilities of ASR models. Our observations
highlight KEBAP’s significant interpretability of
ASR model diagnostics and shed light on the press-
ing need for research on diagnostic tasks for ASR
systems. Our work sets the stage for more real-

2Our KEBAP dataset is publicly available at https://
github.com/seonminkoo/KEBAP

world-oriented evaluations of ASR systems and
can contribute to the advancements in this domain.

2 KEBAP

2.1 Why KEBAP?

In the real-world scenario, mitigating the trade-
off between recognition accuracy and user read-
ability is crucial. To address this, we propose KE-
BAP, emphasizing the importance of considering
both aspects. A detailed explanation is as follows.
Firstly, in real-world speech recognition, it is essen-
tial to consider the accuracy of model and end-user
satisfaction simultaneously. To facilitate this, we
propose to map the accuracy of the ASR model
to ‘speech-level noises’ and user readability to
‘text-level errors’ to mitigate this inherent trade-
off. From the perspective of the accuracy of the
ASR model, it should output the recognition re-
sults ‘as heard,’ regardless of the quality of the
user-provided input. Conversely, from the stand-
point of the end-user receiving the result, satisfac-
tion increases when the output is presented in a
refined state, despite any errors in the initial input.
For instance, if a speaker stammers during their
speech, the ASR model would likely deem its out-
put more accurate if it recognizes and outputs all
the words uttered. However, this would likely result
in lower readability from the user’s perspective.

In addition, previous research lacks an adequate
number of error types for a detailed diagnosis.
Since benchmarks measure performance with quan-
titative metrics, it is crucial to subdivide character-
istics for a more detailed diagnosis. In industry
contexts, communication between model and ser-
vice teams is critical. When there’s an issue with
the model, clear criteria for the data flywheel sig-
nificantly facilitate communication. That is, distin-
guishing the error type criteria for speech- and text-
level aids in detailed diagnosis for model improve-
ment. However, conventional benchmark datasets
lack sufficient error types for detailed model anal-
ysis, leading to extensive usage of human evalua-
tion in real-world settings. Humans can cope using
commonsense, even if the criteria are unclear, but
existing benchmarks with limited error types fall
short. Hence, to solve the explainability issue, we
must define error type criteria that consider both
the speech- and text-level and create benchmarks
to achieve human-level explainability.

To enhance the explanatory power of the vali-
dation process for ASR models, we define errors
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Noise Type Description
Washer/dryer machine

Home appliances
Vacuum cleaner

Difficulty in recognition due to ambient electrical appliance noise.

Motorcycle
SirenIndividual transportation
Honk

Difficulty in recognition due to surrounding individual transportation noise.

Road side
Street

Crowd
Difficulty in recognition due to the surrounding street noise.

Conversation
Cafe/restaurant

Non-conversation
Challenges in perception due to the noise in cafes/restaurants.

Traditional market
Market/shopping mall

Shopping mall
Difficulties in perception caused by the noise in markets/shopping malls.

Subway platform
Inside the subway
Inside the train (STR/KTX)

Public transportation

Inside the bus

Difficulty in recognition due to surrounding public transportation noise.

Train terminal waiting room
Terminal

Bus terminal waiting room
Challenges in perception due to the noise at terminals.

Outdoor construction site
Construction site

Indoor construction site
Difficulties in perception caused by the noise at construction sites.

processing process
Factory

Assembly process
Difficulties in perception caused by the noise in factories.

Sound of rain
Nature ambient

Sound of the waves
Challenges in perception due to natural ambient noise.

Noisy environment

Etc. Artificial mechanical sound
In cases where external noise is present, although not falling into the
aforementioned categories.

Pause (silent)
When there is a presence of pauses between syllables in speech that has
not yet concluded.

Filled pause When habitual sounds are inserted during moments of silence or break time.

Interjection
When phrases or longer segments are inserted regardless of their relevance
to the intended content being expressed.

Parenthetical
When grammatically acceptable sentences are inserted without conveying
specific meaning or significance.

Unfinished interlocutor When speech is terminated without concluding the sentence.
Word repetition Repeating the same word or phrase in succession during speech.
Syllable repetition Repeating the same syllable in succession during speech.
Phoneme repetition Repeating the same phoneme in succession during speech.
Sustained When elongating certain parts of words within a sentence during speech.
Hyperfluency When excessively verbose speech is employed.
Mutter When muttering with an unclear demeanor.

Dynamic error
When syllabic intonation is inappropriate for the intended speech purpose
or difficult for human-level comprehension.

Characteristics of interlocutor

Speaking rate
When speech rate is excessively fast, making it difficult for human-level
comprehension.

Table 1: Proposed novel speech-level noise type classification criteria for KEBAP

at speech- and text-level and propose KEBAP, a
benchmark that considers various potential error-
prone environments in real-world scenarios

2.2 Speech-Level Noise Type

Error types at the speech-level refer to factors
that trigger inaccuracies in speech recognition sit-
uations. For example, identical utterances may
be challenging to recognize due to background
noise (Sikasote and Anastasopoulos, 2022). Ad-
ditionally, even in quiet environments, individu-
als do not consistently articulate perfect sentences
and each speaker has unique characteristics that
may negatively influence speech recognition (Gong
et al., 2022).

Table 1 illustrates the speech-level error type
classification criteria considering these characteris-
tics. The speech-level error types allow the classifi-
cation of two main categories (noisy environment
and characteristics of interlocutor) and more de-
tailed error types, with 24 sub-types for noise error

and 13 for speaker characteristics.
Considering environments inundated with noise,

it does not represent a quiet recording situation
but rather a condition intertwined with noise. Real-
world scenarios frequently involve inputs replete
with ambient noise (Sikasote and Anastasopou-
los, 2022). Reflecting on these practical situations
where voice interface applications and devices are
deployed, we propose an enhanced categorization
scheme that closely follows the classification in the
AI-HUB’s noisy environment speech recognition
dataset 3 which are representative Korean data plat-
form. We divide the noisy environment errors into
11 nuanced subcategories, including home appli-
ances, where recognition is impaired due to sur-
rounding appliance noise; individual transporta-
tion, which includes instances with ambient trans-
portation noise; street, covering situations with
disruptive street noise; cafe/restaurant, address-
ing cases with the cafe or restaurant ambient noise;

3https://www.aihub.or.kr/
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Category DescriptionLevel A Level B Level C
Spacing - - Violating the spacing rules.

Punctuation - - Punctuation marks are not attached in Korean sentences or are attached in the wrong.

Numerical - -
Cardinal number indicating quantity and the ordinal number indicating the order are
in error

Remove - Some words are not recognized, or endings or suffixes are omitted.
Addition - Same word is repeated, or an unused postposition or ending is added.
Replace - Word is replaced by another word.

Spelling Separation - Separating consonants and vowels in characters.

and Foreign word conversion -
Instances of incorrect conversion of syllables between English and Korean, as well as
writing spellings according to pronunciation, have been observed.

Grammatical
Spelling

G2P Writing spellings according to pronunciation.
CVC Spelling error in non-speaking alphabet units.

Post-position - Instances of inconsistent or missing post-position usage in target utterances.
Syntax - Cases of grammatically accurate yet interpretatively ambiguous meanings.

Neologism -
Instances of the discrepancy between target and its similarity in meaning, pronunciation,
and absence in Korean lexicon.

Table 2: Proposed text-level error type classification criteria for KEBAP. G2P and CVC indicate Grapheme-to-
phoneme and Consonant vowel conversion, respectivity

market/shopping mall, indicating instances with
market or shopping mall noise; public transporta-
tion, comprising cases with subway or bus noise;
terminal, reflecting instances with terminal noise;
construction site, for cases hindered by construc-
tion site noise; factory, indicating instances with
factory noise; nature ambient, for cases disturbed
by natural sounds. Lastly, we include an etc. cat-
egory for instances where recognition is affected
by external noise types not encompassed in the
previous categories.

Considering speaker characteristics, recognition
can be hampered due to the individual traits of the
recorder. Inspired by studies on idiolectal elements
in the field of psycholinguistics (Ha and Sim, 2008;
Shin et al., 2005), we propose a nuanced categoriza-
tion comprising 13 detailed subcategories. The de-
tails description of the subcategories are described
in Appendix B.

2.3 Text-Level Error Type

Text-level error types refer to issues that emerge in
speech recognition results and must be addressed
by post-processing. Since the output of the speech
recognizer serves as the input for downstream tasks,
it is one of the most significant factors influenc-
ing end-user satisfaction. By improving the perfor-
mance of downstream tasks through quality input
and diagnosing the performance of post-processing
models through detailed error types, it is possible
to enhance end-user satisfaction.

Existing datasets that detail error types, such as
grammatical error correction (GEC) datasets, do
not consider speech recognition situations (Koo
et al., 2022; Yoon et al., 2022). Therefore, we re-

configure the Korean GEC dataset, K-NCT, to suit
speech recognition situations. The existing K-NCT
dataset includes errors that only occur at the text-
level and not in speech situations (Koo et al., 2022).
Hence, errors that do not have vocal characteristics
are removed.

Table 2 illustrates the text-level error type clas-
sification criteria considering speech recognition
situations, including 13 text-level errors that can
occur in speech recognition situations. Detailed
explanations for each text-level error type can be
found in Appendix C

2.4 KEBAP Construction Process

In this work, we propose a comprehensive data con-
struction guideline for the ASR and ASRP dataset,
grounded in the application of a GEC dataset. Our
methodology encompasses build text-level error
corpus, speech recording, noise synthesis, and diffi-
culty annotation. For the efficiency of the task, we
choose the ‘consensus labeling’ method (Tang and
Lease, 2011), in which a human overseer, who pos-
sesses an elevated degree of task completion, serves
as a quality controller. During the progression of
the task, any outcomes that do not conform to the
established guidelines are promptly dismissed and
subsequently reconstructed.

Step 1: Build Text-Level Error Corpus In
this study, we employ a human-curated GEC
dataset, which encompasses various text-level error
types (Koo et al., 2022). Considering the inapplica-
bility of the standard GEC benchmark dataset in a
speech recognition setting, we selectively compose
a text-level error types dataset by human evaluation.
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We assess whether the given error types are valid or
invalid in the context of speech recognition situa-
tions by human evaluators. Invalid types are filtered
out, and the type structure is reconfigured In par-
ticular, we extract 13 categories that resonate with
speech recognition scenarios (e.g., honorific collo-
quial expression) and reorganize their hierarchy for
ease of labeling. Consequently, our refined dataset
includes data reflecting 13 error types relevant to
speech recognition contexts.

Subsequently, we authenticate the quality of the
filtered dataset focusing on the alignment between
labels and text, and the inclusion of text-level errors
with a specific consideration of the speech recogni-
tion context. Validation processes proceed with a
human supervisor, priorily trained with each error
type. Evaluators are presented with an erroneous
sentence, its correct counterpart, and a specified
error type with the corresponding error span indi-
cated. They are then tasked with assessing whether
the sentence contains the presented error types. Sen-
tences deemed to be incorrect are appropriately
amended. This procedural framework ensures the
generation of a high-quality dataset.

Step 2: Speech Recording In the second phase,
we request that recording participants incorpo-
rate characteristics of interlocutor errors into their
recordings by presenting them with speech-level
errors and transcription relevant to the respective
error types. At most 3 error types are presented,
which could include an instance of ‘no error type’,
indicating clean data. The placement of the error
within the sentence is non-specific, with the en-
surance that it includes only the errors specified.
The recording environment should be ensured to
be quiet without background noise. Each recorder
is instructed to speak as naturally as possible, emu-
lating their speech patterns when interacting with a
voice interface application in real-world scenarios.
After completing the recording, participants have
the opportunity to listen to their own voice, and if
they determine that the speech does not meet the
criteria, they can re-record it. Participants are re-
quired to go through the process of listening to their
recorded speech in order to complete the recording
task. The detailed information about the workers
can be found in Appendix D.

Step 3: Synthesis of Background Noise In the
next stage, we incorporate background noise into
the recording to reflect the noise environment er-

ror in the proposed speech-level. The background
noise used for this integration is derived directly
from recordings of the identified environments. We
ensure that the collected noise spans a duration
longer than that of the recording file, fostering noise
diversity. To mimic real-world situations, we con-
duct both single and multiple noise syntheses while
filtering out instances that are unlikely to co-occur.
During noise synthesis, the noise is integrated as
though it is ambient background noise, designed
to be audible at the onset of the voice file. Noise is
composited into the recording by randomly excis-
ing sections, thus ensuring variation within sounds,
even when they are categorized under the same
noise type.

Step 4: Difficulty Annotation Difficult data for
ASR models refers to data that is not frequently
encountered in the training data and is imbalanced,
varying depending on the user (Aleksic et al.,
2015a). Therefore, we annotate the difficulty of the
data to enable a detailed assessment of the model’s
coverage ability. To this end, we employ a frame-
work that distinguishes between utterances consid-
ered easier for ASR and those deemed harder or
more noisy for ASR (Breiner et al., 2022). We ex-
tend this framework to include the tagging of diffi-
culty using a Likert scale by human annotators. Hu-
mans listen to audio file and select score based on
evaluation criteria. We ask humans, ‘How difficult
is it to recognize the presented speech accurately
as the same as the transcript?’ Scores range from
1 (very easy) to 5 (very difficult). Three evaluators
assess each audio file, and the average score is se-
lected as the difficulty level of the data. This allows
for a detailed analysis of the model’s performance.
The details of construction process described in
Appendix D.

3 KEBAP Analysis

3.1 Text-level Distribution

We filter out cases that cannot occur in speech
recognition situations, such as typing language er-
rors caused by keyboard language switching, in the
GEC dataset. After the filtering process, the text-
level distribution is shown in Table 3. It includes
2,478 instances of errors and correct sentences, in-
cluding text-level errors. The statistical information
for the text is provided in Table 4
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Category Count (%)Level A Level B Level C
Spacing - - 514 (14.62)

Punctuation - - 505 (14.37)
Numerical - - 500 (14.22)

Remove - 122 (3.47)
Addition - 104 (2.96)
Replace 483 (13.74)

Spelling Separation - 94 (2.67)
and Foreign word conversion - 193 (5.49)

Grammatical
Spelling

G2P 195 (5.55)
CVC 534 (15.19)

Post-position - 90 (2.56)
Syntax - 71 (2.02)

Neologism - 110 (3.13)
Total 3515 (100)

Table 3: Statistics of labels in text level category of KE-
BAP. Here, the lowest level of data granularity is the
category attribute in Level C. G2P and CVC are indi-
cated as Grapheme-to-phoneme and consonant vowel
conversion, respectively.

KEBAP Test
Error sentence Correct sentence

# of sents 2,478 2,478
# of tokens 107,411 107,209
# of words 25,772 26,250

avg of SL △ 43.35 43.26
avg of WS 10.40 10.59
avg of SS 9.40 9.59

Table 4: Statistics of our KEBAP dataset. # of
sents/tokens/words: number of sentences/tokens/words;
△ avg of SL/WS/SS: average of sentence
length/words/spaces per sentence.

3.2 Speech-level Distribution

KEBAP consists of a total of 2,478 speech files,
transcriptions, and speech-level noise types. Fig-
ure 2-(a) illustrates the data distribution for speech-
level. KEBAP is composed of a total of 24,021.82
seconds of speech. It includes an average speech
duration of 9.69 seconds, with the shortest file be-
ing 3.8 seconds and the longest file being 27.68
seconds. Although transcription sentences are com-
posed of single sentences, their lengths can vary de-
pending on speaker characteristics, such as pauses
(silent) or mutters, even for sentences of the same
length. This allows for the inclusion of speech files
of varying durations, covering the characteristics
of diverse users who use ASR systems.

3.3 Difficulty Distribution

Overall, the average Krippendorff’s α for inter-
annotator agreement of each annotation level is
0.476. The label distribution of the collected data is

(a) (b)

Figure 2: Data distribution for speech-level. (a) indicates
distribution for the speech file length. (b) indicates the
difficulty distribution of human evaluation.

shown in Figure 2-(b). To more accurately diagnose
the model’s capability, we enhance its interpretabil-
ity by tagging the difficulty level of the data. Since
the perceived difficulty of the same data may vary
among individuals, we determine the difficulty of
each data based on the average difficulty annotation
provided by three evaluators. The difficulty ratings
for the data are generally concentrated between 1
and 2, but there is also a significant presence of
ratings at 5. This indicates that the dataset includes
a range of difficulty levels, which we believe will
be beneficial for assessing the performance of ASR
models.

3.4 Category Distribution
Each data includes single or multiple speech-level
characteristics. Figure 3 shows the distribution of
each category of speech-level. The speech-level
errors can be broadly classified into two main
categories: noisy environment and characteristics
of the interlocutor. Our dataset encompasses var-
ious combinations of characteristics within each
category and also includes cross-category combi-
nations, providing a diverse range of error types.
Noisy environment and characteristics of the inter-
locutor represent mutually exclusive types, while
co-occurrence indicates cases where two character-
istics occur simultaneously. When considering only
noisy environments, 1 and 2 characteristics account
for 40.02% each, and 3 characteristics account for
19.96%.

Figure 3: Distribution of each category of speech-level.
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Noisy environments that cannot occur simultane-
ously are not included. When considering only the
characteristics of the interlocutor, 1 and 2 charac-
teristics account for 39.98% each, and 3 character-
istics account for 20.04%. Co-occurrence occurs in
49.88% of cases for 2 characteristics and 50.12%
of cases for 3 characteristics. This demonstrates
the presence of a diverse range of error levels, both
in terms of types and quantities. Actual workers
recorded the data, and the background noise was
collected directly from real-world environments,
ensuring high quality. There is no synthetic audio
involved in the recordings.

WER CER
Easy Medium Hard Easy Medium Hard

Google ASR 0.47 0.63 0.93 0.21 0.34 0.69

Clova ASR 0.53 0.67 0.94 0.2 0.35 0.73

Whisper 0.48 0.67 0.92 0.23 0.35 0.65

Table 5: Evaluation results of ASR commercialization
systems and publicly available model (Radford et al.,
2023). Word Error Rate (WER) and Character Error
Rate (CER) indicate better performance as their values
decrease.

4 Efficacy Validation for KEBAP

In this section, we assess the specific capabilities
of commercialized ASR models using KEBAP. To
achieve this, we conduct a detailed correlation anal-
ysis of commercialized systems such as Google
Cloud Speech-to-Text (Aleksic et al., 2015b) and
CLOVA Speech (Chung, 2019). We examine the
correlation between speech-level noise types and
text-level errors, aiming for a granular understand-
ing. We comprehensively validate the model’s capa-
bilities by considering both speech- and text-level
aspects. We verify whether the LLM possesses the
necessary qualities as a diagnostic model through
the error type classification task.

4.1 Analysis of Correlation in ASR models

Table 5 shows the evaluation results of ASR mod-
els. Based on conventional evaluation metrics such
as WER (Woodard and Nelson) and CER (Morris
et al., 2004), we observe similar performance be-
tween the two ASR models. However, even though
the quantitative evaluation results may be similar,
it does not necessarily mean that the qualitative as-
pects of the ASR model’s outputs are also similar.
This makes it challenging to identify the specific

weaknesses of the model, hindering the establish-
ment of directions for model improvement. To en-
hance interpretability, we analyze the tendency of
text-level error propagation at the speech level for
ASR model. To clearly understand the impact of
each speech-level category on the text-level, we
sample data that includes a single speech-level
noise type. The results of the ASR model are la-
beled by humans trained in explanations and exam-
ples of text-level errors.

(a) (b)

Figure 4: Correlation distribution between speech-level:
noisy environment and text-level in Google(a) and
Clova(b). Spa/Punc/Num represent spacing, punctua-
tion, and numerical, respectively. Rem/Add/Rep/Sep
indicate remove, addition, replace, and separation,
respectively. FWC/G2P/CVC correspond to foreign
word conversion, grapheme-to-phoneme, and conso-
nant vowel conversion, respectively. PP/Syn/Neo signify
post-position, syntax, and neologism, respectively.

(a) (b)

Figure 5: Correlation distribution between speech-level:
characteristics of interlocutor and text-level in Google(a)
and Clova(b).

Figure 4 illustrates the correlation between the
noisy environment at the speech level and text-
level errors. In the speech-level category, we have
grouped similar types together, excluding miscella-
neous types. In the case of text-level punctuation
errors, we consider only those instances where peri-
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ods (‘.’) are missing in all sentences, leading to the
omission of other punctuation marks such as ques-
tion marks (‘?’) or exclamation points (‘!’). This
specific condition allows us to focus on scenarios
where the absence of periods directly affects the
presence of other punctuation marks in the tran-
scriptions.

Both the Google and Naver ASR systems exhibit
significant error propagation in the domain of pub-
lic transportation. Specifically, for Google, there
is a high correlation between speech-level errors
and text-level errors in punctuation, spacing, and
replace. On the other hand, Clova shows a strong
correlation between speech-level errors and text-
level errors in punctuation, spacing, and addition.
Furthermore, google showed robustness in the na-
ture ambient, but Clova showed relatively more text
errors.

Figure 5 shows the correlation between speech-
level characteristics of interlocutor and text-level
errors. For Google, the presence of pause (silent) in
speech had a significant impact on the occurrence
of remove errors in the transcriptions, while word
repetition contributed to the occurrence of addition
errors. In the case of Clova, overall, a higher num-
ber of errors were observed compared to Google.
Particularly, hyperfluency had the most significant
impact on the occurrence of addition errors in the
transcriptions.

This analysis provides valuable insights into the
correlation between speech-level noise, particularly
noisy environments, and text-level errors in the
Google and Clova ASR systems. The varying im-
pact of different types of speech-level characteris-
tics on text-level errors highlights the need for fur-
ther granularity in categorizing these types. Even
if models demonstrate similar performance, the in-
dividual capabilities of each model can differ. This
demonstrates that KEBAP helps enhance the inter-
pretability of ASR model verification 4.

4.2 Adequacy of Synthesized Noise

Table 6 shows the performance before and after
noise synthesis. Experimental results show that for
Google, the WER is 0.49, the CER is 0.23 before
noise synthesis, and the WER is 0.68 and the CER
is 0.41 after noise synthesis. For Clova, the WER
before noise synthesis is 0.53, and the CER is 0.19,

4Additionally, KEBAP provides difficulty information, en-
abling even more fine-grained analysis. Appendix E includes
the detailed analysis results based on diverse levels of diffi-
culty.

WER CER
Clean Noise Clean Noise

Google ASR 0.49 0.51 0.23 0.25
Clova ASR 0.53 0.57 0.19 0.24

Table 6: Performance of commercialize systems based
on the presence or absence of noise synthesis. ‘Clean’
and ‘Noise’ represent the settings before and after noise
synthesis, respectively.

while the WER after noise synthesis is 0.71 and
the CER is 0.43. These results are interpretable in
that the resources we provide are high-quality and
helpful.

4.3 Examination of ASR models through
LLM

With recent advancements in Large Language
Model (LLM) development, most tasks are con-
verging towards LLM-based approaches. In this
study, we explore the potential of using Chat-
GPT (OpenAI-Blog, 2022) as a diagnostic tool for
ASR results. Understanding error types is essential
for verifying the models, and to measure this under-
standing, we perform an error type classification
task. ChatGPT is utilized to classify text-level error
types based on provided sentences in a few-shot
setup. The specific prompt used for this experiment
is listed in Appendix F.

We task ChatGPT with classifying all text-level
errors occurring in the ASR results. However, as
seen in the examples (please refer to Appendix F.2),
it is evident that ChatGPT not only misclassifies
text-level errors but also struggles more when mul-
tiple errors are present within a sentence. Although
LLMs are converging towards covering various
tasks, they exhibit limitations in performing diag-
nostic tasks for commercial systems. This indicates
that while various tasks may converge with LLM,
the diagnostic domain for the proposed model is
far from convergence with LLMs, highlighting the
need for further research.

5 Conclusion

In the real-world, ASR results involve a trade-off
between recognition accuracy and user readability,
thus requiring a balanced consideration of these fac-
tors. To provide guidance for improving model per-
formance, it is necessary to enhance interpretability,
which entails considering both speech-level accu-
racy and text-level user readability. To this end,
we propose Korean Error Explainable Benchmark
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Dataset for ASR and Post-processing (KEBAP)
for diagnosing and validating models by segment-
ing error types while considering both speech- and
text-level. To facilitate the construction process, we
utilize a GEC dataset that includes text-level errors
and structure the process into validation, recording,
synthesis of background noise, and difficulty tag-
ging stages, employing consensus labeling within
each stage to enhance the efficiency and quality
of the task. We performed a detailed diagnostic
analysis of the commercialization systems using
KEBAP. Furthermore, the proposed task falls into
a domain that is challenging for ChatGPT to cover,
and it indicates the need for further research to
achieve a closer approximation to real-world diag-
nostics. We demonstrated that KEBAP contributes
to enhancing the interpretability of the model’s
weaknesses.

Limitations

This study has the limitation of only building data
for the Korean language. Additionally, as this paper
proposes a new task, it was not able to conduct ex-
tensive quantitative analyses by comparing it with
existing models, which remains a limitation. How-
ever, this paper made a contribution by proposing
new data and tasks and making them publicly avail-
able.

Ethics Statement

We discuss the main ethical considerations of KE-
BAP benchmark we presented: (1) Privacy. KE-
BAP benchmark is constructed to acquire factual
dataset, and does not contain privacy issues. (2) Hu-
man evaluation. During data evaluation process, we
paid human workers the legal wage determined by
the average time of evaluation and local labor com-
pensation standards. We also guided them to take a
rest when they are in a state of fatigue during work.
(3) Potential problems. While principled measures
are taken to ensure the quality of the dataset, there
might still be potential problems with the dataset
quality.
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A Related Works and Background

Post-processing Model Post-processing serves
an important role in quality enhancement across
various fields by modifying the distorted output
into appropriate statements. For instance, in the
field of optical character recognition (OCR), con-
ventional approaches such as manual, lexical, and
statistical methods have been used (Evershed and
Fitch, 2014; Nguyen et al., 2018). More recently,
language models like BERT have been employed
for error detection in tasks like named entity recog-
nition (NER) and are performed through character-
level machine translation (Nguyen et al., 2020).

As another field, machine translation (MT) often
utilizes the following methods. Post-processing re-
search is being carried out in automatic post-editing
(APE) to improve translation quality by adopt-
ing transfer learning (Correia and Martins, 2019).
Concurrently, in the grammatical error correction
(GEC) field, transformers and the copy mechanism
are used to correct spelling and grammatical errors
in MT results (Lee et al., 2021). Studies that de-
fine error types to construct test sets or utilize an
automatic grammatical error annotation system to
create datasets also exist to improve Korean GEC
studies (Koo et al., 2022; Yoon et al., 2022). Like-
wise, the study on post-processing is actively ex-
plored in a wide range of fields and holds signifi-
cance in terms of enhancing the quality of output
results. This can also be of significant importance
in the field of Automatic speech recognition (ASR),
which is discussed in the following section.

ASR Post-Processing Model ASR post-
processing (ASRP) involves the detection and
correction of errors in the output of an ASR,
distinguishing it from simple error correction in
that it considers user-friendliness as an additional
aspect. This approach can improve the final
quality of statements without modifying the ASR
system structure. For instance, in specialized
fields like the medical domain, attempts have
been made to eliminate punctuation errors in
ASR through post-processing (Mani et al., 2020a).
Prior research has primarily focused on providing
information that allows humans to manually
rectify erroneous segments, proposing alternative
words for correction or creating an environment
conducive to modification (Suhm et al., 2001;
Feng and Sears, 2004). External information, such
as word alternative hypothesis, noisy context,

and accurate context, is provided to assist in
post-processing for error correction (Shi and
Zhou, 2011). In particular, Bassil and Semaan
(2012) use the N-gram dataset for ASR errors to
detect and correct errors automatically. Models
such as LSTM-based or Transformer-based
sequence-to-sequence architectures are adopted
to correct the speech recognition results while
considering the semantics and spelling (Guo et al.,
2019; Hrinchuk et al., 2020).

Recent studies strive to improve ASRP perfor-
mance by utilizing the results derived from ASR.
Gekhman et al. (2022a) introduce the ASR confi-
dence embedding (ACE) layer to the encoder of the
ASR model to jointly encode the confidence scores
and transcribed text into a contextualized represen-
tation. To mitigate the time and cost-related chal-
lenges associated with the parallel data required for
training, Park et al. (2021) employ Text-to-speech
(TTS) and Speech-to-text (STT) technologies to
construct parallel data.

ASR dataset The availability of suitable datasets
is imperative for the active progression of ASRP.
Previously, post-processing studies have been con-
ducted with ASR datasets. Panayotov et al. (2015)
organize the two labels in the ASR dataset that de-
note the quality of speech recognition, classified
into ‘clean’ and ‘other’ categories, providing valu-
able assistance in the analysis. Ardila et al. (2020)
constuct comprehensive ASR dataset that includes
demographic metadata such as age, sex, and accent
to provide a wider representation.

Transcription hypotheses obtained by decoding
audio data using an ASR model are used to align
hypothesis words with the reference (correct) tran-
scription. The process of labeling errors and non-
errors is facilitated by employing the minimum edit
distance (Gekhman et al., 2022b). In the context of
Chinese language datasets, a significant dataset is
available for speech recognition systems, labeled
with audio devices and recording environments (Bu
et al., 2017). Gekhman et al. (2022b) build a dataset
by aligning hypothesis words with the reference
(correct) transcription through a transcription hy-
pothesis obtained by decoding audio data with an
ASR model and labeling errors and nonerrors using
minimum edit distance. In the context of Chinese,
a large-scale dataset is available for speech recogni-
tion systems labeled with audio device information
and recording environments (Bu et al., 2017).

To mitigate the problem of insufficient training
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data, methodologies that synthesize data via data
augmentation methods have been proposed (Liao
et al., 2022). However, the overall quality of the
data is more crucial than the size. Specifically,
the detailed datasets that consider both speech-
and text-level like the real world are absent. Con-
sequently, we aim to construct the ASR Post-
Processing dataset, which contemplates audio- and
text-level for the first time.

B Description of Speech-Level Noise Type

Pause (silent) category captures instances where
silence intervenes mid-utterance before comple-
tion—for instance, when ‘I am eating’ is articu-
lated as ‘I am... eating’. Filled pause represents
cases characterized by the habitual insertion of
filler sounds during pauses, as in utterances supple-
mented by sounds such as ‘um... uh... so I’. Inter-
jection category encompasses instances where one
or more words or phrases irrelevant to the intended
message are interjected, evident in utterances like
‘Okay I see, but you know’. Parenthetical category
includes instances where grammatically correct,
but semantically neutral phrases are inserted—for
instance, utterances incorporating phrases such as
‘you know’ and ‘I mean’. Unfinished interlocu-
tor category denotes cases where the utterance
concludes prematurely—for instance, when ‘I am
eating’ is truncated to ‘I am...’. Word repetition
category signifies instances where the same word
is iterated, as in saying ‘Hello’ as ‘Hello Hello’.
Syllable repetition category characterizes cases
where the same syllable is iterated—for instance,
when ‘Hello’ is articulated as ‘He-hello’. Phoneme
repetition category encapsulates instances where
the same phoneme is repeated, such as saying
‘Hello’ as ‘Hel-llo’. Sustained category accounts
for instances where part of an utterance is elon-
gated, exemplified in ‘Is that so—right?’. Hyper-
fluency category represents instances of excessive
verbosity. Mutter category includes cases where
utterances are murmured in an indistinct manner, as
in ‘That.. is.. like that...’. Dynamic error category
encompasses instances where syllable articulation
strength is incongruous with the intended utterance,
or instances that are challenging to comprehend at
the human-level. Finally, speaking rate category
accounts for instances where rapid speech pace
hinders comprehension at a human-level.

C Description of Text-Level Error Type

Spacing encapsulates instances contravening stan-
dard spacing conventions. Punctuation entails
cases where punctuation is omitted or misapplied
in Korean sentences—for instance, when ‘Can I
teach?’ is interpreted as ‘Can I teach.’ Numerical
encompasses cases where number conversion fails,
such as when ‘Ahead of the three-month schedule’
is interpreted as ‘Bill 2, 3-month schedule’.

Spelling and Grammar consists of ten detailed
subcategories. Remove designates cases where
some word components are not recognized, or end-
ings or particles are missing—for example, when
‘The champion is in the final’ is misinterpreted as
‘Champion final’. Addition involves cases where
the same word is repeated or unutilized particles or
endings are appended. For instance, when ‘World’s
fruits, fish, and meat’ is interpreted as ‘World’s
world’s fruits, fish, and meat’. Replace refers to
instances where one word is substituted with an-
other—for example, when ‘Apply the filter.’ is in-
terpreted as ‘Wear the pizza’. Separation refers
to instances where consonants and vowels in the
target utterance are separated, exemplified when
‘The discount applies as it is.’ is interpreted as ‘Dis-
count app - lise as it is.’. Foreign word conversion
refers to cases where words deviate from standard
foreign word pronunciation or some syllables are
incorrectly converted from English to Korean or
vice versa. For example, when ‘Brazil’s Samba Fes-
tival’ is interpreted as ‘Brazil’s SsamBap Festival,’
or ‘I prefer to use ATM.’ is interpreted as ‘I prefer
to use hm.’.

Spelling is bifurcated into two types: Grapheme-
to-Phoneme (G2P) and Consonant vowel conver-
sion. G2P pertains to instances where a character
is recognized per its pronunciation. Consonant
vowel conversion refers to instances where phone-
mic units are incorrectly spelled. Post-position
refers to cases where different particles are used or
omitted—for example, when ‘Ordinary high school
students’ is interpreted as ‘Ordinary at high school
students.’ Syntax involves cases where the gram-
matical interpretation remains valid, but the seman-
tic interpretation varies. Finally, neologism refers
to cases where the target word and its meaning and
pronunciation are dissimilar and are not included
in Korean vocabulary.
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D Human Annotation

D.1 Crowd-sourcing and Compensation
We recruited individuals who are native speakers
of Korean and selectively hired candidates suit-
able for the task through validation questions. Ev-
ery employee has been fairly remunerated at least
a rate of 140 KRW per task. It is expected that
each worker will complete 2-3 questions within a
minute, guaranteeing a minimum compensation of
16,800 KRW per hour. Comparatively, the mini-
mum hourly wage in South Korea for 2023 is 9,620
KRW. The guidelines for annotation and the user
interface are illustrated in Figure 6 and Figure 7.

D.2 Annotation Guidelines and Interface

Speech-level error 1

Speech-level error 2

Speech-level error 3

è Transcription

Figure 6: Speech recording setup.

Figure 7: Difficulty annotation setup. Q: Please evalu-
ate the level of difficulty in accurately transcribing the
speech to match the given transcript.
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D.3 Annotation Demographics
The detailed demographic information is provided
in Table 7

Gender

Male 186 (7.50%)
Female 2292 (92.49%)

Age

20-29 479 (19.33%)
30-39 1318 (53.19%)
40-49 681 (27.48%)

Nationality

Korea 2478 (100%)

Table 7: Demographics of the crowd workers involved
in the composition of the data.

E Analysis of Correlation by Difficulty
Levels

We believe that providing difficulty information fa-
cilitates the analysis of weaknesses in ASR models.
We extracted an equal number of samples for each
difficulty level and analyzed them. Figure 8, Fig-
ure 9, and Figure 10 show the correlation between
the noisy environment at the speech level and text-
level errors in diverse difficulty settings. Figure 11,
Figure 12, and Figure 13 illustrate the correlation
between speech-level characteristics of interlocutor
and text-level errors in diverse difficulty settings.
Spa/Punc/Num represent spacing, punctuation, and
numerical, respectively. Rem/Add/Rep/Sep indi-
cate remove, addition, replace, and separation, re-
spectively. FWC/G2P/CVC correspond to foreign
word conversion, grapheme-to-phoneme, and con-
sonant vowel conversion, respectively. PP/Syn/Neo
signify post-position, syntax, and neologism, re-
spectively.

Analyzing the details based on different diffi-
culty levels can be employed to enhance the inter-
pretability of the ASR model. For example, in the
case of Google, experimental results show that the
correlation from ‘Terminal’ speech-level type to
‘Punctuation’ text-level type is strong for easy level,
‘Construction site’ speech-level type to ‘Addition’
text-level type for medium level, and ‘Terminal’
speech-level type to ‘Replace’ or ‘Remove’ text-
level type for hard level. For Clova, the tendency of
’Replace’ text-level type in ’Individual transporta-
tion’ speech-level type is strongest at easy level,
and it is strongly related to ’Syntax’ and ’Replace’
text-level type at medium level. At the hard level,
it has a strong tendency to ’Remove’ and ’Syntax’
text-level types.

Figure 8: Correlation distribution between speech-level:
noisy environment and text-level in Google(a) and
Clova(b), in easy-level difficulty setting.
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Figure 9: Correlation distribution between speech-level:
noisy environment and text-level in Google(a) and
Clova(b), in medium-level difficulty setting.

Figure 10: Correlation distribution between speech-
level: noisy environment and text-level in Google(a)
and Clova(b), in hard-level difficulty setting.

Figure 11: Correlation distribution between speech-
level: characteristics of interlocutor and text-level in
Google(a) and Clova(b), in easy-level difficulty setting.

Figure 12: Correlation distribution between speech-
level: characteristics of interlocutor and text-level in
Google(a) and Clova(b), in medium-level difficulty set-
ting.

Figure 13: Correlation distribution between speech-
level: characteristics of interlocutor and text-level in
Google(a) and Clova(b), in hard-level difficulty setting.
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F LLM for Validation

F.1 Prompts of ChatGPT

Your task is to classify any spelling or grammar 
errors within a sentence. 
Always answer in Korean.

The definition and examples are as follows:
-띄어쓰기 오류: 띄어쓰기 규칙에 위배 되는 경우

Example: 성공의 길을 열어줘요. 
à 성공의 길을 열어 줘요

Result: 띄어쓰기 오류

###
...
###

------

Error Types Description

Examples of classifying multiple 
grammatical error types are as follows: 
{{examples}}

------

Examples

Referring to the definition and example, classify 
grammatical error type that fit the given 
sentences.
Example: {{input sentence}}
Result:

Input

Task Description

Figure 14: Error type classification prompt.
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F.2 Examples of Classified Types

Input Sentence STT Result Predict Types Target Types

우리자리가생길때까지기다릴까요

(Shall we wait until a seat becomes available for us)
우리자리가생길때까지기다릴까요?
(Shall we wait until a seat becomes available for us?)

No Error Punctuation

어떻게해야하는지만알려줄게숙제숙제는

스스로해야지

(I will only instruct you on how to do it
The homework homework must be done by yourself.)

어떻게해야하는지만알려줄게.숙제는
스스로해야지.
(I will only instruct you on how to do it.
The homework must be done by yourself.)

Remove, Spacing
Addition, Spacing,
Punctuation

학생은교복을입을때단정이뭐야

(When students wear school uniforms, what does
’neatness’ mean)

학생은교복을입을때단정해보여.
(When students wear school uniforms, the students
appear neat.)

Post-position
Syntax, Replace,
Punctuation

내가경찰이면뭐물어보려고했어요

(What would I have asked if I were a police officer)
내가경찰이면뭐물어보려고했어요?
(What would I have asked if I were a police officer?)

Spacing Punctuation

우리회사영양제신제품을수입하고싶으시다고들

(I he you want to import our company’s new
nutritional supplement products.)

우리회사영양제신제품을수입하고싶으시다고

들었습니다.
(I heard you want to import our company’s new
nutritional supplement products.)

Punctuation
Punctuation, Spacing,
Remove

Table 8: Example of text-level error types classification in ChatGPT. STT result refers to the speech-to-text result.
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