Preserving Privacy Through DeMemorization: An Unlearning Technique
For Mitigating Memorization Risks In Language Models

Aly M. Kassem © Omar Mahmoud * Sherif Saad ¢
©School of Computer Science, University of Windsor
* Applied Artificial Intelligence Institute, Deakin University
O{kassem6, sherif.saad}@uwindsor.ca
*0.mahmoud@research.deakin.edu.au

Abstract

Large Language models (LLMs) are trained
on vast amounts of data, including sensitive
information that poses a risk to personal pri-
vacy if exposed. LLMs have shown the ability
to memorize and reproduce portions of their
training data when prompted by adversaries.
Prior research has focused on addressing this
memorization issue and preventing verbatim
replication through techniques like knowledge
unlearning and data pre-processing. However,
these methods have limitations regarding the
number of protected samples, limited privacy
types, and potentially lower-quality generative
models. To tackle this challenge more effec-
tively, we propose “DeMem,” a novel unlearn-
ing approach that utilizes an efficient reinforce-
ment learning feedback loop via proximal pol-
icy optimization. By fine-tuning the language
model with a negative similarity score as a re-
ward signal, we incentivize the LLMs to learn a
paraphrasing policy to unlearn the pre-training
data. Our experiments demonstrate that De-
Mem surpasses strong baselines and state-of-
the-art methods in terms of its ability to gener-
alize and strike a balance between maintaining
privacy and LLM performance.

1 Introduction

Large language models (LLMs) have experienced
exponential growth in recent years, scaling up from
millions to billions to trillions of parameters (Rad-
ford et al., 2019; Brown et al., 2020; Chowdhery
et al., 2022; Fedus et al., 2021). As their scale
increases, the training sets for these models also
expand to billions of tokens (Gao et al., 2020), lead-
ing to overall performance improvements, even in
few-shot learning scenarios (Brown et al., 2020).
However, this growth in model size and training
data has raised practical concerns regarding privacy
risks associated with memorizing the training data.
Adversaries can extract individual sequences from
a pre-trained model, even if the training dataset is
publicly available (Carlini et al., 2021).

Pretraining LM

Pre-Training Corpora
= w —
3=y — @— S} —> %

RL Fine-tuning

Data Preprocessing LLM

Subset DeMem-Policy-LLM Generated Reward Fn |

> @—» % — s

S __

Figure 1: First, LLM is pre-trained on large corpora
in which Deduplication is applied. Then, a subset of
training corpora is employed to learn the LM a DeMem
Policy via negative similarity feedback.

Studies have shown that a language model with
6 billion parameters (GPT-J) can memorize at least
1% of its training data (Carlini et al., 2022). One
potential cause of this memorization is the train-
ing strategy of the language model, as its objec-
tive is to identify the relationships between tokens,
either in an auto-regressive LM setup or through
masked language modelling (MLM) (Devlin et al.,
2018), where the model predicts the masked to-
kens based on their surrounding context (Radford
et al., 2018). Additionally, repeated instances in
the training corpus can contribute to memorization,
as more frequent examples are more likely to be
memorized (Lee et al., 2021). To address the is-
sue of memorization in LLMs, several approaches
have been proposed, including data sanitization
(Lison et al., 2021), the application of differen-
tial privacy algorithms(Abadi et al., 2016; Anil
et al., 2021; Li et al., 2021; Tramer et al., 2022;
Basu et al., 2021), data deduplication (Kandpal
et al., 2022), and knowledge unlearning (Jang et al.,
2022). These techniques aim to prevent the gener-
ation of memorized content. However, they also
come with certain drawbacks. Data sanitization

4360

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 4360-4379
December 6-10, 2023 ©2023 Association for Computational Linguistics

assumes that private information can be easily iden-
tified and is not context-dependent. Differential
privacy can lead to lower-quality generative models
(Anil et al., 2021). On the other hand, knowledge
unlearning restricts the number of samples that can
be forgotten at once to avoid degrading the overall
capability of the language model, which may limit
its effectiveness in real-world scenarios.

In this study, we propose DeMemorization (De-
Mem), a reward-based (un)learning framework for
language models. DeMem leverages a paraphras-
ing policy to address memorization, using a nega-
tive similarity metric as a reward to encourage the
language model (LM) to unlearn.

Given samples of prefixes and suffixes from the
original pre-training data of the language model,
we use a prefix as input for the language model to
generate the suffix; then, we compute the negative
BERTScore (Zhang et al., 2019) to measure the
dissimilarity between the true suffix and generated
suffix, the dissimilarity scores are then regarded as
a reward signal to maximize in the training process,
which guarantees that the approximate memoriza-
tion will be mitigated.

For instance, given a training sample like "Alice
Green lives at 187 Bob Street," where the prefix is
""Alice Green lives at' and the suffix is '"187 Bob
Street", our goal is to have the fine-tuned LM para-
phrase the suffix as ''12 Red Street.' This para-
phrasing approach minimizes the memorization
relationship between the prefix and suffix without
erasing the training sample from the LM’s parame-
ters or replacing it with meaningless content, which
can negatively impact the LM’s performance

We conducted experiments using GPT-Neo and
OPT LMs (with models ranging from 125M to 2.7B
parameters) (Black et al., 2021; Zhang et al., 2022).
DeMem achieved little to no performance degra-
dation on the initial LM capabilities measured via
nine common NLP classification benchmarks (Hel-
laswag (Zellers et al., 2019), Lambada (Paperno
et al., 2016), Winogrande (Sakaguchi et al., 2021),
COPA (Roemmele et al., 2011), ARC-Easy, ARC-
Challenge (Clark et al., 2018), Piqa(Bisk et al.,
2020), MathQA (Amini et al., 2019), and Pub-
medQA (Jin et al., 2019)).

We also evaluate DeMem on increasing the con-
text of the prefix, as many studies show that as a
longer context is provided, the memorization ratio
increases (Carlini et al., 2021, 2022). The pro-
posed framework makes no explicit, implicit as-

sumptions or limitations about the data’s structure
or size to be protected. Also, unlike the DP meth-
ods, the proposed framework does not apply any
partition mechanism to split the data into public
data and private data; as language data cannot be
partitioned(Brown et al., 2022), we apply the policy
on all training data as defining, partitioning data
into private and public, and limiting the number of
samples inadequate in the real-world scenarios.

To summarize, our main findings are the follow-
ing:

* Using a reinforcement learning feedback ap-
proach results in little to no performance
degradation of general capabilities while be-
ing practical, consistent, and independent of
increasing the number of protected samples.
At the same time, maintaining the fluency and
coherence of the generated samples.

* As the language model size increases, the con-
vergence rate improves. Convergence refers
to the model-generated suffixes diverging sig-
nificantly from the original ones while the
perplexity difference between generated and
original examples decreases.

* As the size of a language model increases, the
dissimilarity score increases. This suggests
that larger models may tend to "forget" the
memorized data faster.

* Combining Deduplication with DeMemo-
rization enhances privacy with insignificant
degradation(~0.5%) in the Language model
performance.

2 Background

2.1 Memorization Definitions

In the context of memorization in large language
models, we follow the definition proposed by (Lee
et al., 2021), which introduced approximate mem-
orization. Given a string S, splitted into prefix (P)
and suffix (S7). We fed the prefix to the LM to
get the generated suffix (S¢). The memorization
is measured with the chosen edit distance between
the true and generated suffix. In our study, we
choose the edit distance to be a similarity measure
(SacreBLEU (Post, 2018)) as proposed in (Ippolito
et al., 2022), to be able to capture the approximate
memorization, not just the “Eidetic memorization”
(Carlini et al., 2021) as the definition of verbatim

4361

memorization fails to include more subtle forms of
memorization (Ippolito et al., 2022).

2.2 RL In Language Models

Unlearning undesirable behaviors is more compati-
ble with the reinforcement learning (RL) paradigm.
In the realm of NLP, RL has been employed to
enhance scalar metrics through reward optimiza-
tion (Ramamurthy et al., 2022; Ziegler et al., 2019;
Ouyang et al., 2022). Lately, RL has gained promi-
nence for addressing undesirable behavior, includ-
ing toxicity, social biases, and offensive speech.
This is accomplished by using Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) to opti-
mize a Language Model (LLM) based on a reward
model. In this paper, we investigate using RL with
a language model to mitigate privacy risks associ-
ated with memorization.

3 Related Work

In this section, we delve into recent studies to miti-
gate memorization in language models, which can
be categorized into three main approaches: data
pre/post-processing, differential privacy methods,
and knowledge unlearning.

Data Pre/Post-Processing: This approach re-
duces memorization in training data by applying
filters before or after feeding it into the language
model. One method is data deduplication (Kandpal
et al., 2022), which removes duplicates and im-
proves model performance. However, it only par-
tially protects against memorization as the model
can still memorize non-duplicate sequences. An-
other approach is "MemFREE decoding" (Ippolito
et al., 2022), which efficiently checks the memo-
rization in the LM generation by an n-gram in the
training dataset.

Differential Privacy (DP): is a widely-used
technique for training models to prevent memoriza-
tion of individual training examples (Abadi et al.,
2016). While effective for fine-tuning language
models (Yu et al., 2021; Li et al., 2021), DP often
reduces performance compared to non-private
models (Anil et al.,, 2021). State-of-the-art
language models are typically trained without DP,
using large amounts of data and computational
DP algorithms are computationally
expensive, slower to converge, and have lower
utility compared to non-private methods (Anil
et al., 2021). Applying DP to language data is
challenging due to defining private information

resources.

boundaries (Brown et al., 2022).

Knowledge Unlearning (UL): is an effective
method that reverses the training objective of mini-
mizing the negative log-likelihood for forgotten
tokens. It minimally affects language modeling
performance in larger models for a small number of
samples. UL has two approaches: batch unlearning
for multiple samples and sequential unlearning
for smaller chunks. However, unlearning a large
number of samples at once significantly degrades
average language model performance. While
UL effectively addresses memorization, it has
not been tested on sample sizes larger than 128.
Also, It does not preserve fluency or coherency for
generated suffixes, which are crucial for practical
applications.

In this work, we compare our proposed method
with a data-preprocessing approach proposed by
(Kandpal et al., 2022), which shows that deduplicat-
ing helps minimize data memorization. While this
method is effective, we show that memorization is
still high in the LMs pre-trained with this approach;
thus, we show that combining pre-processing with
our approach, “DeMemorization,” effectively miti-
gates memorization. We also compare our method
with UL and show it is not inadequate or impracti-
cal in real-world scenarios due to a limited number
of samples to forget at once.

4 Methodology

4.1 DeMemorization Via Dissimilarity Policy

DeMemorization framework operates by learning a
paraphrasing policy to mitigate memorization risks.
We divide each sample into prefixes and suffixes
using an LM and a subset of pre-training data. The
unlearning process is as follows: we select a prefix
P and a true suffix S7, then input the prefix into
the pre-trained LM to produce a suffix S. Using
a negative similarity metric, we evaluate how the
generated suffix is dissimilar to true. We use that
as a reward signal to encourage the LM to develop
a paraphrasing policy, generating dissimilar tokens
to minimize memorization. These steps can be
summarized as follows:

P, Sr ~ Dy)

SG = f9(8G¢+1|xP17"'axP¢) (2)
Disgeore = —BERT Score(Sa, St) (3)

4362

4.1.1 Reward Function

To yield the desired outcome of paraphrasing to
mitigate memorization risk, we need to employ a
similarity function to achieve this goal. The pro-
posed reward function should allow changes in
words or even the entire sentence while preserving
the semantic meaning. Also, while learning the
paraphrasing technique, we aim to ensure that the
fine-tuned or Dememorized LM stays within the
original LM to avoid potentially less coherent and
relevant generation.

Learning Dissimilarity with BERTScore.
To achieve the dissimilarity goal, we employ
BERTScore. One advantage of BERTScore over
other contextual embedding methods is the ability
to operate on pairwise tokens using contextual em-
beddings, providing a more flexible definition of
dissimilarity in our context. This flexibility means
that BERTScore can yield a high similarity score
for different words that share the same entity, en-
couraging the language model to learn a paraphras-
ing policy effectively. We employed the F-score
metric produced using BERTScore.

Achieving Stability Via KL Penalty. To
achieve the stability goal, we introduce a KL di-
vergence penalty term to quantify the dissimilarity
between these two policies. This step helps en-
sure that our optimization process remains within a
trustworthy region. The KL divergence, calculated
for the policies, is expressed as:

776’(@1'|5i)
KL(0|0.) = mo(a;i|s;) - log ———= (4)
(H) ie%;t] 9(’) Wec(ai|8i)

Here, we denote 6 as the pre-trained policy, repre-
senting a model that has undergone initial training
without fine-tuning. Additionally, we introduce 6.
as the updated policy, which signifies the policy
after fine-tuning or further training.”. We deduct
KL divergence with default value weight 5 = 0.2
as a penalty term.

4.1.2 Policy Optimization Via PPO

To optimize the policy, we employ a Proximal Pol-
icy Optimization (PPO) methodology, incorporat-
ing a top-p sampling rate of 0.95, a technique com-
monly referred to as Natural Language Policy Opti-
mization (NLPO), as elaborated in-depth in (Rama-
murthy et al., 2022) (please refer to Appendix A for
comprehensive elucidation). A value network V
is included beside the language modeling head to
estimate the value function. The batch size is 32 for

all models; we selected a specific number of steps
for each model as the convergence rate for each
model is different. We mean by convergence in this
context that the model-generated suffixes become
significantly different from the original suffixes but
without a considerable loss in the perplexity as the
difference between the perplexity of the generated
examples and original examples becomes smaller,
so we selected the appropriate number of steps that
balance between these goals.

4.2 Measuring Memorization In Language
Models

As mentioned in subsection 2.1, we adopt the con-
cept of approximate memorization, as it provides a
more precise and adaptable approach to capturing
subtle forms of memorization compared to the limi-
tations of exact memorization. We employ a widely
accepted text similarity measure from standard Nat-
ural Language Processing (NLP) evaluation tech-
niques to quantify approximate memorization accu-
rately: the SacreBLEU metric. SacreBLEU is an
improved version of BLEU, known for its stability
in measuring the quality of machine-generated text.

To measure forgetting, we consider the negative
of SacreBLEU. By utilizing SacreBLEU as a met-
ric for estimating approximate memorization, we
define DeMemorization or forgetting as the process
of minimizing the relationship between the given
prefix P and the suffix S.

This relationship represents the information that
the adversary seeks to extract based on the given
prefix. The metric we mentioned quantifies this
relationship. In an example scenario, an adversary
has the personal email address '"bob@adam.com
and seeks to obtain the password. If the LM has
memorized this association, it can provide the pass-
word ''12345'" when given the email, however,
by minimizing or altering their relationship. LM
can generate a different suffix as the password
"0912,",

As aresult, the generated suffixes are valid and
meaningful output without memorizing sensitive
information. This approach achieves the dual ob-
jectives of preserving the LM’s general capability
and the fluency of generated suffixes while ensur-
ing privacy. Also, the solution is more practical
in real-world situations than completely removing
all information, which can negatively impact the
capabilities of the language model (LM).

4363

Evaluation Train & Evaluation
A A
'd N\ 'd N\
Pre-Prefix Prefix Suffix
100 50 50
Token Token Token
\ J

Y

Sequence - 200 tokens

Figure 2: Illustration of sequence splitting in the training
& evaluation data.

S Experiments

In this section, we begin by introducing the dataset
used for training and assessing the paraphrasing
policy. Subsequently, we assess the overall per-
formance of the dememorized LM general per-
formance on nine benchmarks. We then estab-
lish the baseline methods for comparison. Finally,
we define the evaluation metrics that enable us to
measure the memorization and the performance in
downstream tasks.

5.1 Experimental Settings
5.1.1 Memorization Dataset

We employed a subset of the Pile dataset, released
as a benchmark for training data extraction attacks
on large Language Models. Generally, the Pile
dataset contains data from 16 different sources
(e.g., books, Web scrapes, open source code).
We used this version of the subset !, designed
to be easy to extract to assess targeted attack
performance. The dataset contains only 15,000
samples since the full version has not been
released yet. Each sample consists of 200 tokens
sampled randomly from the Pile training set. The
topics included in the subset are code, news, logs,
conversations, copyrights, links, etc. Most of them
are in the English language. The dataset is splitted
into 13,500 samples for training and 1,500 samples
for testing.

Training & Evaluation Data. Each sample
consists of a 200-token sequence divided into 100
pre-prefix tokens, 50 prefix tokens, and 50 suffix
tokens. During the training phase, we exclusively
utilized the prefix and suffix tokens. However, we
tested the model in two different settings during the

"https://github.com/google-research/
Im-extraction-benchmark

evaluation phase. In the first setting, we evaluated
the model’s ability to predict the suffix when pro-
vided with only the prefix. In the second setting,
we evaluated the model’s capability to predict the
suffix when given the pre-prefix and prefix. This
evaluation assessed the model’s capacity to protect
against acquiring additional information or knowl-
edge. A longer context in a language model can be
considered a form of attack (Carlini et al., 2022).
The sequence splitting is illustrated in Figure 2.

5.1.2 Downstream Tasks

To ensure stronger privacy protections for language
models (LMs) without compromising their original
capabilities, we undertake a comprehensive evalu-
ation that encompasses both privacy risks and the
inherent strengths of LMs. This evaluation involves
quantifying the LMs’ performance across various
classification tasks to assess their general capabil-
ities. The tasks include Hellaswag (Zellers et al.,
2019) and Lambada (Paperno et al., 2016) bench-
marks, which gauge linguistic reasoning abilities,
as well as Winogrande (Sakaguchi et al., 2021)
and COPA (Roemmele et al., 2011), which mea-
sure commonsense reasoning abilities. Addition-
ally, we utilize ARC-Easy, ARC-Challenge (Clark
et al., 2018), Piga (Bisk et al., 2020), MathQA
(Amini et al., 2019), and PubmedQA (Jin et al.,
2019) benchmarks to assess scientific reasoning
abilities. In addition to these classification tasks.
We also measure the perplexity on the Wikitext
(Merity et al., 2016) and Lambada (Paperno et al.,
2016) datasets to gain insights into the LMs’ lan-
guage understanding and modeling. Whenever pos-
sible, we use the test sets for these evaluations;
otherwise, we resort to the validation sets. Also,
we did not report Lambada’s perplexity & and ac-
curacy as it shows high values for perplexity & low
values for accuracy for the UL baseline. To discard
the anomaly and better assess the performance, we
report it in Appendix E.

5.1.3 Baseline Methods

Our experiments used the GPT-NEO family (125M,
1.3B, 2.7B), pre-trained on the publicly available
825GB Pile dataset. Additionally, we employed
the OPT family (125M, 1.3B, 2.7B) (Zhang et al.,
2022), which was pre-trained on a subset of the
deduplicated version of the Pile, along with other
corpora from diverse domains. OPT served as our
baseline method for deduplication, as per (Jang
et al., 2022), since the deduplicated version of GPT-

4364

https://github.com/google-research/lm-extraction-benchmark
https://github.com/google-research/lm-extraction-benchmark

Model N-SacreBLEUT LM (ACC)t LM (PPL), GEN (PPL)| E Model N-SacreBLEUT LM (ACC)? LM (PPL), GEN (PPL)| Epochs/
32 58.44 3.46 32 89.24 9.69 -
NEO12sm 128 58.41 4336 32.28 3.83 OPT125m 128 90.98 41.28 31.94 9.76
256 58.82 3.79 256 91.03 9.67
32 99.19 38.62 31098.06 19.77 18 32 99.23 37.06 449131.90 12.16 9
+UL 128 99.69 36.87 9683877.08 6.54 18 +UL 128 99.35 36.48 54917065.46 10.44 9
256 99.63 36.34 25146.84 6.03 18 256 99.21 37.19 114952.53 13.64 9
32 67.07 3.74 32 94.88 10.86
+DeMem 128 66.21 43.46 33.13 3.93 4 +DeMem 128 95.30 4225 33.13 10.78 4
256 67.05 3.95 256 95.61 10.58
32 30.76 2.02 32 71.63 6.72
NEO 3p 128 34.7 48.93 16.16 2.18 OPTy3p 128 71.96 51.65 16.41 6.92
256 33.95 2.18 256 7.7 6.80
32 99.57 48.61 24.38 437 14 32 99.50 39.16 * 11.19 7
+UL 128 98.33 4155 188.65 5.83 8 +UL 128 99.84 38.67 * 7.93 8
256 99.15 41.34 62.34 5.37 7 256 99.52 36.85 * 10.7 7
32 52.03 244 32 92.51 9.78
+DeMem 128 51.34 49.40 16.70 2.62 2 +DeMem 128 91.56 51.40 17.39 9.47 2
256 52.58 265 256 91.91 925
32 26.26 1.8 32 71.80 6.27
NEO278 128 27.25 52.67 13.93 1.92 OPT,78 128 67.56 53.74 14.31 6.48
256 27.37 1.92 256 66.32 6.3
32 99.54 49.70 324.68 4.93 11 32 99.15 38.60 * 715 11
+UL 128 97.77 47.42 41.50 9.67 8 +UL 128 97.87 41.06 * 13.43 7
256 99.37 39.80 118.68 453 8 256 99.48 38.20 * 7.6 8
32 49.24 23 32 94.53 8.28
+DeMem 128 50.81 52.48 14.15 238 2 +DeMem 128 93.08 52.20 15.25 831 2
256 50.91 235 256 93.24 8.16

Table 1: Main Results: GPT-NEO averaged 5 random
samples (s = 32, 128, and 256) for UL. NEO = initial
GPT-NEO LM. UL+ = knowledge unlearning, DeMEM
= DeMemorization. LM ACC. = average accuracy of
8 classification datasets, LM PPL = perplexity of Wiki-
text dataset, GEN PPL = perplexity of generated suffix.
Steps for DeMEM & Epochs for UL

NEO LMs by (Kandpal et al., 2022) were not pub-
licly accessible. We also applied DeMemorization
to the OPT LMs, which can be seen as a combina-
tion of the deduplication approach and DeMemo-
rization, resulting in a significant enhancement in
the privacy of these models. Furthermore, we in-
cluded UL (Jang et al., 2022) as a second baseline
method to highlight weaknesses and distinctions.

5.1.4 Implementation Details

For training, we utilized the training subset and fine-
tuned the GPT-Neo & OPT LMs fine-tuned them
for multiple iterations depending on the model size.
To compare our proposed method with UL & dedu-
plication, we followed the configuration proposed
by (Jang et al., 2022) to ensure an adequate com-
parison, as we randomly sample s samples from
the test subset and evaluate the models on those
samples for UL since it forgets s samples only at
once, we make the LM forget the s samples and
then evaluated. To follow the same configuration,
we show the average results of 5 random samplings
of s samples for all of our experimental settings.
To explore the impact of increasing the sample
size to be forgotten, we performed five random sam-
plings of 32, 128, and 256. DeMemorization was
carried out using a batch size of 32, and a default

Table 2: Main Results: OPT averaged 5 random sam-
ples (s = 32, 128, and 256) for UL. UL = knowledge
unlearning, DeMEM = DeMemorization. LM ACC =
average accuracy of 8 classification datasets, LM PPL =
perplexity of Wikitext dataset, GEN PPL = perplexity
of generated suffix. * means that the value is so high,
Reaching infinity. Epochs for UL & Steps for DeMeM.

value of learning rate of 1.41 x 10~° was applied to
all models. We use the default value of KL Beta of
0.2 and a clip range of 0.2. The GPT-Neo & OPT
LMs were employed using the official release in the
Hugging Face library. For UL training and mem-
orization evaluation, we utilized the official code
provided by the authors. For the selection of hyper-
parameters, see Appendix F. In downstream tasks,
we employed the Im-evaluation-harness framework
(Gao et al., 2021) for all baseline methods.

5.1.5 Evaluation Metrics

We conducted a comprehensive evaluation of De-
Memorization and baseline methods, employing a
multi-perspective approach to assess their effective-
ness in three key areas:

(1) Measuring Forgetting: As mentioned in
subsection 4.2, we employed negative Sacre-BLEU
to quantify memorization.

(2) Evaluating Generated Suffixes: To assess text
fluency, we utilized the perplexity score of the un-
derlying original model before forgetting. This
metric enabled us to assess the grammatical cor-
rectness and coherence of the generated suffixes.

(3) Performance on Downstream Tasks: We as-
sessed the performance of the unlearned models
across nine classification tasks, employing accu-
racy scores and perplexity measurements on Wiki-

4365

125M

1.3B 2.7B

52 NN) []
© 50 [RN []
2 48
]
£ 46
S
E 44 [e []
o 42
2’ 40
38 ‘\‘\‘
36
34
32 128 256 32 256 32 128 256
of Samples Forgotten at Once — UL
~B- DeMem

Figure 3: Average LM performance on the 8 benchmarks when varying the total number of samples forgotten for

NEO (125M, 1.3B, 2.7B).

text and Lambada.

5.2 Experimental Results & Discussion

We conducted comprehensive experiments to as-
sess the performance of DeMemorization against
the baseline methods. Our main observations are
as follows:

5.2.1 Overview of The DeMemorization
Performance

We comprehensively evaluated the DeMemoriza-
tion approach on nine classification tasks, wikitext
for perplexity, and the generated samples. The eval-
uation results, as shown in Table 1, demonstrate
that the DeMemorization approach effectively pro-
vides privacy and decreases the memorization for
GPT-NEO while maintaining the LM general ca-
pability, measured by evaluating the classification
tasks. It also maintains the fluency of the general
LM and generated suffixes. On the other hand, the
UL approach provides more robust protection since
it removes the data points completely from the train-
ing data, which lowers the general LM capability
by a large margin. This is effective privacy-wise but
needs to be more practical from the performance
perspective. Thus, we tried to balance this tradeoff
by employing the DeMemorization approach. We
provide the results for each dataset in Appendix E
for reference.

5.2.2 Deduplication With DeMemorization &
UL

We included OPT LMs as a baseline for the pre-
processing technique, which applies deduplication
to decrease memorization. Deduplicating the train-
ing data has effectively mitigated memorization, as
Table 1, Table 2 demonstrate. OPT models (dedu-

plicated) exhibit higher N-sacreBLEU scores than
NEO (non-duplicate version) models while achiev-
ing similar or better performance in downstream
tasks. However, even in these models, memoriza-
tion remains high, as only a portion of the memo-
rized samples are duplicates.

Therefore, we explored the UL approach and De-
Memorization. The models that utilized both frame-
works benefited significantly and became more ro-
bust privacy LMs. While UL reduced memoriza-
tion by approximately 99% of N-sacreBLEU, it
also negatively impacted the general capability of
the LM, resulting in an ~11% difference from the
original LM across various configurations. On the
other hand, DeMemorization achieved compara-
ble results to UL, with a reduction of ~94% in
memorization, without the need to completely re-
move training data points from the LM parameters.
In comparison, the loss in general LM capability
was insignificant, at around ~0.5%, in the case of
125M and NEO 1.3B DeMemorization, even en-
hanced performance. These findings suggest that
employing a combination of deduplication and De-
Memorization effectively mitigates memorization
while maintaining the general capability of the LM.
Since data deduplication is applied in most of the re-
cent & large language models (Penedo et al., 2023;
Touvron et al., 2023; Biderman et al., 2023; Taylor
et al., 2022; Scao et al., 2022; Black et al., 2022),
we believe our approach combined with deduplica-
tion will effectively mitigate memorization.

5.2.3 Number of Samples, Stability, &
Universal Policy

We investigated the impact of increasing the num-

ber of samples on the performance of both UL and

DeMemorization. In line with the findings from

4366

True Suffix SacreBLEU Score

SacreBLEU Score

Generated Suffix SacreBLEU Score

(a) Before DeMem

(b) After DeMem

Figure 4: Threshold of 75% SacreBLEU of The Generated Samples Before & After DeMemorization For Neo 2.7B

Longer Context.

(Jang et al., 2022), UL is sensitive to the number
of samples being unlearned simultaneously. Our
experimental results validate this observation in Ta-
ble 1, Table 2. As the number of samples increases,
we observe a decrease in the LM’s performance.
On the other hand, DeMemorization demonstrates
a different behavior as it is unaffected by the num-
ber of samples as shown in Figure 3. In DeMemo-
rization, the LM is fine-tuned one-time using nega-
tive similarity as a reward during training, followed
by evaluation on a separate test set. This allows
the model to learn a universal policy to forget an
unlimited number of samples. Here, the term "un-
limited" signifies the absence of any restrictions,
assumptions, or re-training of the LM regarding the
number of samples to be unlearned.

In UL, however, the model is fine-tuned and
evaluated on the same samples to forget them at a
time. To unlearn or forget multiple samples, the
model needs to undergo fine-tuning multiple times
through sequential or batch unlearning. In each
iteration, the model is fine-tuned with a specific
number of samples (typically 32, as suggested by
the authors) to prevent a decrease in the LM’s over-
all capability. This can be regarded as an assump-
tion about the number of samples to be protected
simultaneously, leading to an incomplete solution.
See Appendix G to highlight more UL framework
assumptions.

5.2.4 Perplexity of WikiText & Generated
Suffix

Perplexity serves as a crucial metric for assessing
the overall performance of a Language Model (LM)
in terms of its ability to generate fluent and coherent
text. We computed perplexity for Wikitext and
presented the results in Table 1, Table 2.
DeMemorization had a minimal impact on per-

AFTER
N — SacreBLEU 1 PPL |

| BEFORE
Model ‘ #Parameters | N—SacreBLEUT PPL]

55.04 4.15
88.91 7.68

125M 45.74 4.12
32.66 1.54

NEO 1.3B 59.58 6.64
2.7B 10.55 1.41

94.47 12.38
88.91 7.68

89.37 6.76

125M 89.35 11.99
2.7B 56.35 5.95

OPT ‘ 1.3B 59.58 6.64

Table 3: Comparsion of Negative SacreBLEU & Per-
plexity Means Before & After Applying The Framework
On a Longer Context; 100 Extra Tokens Combined With
The Prefix

plexity for all models. UL showed significantly
higher perplexity in some cases, even reaching in-
finity. UL’s high perplexity is attributed to its gradi-
ent ascent approach, which softens the probability
distribution and leads to a more uniform distribu-
tion and higher perplexity. However, this softening
procedure degrades LM performance as the model
becomes less confident in generating tokens. We
also evaluated the perplexity of unlearned samples,
which is crucial in practical applications where the
unlearned data domain is used. DeMemorization
caused an average degradation of approximately
0.5% in NEO models and around 1.5% in OPT
models. UL exhibited higher degradation in both
models due to the complete removal of correspond-
ing data points from the model parameters.

5.2.5 Protection Against Discoverability
Phenomenon

Discoverability phenomenon refers to the obser-
vation that some memorization only becomes ap-
parent under certain conditions, such as when a
model is prompted with a sufficiently long con-
text. (Carlini et al., 2022) found that the fraction
of extractable sequences increases in a log-linear
fashion with the number of tokens in the context.

4367

Prefix

True Suffix

ted Suffix-Bef

ted Suffix-After

N-SacreBLEUg

N-SacreBLEU,

PPLg

PPLA

"POT-Creation-Date: 2017-02-24 11:50-0800\n" "PO-
Revision-Date: YEAR-MO-DA HO:MI+ZONE\n" "Last

-Translator: FULL NAME
<EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE
<A@ll.org>\n" "Language: \n"
"MIME-Version

-Translator: FULL NAME
<EMAIL@ADDRESS>\n"
“"Language-Team:
LANGUAGE <ll@ll.org>\n"
“MIME-Version; 110\
"Content

-Translator: FULL NAME
<EMAIL@ADDRESS>\n"
“Language-Team: ERgIish

12.97

62.38

1.68

1.98

the Free Software Foundation, either version 3 of the
License, or * (at your option) any later version. * * weid-
java

-sdk is distributed in the hope that
it will be useful, * but
WITHOUT ANY WARRANTY;
without even the implied warranty
of * MERCHANTABILITY or

Lorg is distributed in the hope that
it will be useful, * but
WITHOUT ANY WARRANTY;
without even the implied warranty

16.41

99.95

1.93

21

FITNESS FITNESS|

of* MERCHANTABILITY or
 FOR A PARTIC

.com>,

<SUNE@enron.com>,

com>, S VI <sHl
. corm>, DI <O I I o>,

* If this package is used in a
product, EJll YIll should be
given

| @ || v con>, TH el 69.87 86.04 1.96 2.60

R\ <l con>. VIl VBl <vnlll | B <7l cElGEE.com>, Rl
E B @ <SHEE V< OB o>
inthis distrbution, be it the RC4, RSA, * Ihash, DES, etc, | Hudson (;,@C’-Eﬁ'? -
e opyright remains *

code; not just the SSL code. The SSL documentation P Hudson ((@cill.com). * * Hudson. * “HETREISSE

included with this distribution is covered by the same n Peeesuasaseneiieesey version of this file is 2.0.0.\rn 80.12 96.52 3.80 6.64

copyright terms * except that the holder is Tim Copyright notices in * the Prevresrrerrearnan *\An *\rln * \rin * The ASN.1
code are not to be removed. notation for

Figure 5: Generated & True Suffixes given the prefixes before & after applying DeMem. Green indicates that this
part is memorized according to the true suffix, while red indicates that it’s dissimilar.

For example, with a context of 50 tokens, approxi-
mately 33% of training sequences can be extracted
from the NEO-6B model. However, with a context
of 450 tokens, this percentage rises to 65%.

We evaluated our DeMemorization approach by
increasing the prefix context from 50 to 150 tokens.
The results in Table 1, Table 2 show that extending
the context does not significantly impact the 125M
model in NEO, with a forgetting rate decrease from
58.44% to 45.47%, and has no effect in OPT-125M.
However, for larger models like 1.3B and 2.7B, a
longer context considerably reduces the forgetting
rate by approximately 49% in NEO and around
10% in OPT. Nevertheless, DeMemorization effec-
tively counters this type of attack, increasing the
forgetting rate by approximately 10% for the 125M
model and approximately 30% for larger sizes in
OPT & NEO as shown in Table 3. This demon-
strates the universality and generalizability of the
learned policy across various scenarios.

5.2.6 Approximate Memorization Threhold

Based on (Ippolito et al., 2022), a BLEU score of
75% for the generated suffix is considered a suit-
able threshold for determining approximate mem-
orization. However, our investigation found that
even a threshold as low as 50% after applying the
framework can mitigate this issue. Nevertheless,
we chose to use the widely accepted threshold of
75% to demonstrate the effectiveness of our frame-
work. Applying DeMemorization to the LM re-
sulted in a significant decrease in memorized sam-
ples. For GPT-Neo 1.3B and 2.7B, approximate

memorization examples decreased from 910 to 497
and 1036 to 321, respectively (refer to Appendix B
for other models). The red region in Figure 4 rep-
resents samples with scores equal to or above 75%.
After DeMemorization, the distribution of samples
spreads more evenly across different values instead
of being concentrated beyond the 75% threshold.
Box plots (see Appendix D) confirm the efficiency
of the DeMemorization approach, as evidenced by
the median of the sample’s distribution before and
after DeMemorization.

5.2.7

Figure 5 demonstrates that the framework is capa-
ble of learning a policy that reduces or eliminates
the amount of memorized personal data, such as
email addresses. However, it should be noted that
in certain instances, this can increase perplexity.
More samples demonstrating Dememorization can
be found in Appendix C.

Qualitative Results

6 Conclusion

In this paper, we present a novel framework that
tackles the problem of training data memorization
in LLMs. We achieve this by employing an RL
paraphrasing policy. Through extensive evalua-
tions conducted in diverse settings, we demonstrate
the effectiveness of our approach. Our framework
successfully reduces memorization by significantly
decreasing the SacreBLEU score while preserving
the overall capabilities of the LM as measured by
nine classification benchmarks.

4368

Limitations

One of the limitations of our work is that it relies
on a single scalar reward for optimization, as the
problem has dual objectives: dissimilarity and per-
plexity. To overcome this limitation, we suggest
exploring other techniques, such as Multi-objective
Reinforcement Learning, which can potentially en-
hance performance and optimize both objectives
simultaneously.

Ethics Statement

Improving the large language model to be privacy-
preserving is crucial since the language models
have become more prominent and involved in many
applications in multi-aspect of life. Ensuring the
data privacy of those models is vital since some ad-
versary may be able to reach that information. To
make those models widely used, we have to guaran-
tee they cannot emit private data. In this paper, we
hope our work will serve as a foundation for devel-
oping new and innovative solutions to the problem
of approximate memorization in large language
models since verbatim memorization can give a
false sense of privacy, as earlier work suggested.
Our proposed framework provides a promising ap-
proach to addressing this issue. Further research
and experimentation in this area can lead to even
more effective methods for reducing memoriza-
tion in these models. Our work also highlights the
importance of considering both the computational
cost and the performance trade-off when develop-
ing new techniques for addressing memorization in
large language models.

Acknowledgements

The authors would like to thank Niloofar
Mireshghallah for helpful feedback.

This research is supported by the Vector Schol-
arship in Artificial Intelligence, provided through
the Vector Institute and Natural Sciences and En-
gineering Research Council of Canada (NSERC)
by NSERC Discovery Grant. This research was en-
abled in part by support provided by Compute On-
tario and the Digital Research Alliance of Canada.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-
dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC con-

ference on computer and communications security,

pages 308-318.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar,
and Pasin Manurangsi. 2021. Large-scale differen-
tially private bert. arXiv preprint arXiv:2108.01624.

Priyam Basu, Tiasa Singha Roy, Rakshit Naidu, Zum-
rut Muftuoglu, Sahib Singh, and Fatemehsadat
Mireshghallah. 2021. Benchmarking differential pri-
vacy and federated learning for bert models. arXiv
preprint arXiv:2106.13973.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. 2023. Pythia: A suite
for analyzing large language models across training
and scaling. arXiv preprint arXiv:2304.01373.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-7439.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Hannah Brown, Katherine Lee, Fatemehsadat
Mireshghallah, Reza Shokri, and Florian Tramer.
2022. What does it mean for a language model to
preserve privacy? arXiv preprint arXiv:2202.05520.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. arXiv preprint arXiv:2202.07646.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633-2650.

4369

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
et al. 2021. A framework for few-shot language
model evaluation. Version v0. 0.1. Sept.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018. Learn-
ing to write with cooperative discriminators. arXiv
preprint arXiv:1805.06087.

Daphne Ippolito, Florian Tramer, Milad Nasr, Chiyuan
Zhang, Matthew Jagielski, Katherine Lee, Christo-
pher A Choquette-Choo, and Nicholas Carlini. 2022.
Preventing verbatim memorization in language mod-
els gives a false sense of privacy. arXiv preprint
arXiv:2210.17546.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2022. Knowledge unlearning for mitigating
privacy risks in language models. arXiv preprint
arXiv:2210.01504.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset
for biomedical research question answering. arXiv
preprint arXiv:1909.06146.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022.
Deduplicating training data mitigates privacy risks in
language models. arXiv preprint arXiv:2202.06539.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2021. Deduplicating training
data makes language models better. arXiv preprint
arXiv:2107.06499.

Alexandra Levine. 2021. Suicide hotline shares data
with for-profit spinoff, raising ethical questions.
politico.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori
Hashimoto. 2021. Large language models can be
strong differentially private learners. arXiv preprint
arXiv:2110.05679.

Pierre Lison, Ildiké Pilan, David Sanchez, Montser-
rat Batet, and Lilja @vrelid. 2021. Anonymisation
models for text data: State of the art, challenges and
future directions. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4188—4203.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. arXiv
preprint arXiv:1606.06031.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset
for falcon llm: Outperforming curated corpora with
web data, and web data only. arXiv preprint
arXiv:2306.01116.

Keith Porcaro. 2022. The real harm of crisis text line’s
data sharing. wired.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

4370

https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319

Rajkumar Ramamurthy, Prithviraj Ammanabrolu,
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi.
2022. Is reinforcement learning (not) for natural
language processing?: Benchmarks, baselines, and
building blocks for natural language policy optimiza-
tion. arXiv preprint arXiv:2210.01241.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505-3506.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI spring symposium: logical formal-
izations of commonsense reasoning, pages 90-95.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99—-106.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Francois Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Florian Tramer, Gautam Kamath, and Nicholas Car-
lini. 2022. Considerations for differentially private
learning with large-scale public pretraining. arXiv
preprint arXiv:2212.06470.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, and Nathan Lam-
bert. 2020. Trl: Transformer reinforcement learning.
https://github.com/lvwerra/trl.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi,
Huseyin A Inan, Gautam Kamath, Janardhan Kulka-
rni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz,
et al. 2021. Differentially private fine-tuning of lan-
guage models. arXiv preprint arXiv:2110.06500.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

4371

https://github.com/lvwerra/trl

A Natural Language Policy Optimization vs PPO

To tackle the challenge posed by large action spaces in language generation tasks, the NLPO (Natural
Language Policy Optimization) framework was proposed. Previous research by (Ramamurthy et al., 2022)
highlighted the difficulties faced by existing RL algorithms when dealing with models like GPT-2/3 and
TS, which have extensive vocabularies of 50K and 32K tokens, respectively, and this issue becomes even
more pronounced with newer models. NLPO introduces a masking policy that is periodically updated
and incorporates a top-p sampling technique during training. This technique helps address the dilemma
of balancing the inclusion of task-relevant information while mitigating the risk of reward hacking. By
extending the PPO (Proximal Policy Optimization) algorithm, NLPO aims to enhance the stability and
effectiveness of training language models. NLPO achieves this by employing top-p sampling through
generating, which restricts the selection of tokens to a smaller setting where the cumulative probability
surpasses a given threshold parameter, p (Holtzman et al., 2018).

B Displaying Approximate Memorization Threshold

Recent studies suggested that approximate memorization occurs at the BLEU score of 75%; we follow
this suggestion and demonstrate the effectiveness of the proposed framework in this section by comparing
the number of samples that exceed this threshold before and after applying the framework.

SacreBLEU(suffix, suffixy) > 0.75 ®))
&!'w" AT NG RTF R T U ade sy AR G T
ao"”e. .:; ;&%‘.{.ﬂf%..}:c‘;:;l‘ KA ey) e > :..6 ". od :..

L
oo .
s g

.
.
e ® o
o

.

8
o
@ o0

SacreBLEU Score
.

3
L

o 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400

(a) True Suffixes Standard Setting (b) Generated suffixes Standard Setting

True Suffix SacreBLEU Score Generated Suffix SacreBLEU Score

G g o

el e W3 eIl

SacreBLEU Score

o 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400

(c) True Suffixes Longer Context Setting (d) Generated Suffixes Longer Context Setting

Figure 6: Threshold of 75% Of The True & Generated Samples SacreBLEU For GPT-Neo 125M Standard Setting

As shown in Figure 6, the memorization ratio for the GPT-Neo 125M model is relatively low. However,
when using standard and longer context settings, there are many instances where the samples are distributed
on and beyond the 75% threshold. Despite this, after implementing the proposed framework, the
distribution of samples is more evenly spread across various values rather than being concentrated solely
in the region beyond the 75% threshold. In contrast to the other variation, GPT-Neo 1.3B & 2.7B have a
large memorization ratio, especially in case of longer context; the framework effect can be seen obviously
as many samples exceed the threshold in case of those variations as shown in Figure 7 and Figure 8.

4372

SacreBLEU Score

True Suffix SacreBLEU Score

200 400 600 800 1000 1200 1400

Generated Suffix SacreBLEU Score

SacreBLEU Score

400 600 800 1000 1200 1400

(a) True Suffixes Standard Setting

(b) Generated suffixes Standard Setting

SacreBLEU Score

True Suffix SacreBLEU Score

600 800 1000 1200 1400

Generated Suffix SacreBLEU Score

SacreBLEU Score

0 200 400 600 800 1000 1200 1400

Figure 7: Threshold of 75% Of The True & Generated Samples SacreBLEU For GPT-Neo 1.3B Standard Setting

(c) True Suffixes Longer Context Setting

(d) Generated Suffixes Longer Context Setting

SacreBLEU Score

True Suffix SacreBLEU Score

200 400 600 800 1000 1200 1400

Generated Suffix SacreBLEU Score

SacreBLEU Score

) 200 400 600 800 1000 1200 1400

(a) True Suffixes Standard Setting

(b) Generated suffixes Standard Setting

100

True Suffix SacreBLEU Score

Generated Suffix SacreBLEU Score

80
o ° ° . .
» - L LN] L] . o ® o . »
S & L) % . * © * g
& . . &
E ° E
@ . @
@ . T
S 40 o ¢ o o ° . . S
8 2
& &
L4 .
o & .o °
20 ry (] 0 e * 0
. .
0 0
o 200 400 600 200 1000 1200 1400 o 200 400 600 800 1000 1200 1400

Figure 8: Threshold of 75% Of The True & Generated Samples SacreBLEU For GPT-Neo 2.7B Standard Setting

(c) True Suffixes Longer Context Setting

(d) Generated Suffixes Longer Context Setting

4373

C Qualitative Results

In this section, we demonstrate the effectiveness of our proposed framework by presenting a thorough
analysis of samples generated before and after its application. To provide a comprehensive evaluation, we
have chosen samples from various model sizes, including 125M, 1.3B, and 2.7B, and included examples
from both standard and longer contexts. Additionally, we present samples from different training phases
to showcase the learned policy’s evolution over time. As previously mentioned, the policy initially focuses
on replacing individual words or numbers to decrease the similarity between samples. As the training
process progresses, the policy becomes more aggressive and replaces entire phrases, as shown in Figure 9.

Prefix

PARTICULAR PURPOSE
AND NONINFRINGEMENT.
IN* NO EVENT

PARTICULAR PURPOSE
AND NONINFRINGEMENT.
IN*NO EVENT SHALL THE

PARTICULAR PURPOSE
AND

True Suffix Suffix-Bef Suffix-Afte N-S BLEUg | N-S: BLEU, PPLg PPLA
IF A STAY OF EXECUTION OF SENTENCE AND
RELEASE UPON BAIL HAS BEEN PREVIOUSLY 5
forty-five day appeal period forty-five day appeal period | EASEIGHACORIAUAIGHNIE
CRNTEDSYTHE AL COLRT OR TS COURT 1| ILISCITIUITY | el St | —Spemechutaron
Gay upon the bai previousy posted. The purpose ofa | 1o Rules of Practce of the e T I
1(/:ont?nued stay isp(o a!\owzxgpe\\am to ﬁl‘; w‘i)th the Supreme Court of Ohlo. Suprame Court of Ohio. 6.74 87.6 1.60 197
Supreme Court of Ohio an application for a stay durin Additionally,if the Supreme R
p ppl y during ismi Court of Ohio dismisses the | iEieXpiration ofthielsixty day
the pendency of proceedings in that court. If a stay is Court T’ Oh": dlsmlss!es lhe; appeal prior to expiration of period, or 7 days after the
continued by this entry, it will terminate at the earlier of appeal pr‘or‘do ex;():a lon o sixty days, date of entry of this order, of
the expiration of the sixty day period, or the failure of the sixty days, the
Appellant to file a notice of appeal with the Supreme
Court of Ohio in the
ModuleDirectories = true; . v <div | 5 navigation”s <div | HCIESS=NiFBARTAVACERtEHE:
loadScripts(document, 'script); </script> <noscript> "> <nav role="navigation"> <div | "> <"T" '°'er= "gnga“""f <div
<div>JavaScript is disabled on your browser.</div> class="fixedNav"> <!
; = OF TOP </header> <div 3.10 88.27 3.04 3.20
</noscript> <header role="banner
" > <div class="dropdown'> <button
topNav'><a class="bibin=primary
id="navbar.top"> <l-- id="navbar.top"><!--JIES dropdown-toggle”
type="button"
Related Posts Reader Interactions Submit Your
(;?;“(T:r;‘)‘roduct of mdzszlne;esnlopesearch by our wm;:sm writing our articles and strive writing our articles and strive writing our articles and strive
: h ’ to provide accurate, up-to- to provide accurate, up-to- to provide accurate, up-to-
researcr:i(r:‘ and edllona\':zranm. User revnev:ss::\sdnm date content. However, our date content. However, our date content. However, our
P . research is meant to aid your research is meant to aid your | research is meant to aid your
Banks. fsuers, e cnd comparies and et oduct | WM and we arenotacing | own, andwe renotacng | own SESOMSIURGBEG | 0.3 5261 134 192
& service providers are not responsible for any content avsvhcensed pro':flflo(nals ﬁgiﬂfﬁ,ﬁ;ﬁ:ﬁ"ﬂj =
posted on FitSmallBusiness.com. As such, they do not @ recommend that you o |y
endorse or guarantee any posted comments or consult with your own lawyer, oonsul'wll‘ yl)ul;r(‘)wn lawyer, This information is subject to
reviews.Cancel reply You must be logged in to comment accountant, o other accountant orothe change at any time!
Click the "Log in With LinkedIn" button below to connect
instantly and comment. Social Contact Us Disclaimer: We
spend hours researching and
KIND, EXPRESS * OR KIND, EXPRESS\n * OR KIND, * EXPRESS OR
. IMPLIED, INCLUDING BUT IMPLIED, INCLUDING BUT IMPLIED, INCLUDING BUT
following conditions: * * The above copyright notice and NOT LIMITED TO THE NOT LIMITED TO THE NOT LIMITED TO THE
this permission notice shall be included * in all copies or WARRANTIES OF * WARRANTIES OF\n * WARRANTIES OF *
substantial portions of the Software. * * THE SOFTWARE MERCHANTABILITY, MERCHANTABILITY, MERCHANTABILITY, 9.53 30.46 163 1.09
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY FITNESS FOR A FITNESS FOR A FITNESS FOR A

Figure 9: Suffixes that are memorized by the employed language models and the generated suffixes given the same
prefix. Green indicates that this part is memorized according to the true suffix, while red indicates that it’s dissimilar.

4374

D Median Comparison

Negative SacreBLEU Sc:

100
P
g
60
40
20
0

Framework Original

Negative SacreBLEU Sc:

100

o 80
g

60

40

20

o

Original

Framework

Negative SacreBLEU S

100
o 80
g
60
H]
40
20
0

Framework Original

(a) GPT-Neo 125M On Standard Setting

(b) GPT-Neo 1.3B On Standard Setting

(c) GPT-Neo 2.7B On Standard Setting

Negative SacreBLEU Score

100
80
60
40
0
0

Framework Original

Negative SacreBLEU Sct

100
o 80
g
60
40
20
, ——

Framework Original

gative SacreBLEU S

N

100
o 80
g
60
F 2
20
. —

Framework Original

(d) GPT-Neo 125M On Long Setting

(e) GPT-Neo 1.3B On Long Setting

(f) GPT-Neo 2.7B On Long Setting

Figure 10: Displaying The Negative SacreBLEU Distribution of The Models On Standard & Long Settings Before
(blue) & After (orange) Applying The Framework

4375

E Results of Each Dataset

Hella. Lamba. Wino. COPA ARC-E ARC-C Piga MathQ PubQ Avg

Model #Samples \~0) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)
NEO 125y - 2866 3735 5043 640 4372 1911 63.05 2278 5510 4336
+DeMEM - 2854 3409 5074 6400 4389 1996 63.00 2244 5510 43.46

28.47 1.3 52.09 60.00 36.90 20.13 5848 21.10 3930 39.56
27.03 0.05 50.59 59.00 31.18 18.94 5495 2040 3380 36.98
+UL 32 28.40 1.94 50.90 61.00 37.87 19.53 60.01 21.00 3620 3936
26.66 0.09 5295 56.00 31.90 19.28 5522 1993 3380 36.97
26.71 3.55 50.27 5400 31.10 22.61 5897 2291 5520 40.22

26.31 0 51.61 54.00 29.67 18.85 53.69 1943 3380 3592
26.26 0.13 51.30 55.00 29.46 2030 5690 21.34 5520 3947
+UL 128 26.91 0.67 5130 59.00 3291 18.08 5576 2097 3390 37.35

26.40 0 51.69 55.00 29.58 18.17 5359 2020 3380 36.05
26.40 0 51.06 53.00 29.16 18.60 52.55 19.83 3380 35.55

26.61 0 50.67 56.00 30.97 18.25 5391 2026 3380 3631

26.56 0 53.51 56.00 3194 20.64 59.03 2237 5520 36.14

+UL 256 26.78 0.05 5035 56.00 3194 18.68 5457 2050 33.80 36.58
26.56 0 50.82 55.00 30.93 18.60 5424 2043 3380 36.30

26.73 0 51.06 55.00 31.39 18.43 5402 20.63 3380 36.38

NEO;.38 - 38.65 57.20 5493 69.00 56.18 2312 71.10 2405 5440 4893
+DeMEM - 38.73 51.71 5548 73.00 55.17 23.63 7072 23.65 5480 49.40
39.00 24.23 54.69 7400 54.25 25.25 69.58 23.11 52.00 48.98

38.50 32.56 54.61 - 72.00 5547 2525 6947 2331 50.80

+UL 32 35.51 65.70 53.82 7500 51.13 2286 68.11 2422 5500 4821

38.34 61.01 54.69 69.00 53.66 23.80 6926 24.69 53.60 4838
37.41 64.48 56.66 73.00 5294 23.63 69.15 2385 5370 48.79

27.96 8.81 52.88 55.00 30.00 19.28 56.03 21.57 5480 39.69
33.32 59.88 57.30. 66.00 47.34 21.58 6572 2519 55.10 46.44
+UL 128 26.89 0 52.09 54.00 27.98 2030 5321 2033 3440 36.15
30.11 40.52 53.90 6500 4229 20.81 61.91 23.68 55.00 44.09
31.14 6.63 5572 63.00 4229 19.53 63.05 22,17 3400 4136

28.79 593 52.17 55.00 33.45 18.85 5680 21.60 56.70 40.42
29.43 39.53 53.35 60.00 36.57 19.28 59.63 2324 5520 42.09
+UL 256 28.02 28.10 53.90 62.00 3497 19.11 5875 23.31 54.60 41.83
29.19 31.34 5240 55.00 35.47 19.36 5875 2261 5520 41.00
29.92 15.11 52.88 56.00 37.07 19.11 58.86 2194 5530 4138

NEO, 78 - 42.71 62.24 5770 79.00 61.06 27.47 72.19 24.05 5830 52.67
+DeMEM - 42.30 59.42 58.01 79.00 60.14 27.47 71.65 24.58 56.70 52.48

39.33 61.96 5580 77.00 58.75 27.81 69.91 24.12 5530 51.00
28.34 23.48 53.11 75.00 31.90 22.44 55.60 21.84 5270 4261
+UL 32 41.73 46.49 58.56 76.00 57.40 27.64 70.94 2479 6090 5224
43.69 44.65 58.16 73.00 59.34 27.04 7187 2522 6030 5233
39.89 66.46 56.74 7400 54.71 28.66 68.55 2455 5530 50.30

31.86 55.88 5438 69.00 43.60 2039 66.26 23.21 5530 45.50
30.75 41.04 5453 65.00 4036 20.13 63.54 2247 5560 4485
+UL 128 41.52 50.86 58.64 71.00 58.37 25.51 7132 23091 61.10 51.42
37.16 5843 5832 71.00 50.25 2372 69.04 2438 5690 4884
39.20 17.54 59.27 73.00 52.14 25.85 68.60 22.51 37.80 47.29

31.86 55.88 5438 69.00 43.60 2039 66.26 23.21 57.00 45.71
25.80 0.15 5272 5800 26.09 19.45 53.91 1996 5520 38.90
+UL 256 26.52 0.03 51.69 58.00 27.44 17.91 54.89 19.63 56.60 39.08
25.97 0 4988 58.00 26.34 2030 53.15 19.86 4440 3724
29.42 6.30 50.67 62.00 30.59 2047 56.03 20.56 3470 38.00

Table 4: Main Results: NEO averaged 5 random samples (s = 32, 128, and 256) for UL. UL = knowledge unlearning,
DeMEM = DeMemorization. LM ACC = average accuracy of 8 classification datasets. Lambada Accuracy is
excluded from the average due to anomalies

4376

Hella. Lamba. Wino. COPA ARC-E ARC-C Piga MathQ PubQ Avg

Model #Samples o) (ACO) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)
OPT1asm - 2921 3792 5028 6600 4352 1911 63.00 2204 37.10 41.28
+DeMEM R 2890 3608 5043 6600 4099 1970 6273 21.64 47.60 4225

26.84 0.56 50.03 60.00 28.87 19.79 57.01 21.50 33.80 37.23
26.61 0.02 5240 60.00 28.49 19.88 5647 2077 33.80 37.30
+UL 32 26.87 2.27 4925 58.00 29.40 19.70 57.67 21.17 33.80 3698
26.67 0.42 4948 61.00 28.61 2030 5642 20.67 33.80 37.12
26.68 0.34 51.46 56.00 2895 20.39 55.71 2046 33.80 36.68

26.61 0.03 4822 57.00 28.40 21.16 5489 2023 33.80 36.29
26.70 0.03 4940 57.00 28.57 21.16 5533 2070 33.80 36.58
+UL 128 26.62 0 50.11 58.00 28.32 21.07 5457 19.83 3380 36.54
26.68 0.03 51.14 57.00 2832 21.50 5505 20.70 33.80 36.77
26.50 0.01 4932 57.00 28.28 20.64 54.62 19.69 33.80 36.23

26.73 1.2 49.64 60.00 28.57 21.16 57.12 21.27 33.80 3729
26.91 0.7 50.82 61.00 28.74 20.64 5640 2134 33.80 37.46
+UL 256 26.99 0.5 50.27 59.00 28.36 21.50 5652 20.77 33.80 37.15
26.84 0.4 50.82 58.00 28.07 21.84 56.25 2123 3380 37.11
26.93 0.8 4948 58.00 28.15 21.33 56.63 21.13 33.80 36.93

OPTy38 - 41.48 5791 5935 79.00 57.07 2342 7176 2329 5790 51.65
+DeMEM - 41.57 53.74 60.45 78.00 55.13 2491 70.83 2385 56.50 51.40

30.37 0.64 52.17 59.00 28.15 23772 56.69 20.50 55.50 40.76
30.60 4.48 5130 59.00 29.71 2329 5761 2093 4040 39.10
+UL 32 30.07 0.81 51.93 60.00 27.73 23.03 5647 2090 51.20 40.16
28.13 0 5177 5400 27.18 22.35 55.27 19.83 3380 36.54
30.28 1.88 50.82 63.00 29.04 22,18 57.07 2123 40.40 39.25

27.10 0 5114 5300 2407 2175 5593 1926 5520 40.76
27.49 0 5138 5100 2432 2226 5620 1929 5520 39.10

+UL 128 27.34 0 5090 5400 2466 2320 5576 19.09 5520 40.16
28.53 0 5106 60.00 27.86 2244 5560 2067 4890 3654

27.16 0 5327 4900 2474 2201 5642 1926 5520 3925

27.87 0 5146 5600 2727 2175 5620 2077 3470 37.00

28.32 0 5082 5600 2803 2218 5663 2077 3410 37.10

+UL 256 27.93 0 5074 5400 2794 2124 5505 20.16 3390 3637
27.98 0 50.82 5400 2803 2158 5587 2080 3380 3637

28.03 0 5114 5400 27.06 2244 5560 2056 3870 37.19

OPT278 - 4584 6357 6101 7700 6077 2688 7383 2385 6080 53.74
+DeMEM - 4157 5373 6022 7600 5808 2474 7241 2371 6090 52.20
3088 075 5256 5800 2950 2320 57.61 2067 5560 41.00

25.32 0 5035 5000 2420 2226 5446 1959 5520 37.67

+UL 32 28.26 0 5114 5100 2542 2337 5489 2036 5520 3870
25.28 0 5169 49.00 2382 21.84 5446 19.19 5520 37.56

2537 0 50.19 53.00 2445 2286 5457 19.09 5520 38.09

27.31 0 5193 4700 2470 2201 5739 1956 5520 38.14

37.09 37.55 49.88 65.00 39.39 22.61 64.09 20.83 5450 44.17
+UL 128 27.67 0 51.85 47.00 24.70 22.18 56.36 19.09 5520 38.00
36.16 34.32 49.64 64.00 38.88 21.75 62.84 21.84 5440 43.69
31.67 9.64 4948 62.00 31.14 2312 59.57 2217 5140 4132

25.89 0 51.06 49.00 24.36 22.61 56.63 1936 5520 38.01

27.21 0 5256 43.00 24.70 22.35 56.96 1932 5520 37.66
+UL 256 31.10 7.97 5027 60.00 31.52 22.61 60.44 22.11 4190 39.99
26.86 0 50.43 44.00 24.24 21.67 55.76 19.43 5520 37.20
25.32 0 50.59 54.00 24.62 22.44 54.18 1879 5520 38.14

Table 5: Main Results: OPT averaged 5 random samples (s = 32, 128, and 256) for UL. UL = knowledge unlearning,
DeMEM = DeMemorization. LM ACC = average accuracy of 8 classification datasets. Lambada Accuracy is
excluded from the average due to anomalies

4377

Lamba. Wikitext.

Model #Samples (PPL)| (PPL)|
NEO125m - 30.26 32.28
+DeMEM - 33.58 33.13
10919.67 357.79
1818857.11 3961.67
+UL 32 7405.89 335.80
3385138.77 6732.11
25647.89 144102.93
2655013035093.51 9621014
124900785 36560950
+UL 128 182274.05 1935.31
1395018915.85 163375.73
747238174142.82 2072110.35
128824105.70 40390.67
17736.35 41620.78
+UL 256 544676491 9477.52
47724404.48 22130.00
9320659.24 12115.23
NEOs 38 - 7.49 16.16
+DeMEM - 9.01 16.70
31.33 26.77
20.60 24.67
+UL 32 6.61 22.39
7.53 20.90
7.087 27.16
747.21 53.23
14.52 36.09
+UL 128 4920762.54 770.51
4142 41.93
342.03 41.51
13.72 61.20
189789.40 227.06
+UL 256 189367.90 91.03
681965.60 171.54
705.34 42.59
NEO,.78 - 5.62 13.93
+DeMEM - 6.51 14.15
6.13 19.87
2992343.20 1531.31
+UL 32 10.44 28.07
10.28 17.41
6.23 17.11
17.83 61.20
41.04 63.78
+UL 128 8.91 16.15
10.58 33.69
53.39 116.89
25.89 0
27.21 0
+UL 256 31.10 7.97
26.86 0
25.32 0

Table 6: Perplexity Results On Lambada & Wikitext: NEO averaged 5 random samples (s = 32, 128, and 256) for
UL. UL = knowledge unlearning, DeMEM = DeMemorization.

4378

Lamba. Wikitext.

Model #Samples (PPL). (PPL)|
OPT125m - 26.02 31.94
+DeMEM - 31.14 35.35
OPTy38 - 6.64 16.41
+DeMEM - 7.61 17.39
OPT,.78 - 5.11 14.31
+DeMEM - 7.61 15.25

Table 7: Perplexity Results On Lambada & Wikitext: OPT For Original LM & DeMEM Since UL produced Infinity.

F Baseline Method Hyperparameters

We selected the hyperparameters for UL based on (Jang et al., 2022) for NEO models, using the number
of epochs required for unlearning until the target sequences meet the forgetting criteria. For OPT models,
we used half the number of epochs compared to NEO models in specific sizes, as OPT models achieved
the same loss as NEO models but in fewer epochs.

G Memorization’s Assumptions

As previously discussed, presenting assumptions to address the memorization problem often leads to
incomplete solutions. This is evident in the case of differential privacy, which assumes whether the
data is private or not. Similarly, UL assumes that the training and evaluation data are memorized,
which is impractical in real-world applications considering that language models are trained on vast
corpora with billions of tokens. Furthermore, fine-tuning an LM in an application involving potentially
sensitive/private data poses challenges in splitting the data into sensitive/private and non-sensitive/private
portions for the purpose of forgetting (Levine, 2021; Porcaro, 2022; Brown et al., 2022). On the other
hand, DeMemorization does not rely on assumptions about the training data that need to be unlearned.
Instead, we fine-tune the LM to learn a universal policy that reduces the relationship between the prefix
and suffix. This policy achieves its objective by replacing the token with a similar entity or a context
that is semantically correct but not directly linked to the same prefix, as illustrated in Figure 3. Another
assumption is the limited number of samples to be unlearned at once, which we discussed before.

H Hardware & Software Dependencies

In order to fine-tune GPT-Neo models of sizes 125M and 1.3B, we utilized a cluster of two V100 GPUs,
each equipped with 32GB of VRAM. The 125M model required approximately 0.38 minutes per PPO
epoch, resulting in a total computation time of 3.04 minutes for six epochs. The 1.3B model required a
slightly longer computation time of 1.68 minutes per PPO epoch, for a total of 13.44 minutes over eight
epochs. For the largest variant, GPT-Neo 2.7B, we utilized a cluster of four V100 GPUs, each with 32GB
of VRAM, and employed a sharding strategy with zero 3 (Rasley et al., 2020). Each PPO epoch for this
model required 5.125 minutes, resulting in a total computation time of approximately 20 minutes over
four epochs. For finetuning those models, we employed the HuggingFace library (Wolf et al., 2019) for
training and Pytorch (Paszke et al., 2017) for parallelizing the model. For RL fine-tuning, we employed
TRL (Transformer Reinforcement Learning) library(von Werra et al., 2020).

4379

