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Abstract
Traditional event detection methods require
predefined event schemas. However, manu-
ally defining event schemas is expensive and
the coverage of schemas is limited. To this
end, some works study the event type induction
(ETI) task, which discovers new event types via
clustering. However, the setting of ETI suffers
from two limitations: event types are not linked
into the existing hierarchy and have no seman-
tic names. In this paper, we propose a new
research task named Event Ontology Com-
pletion (EOC), which aims to simultaneously
achieve event clustering, hierarchy expansion
and type naming. Furthermore, we develop a
HierarchicAL STructure EvOlution Network
(HALTON) for this new task. Specifically, we
first devise a Neighborhood Contrastive Clus-
tering module to cluster unlabeled event in-
stances. Then, we propose a Hierarchy-Aware
Linking module to incorporate the hierarchical
information for event expansion. Finally, we
generate meaningful names for new types via
an In-Context Learning-based Naming module.
Extensive experiments indicate that our method
achieves the best performance, outperforming
the baselines by 8.23%, 8.79% and 8.10% of
ARI score on three datasets1.

1 Introduction

Automated real-world event detection is a crucial
task towards mining fast-evolving event knowledge.
Existing methods (Ji and Grishman, 2008; Chen
et al., 2015; Du and Cardie, 2020; Wang et al.,
2022) typically require a pre-defined event schema
along with massive human-labeled data for model
learning. Despite the tremendous success, manu-
ally defining an event schema is especially expen-
sive and labor-intensive, which requires experts to

∗Corresponding author.
1Code is available at https://github.com/CPF-NLPR/
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Figure 1: (a) Event type induction only clusters un-
labeled event instances into several groups. (b) Event
ontology completion not only discovers new event types,
but also adds them into the existing event hierarchy and
generates meaningful names for them.

examine amounts of raw data in advance to specify
potential event types. Besides, as new events are
happening every day (Cao et al., 2020; Yu et al.,
2021; Liu et al., 2022a), it is neither realistic nor
scalable to define all event schemas in advance.

To get rid of the above problems, some re-
searchers study the task of event type induction
(ETI), which aims to discover new event types from
an input corpus (Yuan et al., 2018; Huang and Ji,
2020; Shen et al., 2021). The task is generally for-
mulated as a clustering problem, where each cluster
represents an event type (cf. Figure 1(a)). Existing
methods typically utilize probabilistic generative
models (Chambers, 2013; Nguyen et al., 2015), ad-
hoc clustering algorithms (Sekine, 2006; Huang
et al., 2016) or neural networks (Huang and Ji,
2020; Shen et al., 2021; Li et al., 2022) to induce
event clusters. Despite these successful efforts for
clustering, the ETI setting inevitably suffers from
two limitations in real applications:
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Event types are not linked into the existing
hierarchy: These methods only divide unlabeled
event instances into several isolated clusters, with-
out linking newly discovered types to an existing
event ontology (i.e., an event hierarchy)2. Some
studies about human cognition find that people tend
to organize real-world events in a hierarchical way
(Burt et al., 2003; Tenenbaum et al., 2011), ranging
from coarse-grained (i.e., top-level) events to fine-
grained (i.e., bottom-level) events. Moreover, the
ontologies of most knowledge bases also adopt hi-
erarchical organization forms of event types (Baker
et al., 1998; Kingsbury and Palmer, 2003). The hi-
erarchical forms represent events at different gran-
ularity and abstraction levels, which helps people
quickly understand related scenarios. For example,
according to the event hierarchy in Figure 1(b), we
can easily gain the overall picture of the Justice
scenario, which may involve multiple events, such
as Sue, Arrest and Sentence. Therefore, it is very
necessary to establish and maintain the event hier-
archy. However, since new events emerge rapidly
and incessantly, it is impractical to manually add
newly discovered types into the event ontology.
Therefore, how to automatically expand the ex-
isting event hierarchy with new event types is an
important problem.

Event types have no semantic names: Most
ETI methods only assign numbers (i.e., type num-
ber) to the new event types, and lack the ability to
generate human-readable type names. To enable
new event types to be used in downstream tasks, it
is inevitable to assign meaningful names for them
in advance. For example, the event type name is
required for training event extraction models (Li
et al., 2021b) and constructing event knowledge
graphs (Ma et al., 2022). Although the event type
name is important, previous studies only focus on
event clustering and ignore the type naming (Huang
et al., 2016; Huang and Ji, 2020; Shen et al., 2021).
As a result, the discovered event types cannot be di-
rectly applied to downstream applications, and ex-
tra human efforts are needed to conduct secondary
labeling for the new types. Thus, how to automat-
ically generate meaningful names for new event
types is also a problem worth exploring.

In the light of the above restrictions, we propose
a new task named Event Ontology Completion
(EOC). Given a set of unlabeled event instances,

2Event ontology denotes the hierarchical organization
structure of known event types, which is usually incomplete.

the task requires that the model simultaneously
achieves the following goals: (1) Event Clustering:
dividing the unlabeled instances into several clus-
ters; (2) Hierarchy Expansion: linking new event
types (i.e., predicted clusters) into an existing event
hierarchy; and (3) Type Naming: generating se-
mantically meaningful names for new event types.
As shown in Figure 1(b), the EOC model aims to
divide the unlabeled instances into three clusters,
and link the clusters to the Root and Justice node
of the event hierarchy. Meanwhile, the three new
event types are named Life, Sue and Arrest, respec-
tively. Compared to ETI, EOC requires models to
complete the event ontology, instead of only event
clustering. Therefore, the proposed task is more
useful and practical, but it is also more challenging.

To this end, we propose a novel method named
HierarchicAL STructure EvOlution Network
(HALTON) for this new task. Concretely, we
first devise a Neighborhood Contrastive Clustering
module for event clustering. The module utilizes a
neighborhood contrastive loss to boost clustering
for both supervised and unsupervised data. Intu-
itively, in a semantic feature space, neighboring
instances should have a similar type, and pulling
them together makes clusters more compact. Then,
we propose a Hierarchy-Aware Linking module for
hierarchy expansion. The module uses a dynamic
path-based margin loss to integrate the hierarchical
information into event representations. Compared
with the static margin, the dynamic margin can cap-
ture the semantic similarities of event types in the
hierarchy, which is conducive to hierarchy expan-
sion. Finally, we design an In-Context Learning-
based Naming module for type naming. The mod-
ule elicits the abstraction ability of large language
models (LLMs) via in-context learning to generate
human-readable names for discovered event types.
Extensive experiments on three datasets show that
our proposed method brings significant improve-
ments over baselines.

To summarize, our contributions are: (1) As
a seminal study, we propose a new research task
named event ontology completion, and introduce
baselines and evaluation metrics for three task set-
tings, including event clustering, hierarchy expan-
sion and type naming. (2) We devise a novel
method named Hierarchical Structure Evolution
Network (HALTON), which achieves task goals
via the collaboration of three components, namely
neighborhood contrastive clustering, hierarchy-
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aware linking and in-context learning-based nam-
ing. It can serve as a strong baseline for the re-
search on the task. (3) Experimental results in-
dicate that our method substantially outperforms
baselines, achieving 8.23%, 8.79% and 8.10% im-
provements of ARI score on three datasets.

2 Task Formulation

The EOC task assumes that there is an incomplete
event ontology T , which is constructed by experts
in advance. The ontology is a tree-like structure,
where leaf nodes denote known event types. Given
an unlabeled dataset Du = {xui }Mi=1 and an esti-
mated number of unknown types Mu, the goals
of EOC include: (1) Event Clustering, dividing
the unlabeled instances into Mu groups; (2) Hi-
erarchy Expansion, linking each cluster C to the
corresponding position of the hierarchy T ; and (3)
Type Naming, generating a human-readable name
for each cluster C. Following Li et al. (2022), we
use golden triggers for event clustering3. To enable
the model to achieve the above goals, we leverage a
labeled dataset Dl = {(xli, yli)}Ni=1 to assist model
learning. The types set of the labeled dataset is
denoted as Y l. The event types in Y l belong to
known types, which correspond to the leaf nodes
of the event ontology T .

3 Methodology

Figure 2 shows the overall architecture of HAL-
TON, which consists of three major components:
(1) Neighborhood Contrastive Clustering (§3.1),
which learns discriminative representations for
event clustering; (2) Hierarchy-Aware Linking
(§3.2), which attaches newly discovered event types
to the existing event hierarchy; and (3) In-Context
Learning-based Naming (§3.3), which generates
event type names via in-context learning. We will
illustrate each component in detail.

3.1 Neighborhood Contrastive Clustering

Encoding Instances Given the impressive perfor-
mance of pre-trained language models on various
NLP tasks (Sun et al., 2022; Zhao et al., 2023), we
utilize BERT (Devlin et al., 2019) to encode input
sentences. Since the trigger may contain multiple
tokens, we conduct a max-pooling operation over

3How to identify event triggers is not our focus in this
paper. Actually, our method can be combined with any event
detection model to extract event triggers.

BERT outputs to obtain the event representation:

h1, . . . ,hn = BERT(x)
h = Max-Pooling(hs, . . . ,he),

(1)

where x denotes the input sentence. n is the length
of the input sentence. s and e represent the start
and end positions of the trigger, respectively.

Base Losses In this way, we obtain the event
representations of labeled and unlabeled instances,
denoted as {hl

i}Ni=1 and {hu
j }Mj=1, respectively. We

feed the representations of labeled instances into
a softmax function for prediction, and utilize the
cross-entropy loss to train the model:

Lce = − 1

N

N∑

i=1

yl
i · log(softmax(hl

i)), (2)

where yl
i is a one-hot vector representing the

golden label of the instance xli. For unlabeled in-
stances, we use the K-means algorithm to obtain
their pseudo labels:

ŷu = K-means(hu) ∈ {1, . . . ,Mu}. (3)

Since the order of clusters often changes in mul-
tiple clustering, it is not readily to use cross-entropy
loss for training the model on unlabeled instances.
Instead, we compute pair-wise pseudo labels, ac-
cording to the clustering result:

qij = 1{ŷu
i = ŷu

j }, (4)

where qij denotes whether xui and xuj belong to
the same cluster. We input the representations of
unlabeled instances into a classifier to obtain pre-
dicted distributions {pu

i }Mi=1. Intuitively, if a pair
of instances output similar distributions, it can be
assumed that they are from the same cluster. There-
fore, we use the pair-wise Kullback-Leibler (KL)
divergence to evaluate the distance between two
unlabeled instances:

dij = KL(pu
i ||pu

j ) + KL(pu
j ||pu

i ). (5)

If xui and xuj belong to different clusters, their
predicted distributions are expected to be different.
Thus, we modify standard binary cross-entropy
loss by incorporating the hinge-loss function (Zhao
et al., 2021):

Lbce =
1

C2
M

∑

i,j

(qijdij + (1− qij)max(0, α− dij)), (6)

where α is a hyper-parameter for the hinge loss.
C2
M denotes the number of combinations.
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Figure 2: The architecture of the proposed Hierarchical Structure Evolution Network (HALTON) for the event
ontology completion task. CE: cross-entropy, DPM: dynamic path-based margin, NC: neighborhood contrastive,
and BCE: binary cross-entropy.

Neighborhood Contrastive Loss Since con-
trastive learning is a very effective representation
learning technique (He et al., 2020; Zhong et al.,
2021; Zuo et al., 2021), we propose a neighborhood
contrastive loss to learn more discriminative repre-
sentations from both the labeled and unlabeled data.
Concretely, for each instance xi, we select its top-K
nearest neighbors in the embedding space to form
a neighborhood Ni. The instances in Ni should
share a similar type as xi, which are regarded as
its positives. The neighborhood contrastive loss for
unlabeled instances is defined as follows:

Lncu = − 1

M

M∑

i=1

1

K

∑

j∈Ni

log
exp(sim(hu

i ,h
u
j )/τ)∑M

k ̸=i exp(sim(hu
i ,h

u
k)/τ)

,

(7)

where sim(·, ·) is the similarity function (e.g., dot
product). τ is the temperature scalar. For labeled
instances, the positives set is expanded with the
instances having the same event type. Thus, the
neighborhood contrastive loss for labeled instances
is written as follows:

Lncl = − 1

N

N∑

i=1

1

|N l
i |

∑

j∈N l
i

log
exp(sim(hl

i,h
l
j)/τ)∑N

k ̸=i exp(sim(hl
i,h

l
k)/τ)

.

(8)

where N l
i denotes the positives set for the labeled

instance xli.

3.2 Hierarchy-Aware Linking

Dynamic Path-based Margin Loss To better ac-
complish the hierarchy expansion, we use the mar-
gin loss (Schroff et al., 2015; Liu et al., 2021) to
integrate hierarchy information into event repre-
sentations. To this end, we devise a dynamic path-
based margin loss. In detail, given two known event
types yli and ylj , we randomly sample two instances

from type yli, which serve as anchor instance a and
positive instance p, respectively. We also randomly
sample an instance from type ylj as negative in-
stance n. The loss encourages a dynamic margin
between the positive pair (a, p) and the negative
pair (a, n), which is computed as follows:

Ldpm =
∑

(yl
i,y

l
j)∈S

max(0, sim(ha,hn)

+ γ(yl
i, y

l
j)− sim(ha,hp)),

(9)

where S denotes the set of the combination of any
two known event types. To more accurately reflect
the similarity between two types in a hierarchy, the
margin γ(yli, y

l
j) is computed based on the paths:

γ(yl
i, y

l
j) =

|PATH(yl
i) ∪ PATH(yl

j)|
|PATH(yl

i) ∩ PATH(yl
j)|

− 1, (10)

where PATH(yli) represents the set containing the
nodes on the path from the root event to the type
yli. If the intersection set of the two paths is smaller
(i.e., less common super-classes), the margin will
become larger. Therefore, compared with the static
margin, the dynamic margin can capture the se-
mantic similarities of event types in the hierarchy,
which is effective for event clustering and hierar-
chy expansion. We reach the final loss function by
combining the above terms:

Lf = Lce + Lbce + Lncu + Lncl + Ldpm. (11)

Greedy Expansion Strategy After training the
model using the final loss function, we can discover
new event types and link them to the existing on-
tology via a greedy expansion algorithm (Zhang
et al., 2021). Specifically, for each new event type
(i.e., predicted cluster), starting from the root node,
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Generate the type name according to the given text and event

trigger. The generated name should be one clear and brief word.

Task Description

Sentence: British Chancellor named the head of the energy

regulator as the new chairman of finance watchdog the FSA.

Event Trigger: named

Path: Root:Personnel

Question: According to this, what is the type name?

Answer: Nominate

In-Context Examples

Sentence: As well as previously holding position at Barclays

Bank, Smith was formerly a servant at the Department of Industry.

Event Trigger: previously

Path: Root:Personnel

Question: According to this, what is the type name?

Answer:

Incomplete Entry

Prompt

……

Figure 3: An example of prompt, including task descrip-
tion, in-context examples and incomplete entry.

we compute the similarity between the new event
type and its children nodes. Then, we select the
event type (i.e., node) with the highest similarity
to repeat the above process. The search process
terminates if the similarity does not increase com-
pared to the previous layer. The similarity between
the new event type and an existing event type is
computed as follows:

S(yn, ye) =

∑
xu∈Pn

∑
xv∈Pe

sim(hu,hv)

|Pn||Pe|
, (12)

where yn is a new event type (i.e., event cluster)
and ye is an existing event type. Pn and Pe denote
the sets of event instances belonging to yn and ye,
respectively.

3.3 In-Context Learning-based Naming
To obtain a human-readable name for each pre-
dicted cluster, we propose an in-context learning-
based naming technique, which elicits the naming
ability of LLMs by providing a few demonstrative
instances (Li et al., 2023). We first construct the
prompt for LLMs. Figure 3 shows an example of
the prompt, which includes three parts:

Task Description is a short description of the
task. We devise a simple and effective version, i.e.,
“Generate the type name according to the given text
and event trigger. The generated name should be
one clear and brief word.”

In-Context Examples consist of the sentence,
event trigger, path, question and answer. As shown
in Figure 3, the starting point of the path is the root
node of the hierarchy, and the ending point is the

parent node of the type. The question is “According
to this, what is the type name?”.

Incomplete Entry is filled by LLMs, whose
composition is similar to the in-context examples.
Intuitively, if the text provides more relevant in-
formation about the event, the model will give
more accurate predictions. Thus, we select the
instance closest to the cluster centroid as the sen-
tence. The path information is obtained via the
hierarchy-aware linking module. As for the answer
part, we leave it blank for LLMs to complete.

Then, the constructed prompt is input into the
LLMs (i.e., ChatGPT) for type name generation.
This overall training and inference procedure is
detailed in Appendix A.

4 Experiments

4.1 Datasets

So far, there is no benchmark for evaluating EOC
models. Based on three widely used event detection
datasets, namely ACE (Doddington et al., 2004),
ERE (Song et al., 2015), and MAVEN (Wang
et al., 2020), we devise the following construc-
tion method: for the ACE dataset, we regard the
top 10 most popular types are regarded as known
types and the remaining 23 event types as unknown
types. For the ERE dataset, we also set the top
10 most popular types as seen and the remaining
28 types as unseen. For the MAVEN dataset, we
select the top 60 most frequent types to alleviate
long-tail problem, where the top 20 most popular
event types serve as known types and the remain-
ing 40 types are regarded as unknown types. For
the three datasets, the event hierarchy is a tree-
like structure constructed by known types. We list
known and unknown types in Appendix B.

4.2 Event Clustering Evaluations

Baselines We compare our HALTON with the fol-
lowing methods: (1) SS-VQ-VAE (Huang and Ji,
2020) utilizes vector quantized variational autoen-
coder to learn discrete latent representations for
seen and unseen types. (2) ETYPECLUS (Shen
et al., 2021) jointly embeds and clusters predicate-
object pairs in a latent space. (3) TABS (Li et al.,
2022) designs a co-training framework that com-
bines the advantage of type abstraction and token-
based representations.

Evaluation Metrics Following previous ETI
works (Huang and Ji, 2020; Li et al., 2022), we
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Datasets Methods ARI (%) NMI (%) Accuracy (%) BCubed-F1 (%)

ACE

SS-VQ-VAE 8.53 33.81 29.95 27.60
ETYPECLUS 26.17 53.91 40.70 38.69
TABS 59.18 79.36 71.42 69.44

HALTON (Ours) 67.41 (↑ 8.23) 84.29 (↑ 4.93) 77.26 (↑ 5.84) 75.06 (↑ 5.62)

ERE

SS-VQ-VAE 13.46 40.45 29.96 26.69
ETYPECLUS 15.89 46.86 34.55 29.13
TABS 47.22 71.26 60.24 55.82

HALTON (Ours) 56.01 (↑ 8.79) 78.13 (↑ 6.87) 67.72 (↑ 7.48) 64.66 (↑ 8.84)

MAVEN

SS-VQ-VAE 3.06 17.57 12.29 11.14
ETYPECLUS 11.27 30.79 20.82 14.73
TABS 27.93 53.84 39.38 31.52

HALTON (Ours) 36.03 (↑ 8.10) 60.34 (↑ 6.50) 52.70 (↑ 13.32) 39.35 (↑ 7.83)

Table 1: Event clustering results on the ACE, ERE and MAVEN datasets, respectively. The performance of our
method is followed by the improvements (↑) over the second best-performing model.

Datasets Methods
Predicted Cluster Golden Cluster

Taxo_P (%) Taxo_R (%) Taxo_F1 (%) Taxo_P (%) Taxo_R (%) Taxo_F1 (%)

ACE

SS-VQ-VAE+GE 9.12 10.14 9.60 9.52 13.04 11.01
ETYPECLUS+GE 30.70 23.46 26.59 34.14 33.33 33.73
TABS+GE 34.31 30.43 32.25 33.33 37.68 35.37

Type_Similarity 31.79 40.58 35.65 33.33 40.37 36.51
LLMs_Prompt 34.09 34.78 34.43 42.85 43.47 43.16

HALTON (Ours) 37.00 39.13 38.04 (↑ 2.39) 44.44 44.92 44.68 (↑ 1.52)

ERE

SS-VQ-VAE+GE 16.38 14.28 15.26 26.00 25.00 25.49
ETYPECLUS+GE 9.85 9.52 9.68 18.00 16.66 17.30
TABS+GE 23.68 17.85 20.36 26.00 25.00 25.49

Type_Similarity 20.37 21.49 20.88 22.00 21.42 21.71
LLMs_Prompt 20.68 20.43 20.55 24.00 21.49 22.64

HALTON (Ours) 22.54 23.60 23.06 (↑ 2.18) 26.80 25.73 26.25 (↑ 0.76)

MAVEN

SS-VQ-VAE+GE 19.45 20.14 19.79 26.94 43.00 33.13
ETYPECLUS+GE 15.83 17.50 16.62 23.75 28.75 26.01
TABS+GE 27.82 32.03 29.78 27.53 40.42 32.75

Type_Similarity 22.50 27.50 24.75 27.91 32.50 30.03
LLMs_Prompt 12.50 10.00 11.11 27.50 21.50 23.97

HALTON (Ours) 34.79 52.50 41.85 (↑ 12.07) 39.38 59.38 47.35 (↑ 14.60)

Table 2: Hierarchy expansion results on the ACE, ERE and MAVEN datasets, respectively. Predicted (Golden)
cluster refers to linking predicted (golden) clusters to the ontology. “GE” denotes the greedy expansion algorithm.

adopt several standard metrics to evaluate event
clustering results, including Adjusted Rand In-
dex (ARI) (Hubert and Arabie, 1985), BCubed-F1
(Bagga and Baldwin, 1998), Normalized Mutual
Information (NMI) and Accuracy. The detailed
descriptions are in Appendix C.2.

Results Table 1 shows the event clustering results
on the three datasets, from which we can observe
that our method HALTON outperforms all the base-
lines by a large margin, and achieves new state-
of-the-art performance. For example, compared
with the strong baseline TABS (Li et al., 2022),

our method achieves 8.23%, 8.79% and 8.10% im-
provements of ARI score on the three datasets, re-
spectively. The significant performance gain over
the baselines demonstrates that the HALTON is
very effective for event clustering. We attribute it
to that our method can learn discriminative repre-
sentations via the neighborhood contrastive loss.

4.3 Hierarchy Expansion Evaluations

Baselines Since the ETI methods cannot tackle
the hierarchy expansion, we augment ETI base-
lines with the greedy expansion (GE) algorithm,

311



Datasets Methods Rouge-L (%) BERTScore (%)

ACE

TABS 17.49 29.40
T5_Template 18.66 35.25
Trigger_Sel 20.86 42.46

HALTON (Ours) 24.09 (↑ 3.23) 46.24 (↑ 3.78)

ERE

TABS 11.90 28.03
T5_Template 13.46 32.51
Trigger_Sel 12.59 35.07

HALTON (Ours) 16.20 (↑ 2.74) 39.32 (↑ 4.25)

MAVEN

TABS 16.02 36.24
T5_Template 24.94 38.20
Trigger_Sel 27.30 40.70

HALTON (Ours) 30.89 (↑ 3.59) 41.14 (↑ 0.44)

Table 3: Type naming results on the ACE, ERE and
MAVEN datasets, respectively.

namely X+GE, where X is the ETI method. Be-
sides, we also devise two representative baselines:
(1) Type_Similarity, which links new types based
on the similarity between representations of new
types and known type names. (2) LLMs_Prompt,
which devises prompts to leverage LLMs for link-
ing. We describe more details in Appendix D.1.

Evaluation Metrics To measure hierarchy expan-
sion performance, we utilize the taxonomy metric
(Dellschaft and Staab, 2006), which is originally
proposed to evaluate taxonomy structure. For each
cluster, the metric compares the predicted position
and the golden position in the existing ontology.
We report the taxonomy precision (Taxo_P), recall
(Taxo_R) and F1-score (Taxo_F1). More detailed
descriptions about the metric are in Appendix D.2.

Results The hierarchy expansion results are
shown in Table 2, with the following observa-
tions: (1) Our method HALTON has a great ad-
vantage over the baselines. For example, com-
pared with the TABS+GE, our method achieves
12.07% improvements of Taxo_F1 with predicted
clusters on the MAVEN dataset. Even given golden
clusters (i.e., same clustering results), our method
still outperforms the baselines. It indicates that
the hierarchical information captured by the dy-
namic path-based margin loss can provide guid-
ance for hierarchy expansion. (2) Our method
outperforms Type_Similarity, which proves that
the greedy expansion algorithm is effective. Be-
sides, our method improves more significantly on
the MAVEN dataset. We guess that hierarchical
information is more useful for hierarchy expansion
in more complex scenarios.

Methods ARI (%) NMI (%) Taxo_F1 (%)

HALTON 67.41 84.29 38.04
w/o NC Loss 61.08 80.94 37.69
w/o DPM Loss 67.18 83.80 37.69
w/o BCE Loss 57.05 79.97 22.11
w/o CE Loss 63.30 82.47 37.56

Table 4: Ablation study by removing main components
on the ACE dataset.

4.4 Type Naming Evaluations
Baselines We compare our method with the
TABS model that uses the abstraction mechanism
to generate type names. In addition, we also de-
velop two competitive baselines: (1) T5_Template,
which designs the template and uses T5 (Raffel
et al., 2020) to fill it. (2) Trigger_Sel, which ran-
domly selects a trigger from clusters as the type
name. Appendix E.1 describes more details.

Evaluation Metrics To our best knowledge,
there is no evaluation metrics designed for event
type name generation. We adopt two metrics: (1)
Rouge-L (Lin, 2004), which measures the degree
of matching between generated names and ground-
truth names (i.e., hard matching). (2) BERTScore
(Zhang et al., 2020), which computes the semantic
similarity between generated name and the ground-
truth (i.e., soft matching). The math formulas of
Rouge-L and BERTScore are in Appendix E.2.

Results We present the type naming results in
Table 3. From the results, we can observe that
our method HALTON significantly outperforms all
the baselines on the three datasets. For example,
compared with the second best-performing model
Trigger_Sel, our method achieves 3.23%, 2.74%
and 3.59% improvements of Rouge-L score on the
three datasets, respectively. It indicates that our
method can generate type names that are more sim-
ilar to ground-truth names. The reason is that the
proposed in-context learning-based naming tech-
nique can better elicit the abstraction abilities in
LLMs for type naming.

4.5 Ablation Study
To demonstrate the effectiveness of each compo-
nent, we conduct ablation studies on the ACE
dataset, which is shown in Table 4. We observe
that the performance drops significantly if we re-
move the neighborhood contrastive (NC) loss. It
indicates the NC loss plays a key role in event clus-
tering. Without the dynamic path-based margin
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(a) TABS (b) HALTON (Ours)

Figure 4: The visualization of features for event cluster-
ing after t-SNE dimension reduction.

Event Root

Score: 0.064

Score: 0.049

Score:0.328

Score: 0.338Score: 0.113

Life Justice Personal

Die Injure Trail-Hearing Sentence

Figure 5: The process of expanding the existing event
hierarchy with the new event type Sentence.

(DPM) loss, the performance is also degraded, sug-
gesting the hierarchical information can provide
guidance for hierarchy expansion. In addition, the
cross-entropy (CE) and binary cross-entropy (BCE)
losses are also useful, which is conducive to train-
ing the model by using labeled and unlabeled data.

4.6 Visualization

Event Clustering To better understand our
method, we visualize the features for event clus-
tering using t-SNE (Van Der Maaten, 2014) on
the ERE dataset. The results are shown in Figure
4. Although TABS can learn separated features
to some degree, it divides the instances with red
colors into two clusters. By contrast, our method
can generate more discriminative representations,
which proves the effectiveness of our method for
event clustering.

Hierarchy Expansion To intuitively show the
process of hierarchy expansion, we visualize the
workflow of linking the new type Sentence to the ex-
isting event hierarchy via our method, as shown in
Figure 5. As we can see, our method computes the
similarity between the new type and known types in
a top-down manner, and links the new event type to
the correct position in the existing event ontology.
In addition, the greedy expansion strategy provides
better interpretability for the expansion process.

Event Instances and Type Names

Instance1: Ahmadi-Nejad, reported to be a hardliner,
was appointed mayor and a change in Hamshahri’s
management has been considered inevitable.
TABS: appointed T5_Template: new mayor
Trigger_Sel: appointed HALTON: appoint
Golden type name: Nominate

Instance2: The meeting was Shalom’s first encounter
with an Arab counterpart since he took office as Is-
rael’s foreign minister on February 27.
TABS: new T5_Template: meeting
Trigger_Sel: becoming HALTON: assume-position
Golden type name: Start-Position

Table 5: Examples of generating names for new types.

4.7 Case Study of Type Naming

Table 5 shows case studies, where our method and
baselines generate event type names for the unla-
beled instances. For the first example, the event
trigger is similar to the golden type name. Our
method and the baselines can produce type names
that are semantically similar to golden names. For
the second example, it is more challenging. All
the baselines fail to generate correct type names.
By contrast, our method successfully generates the
type name that is almost identical to the ground
truth. It demonstrates that the in-context learning-
based naming module is very effective.

5 Related Work

Although event extraction has met with remark-
able success (Ji and Grishman, 2008; Liu et al.,
2018; Nguyen and Nguyen, 2019; Liu et al., 2020,
2022b; Cao et al., 2023), it usually requires that
hand-crafted event schemas and annotations are
given in advance. Since manually defining event
schemas is labor-intensive and fails to generalize
to new scenarios, some researchers have attempted
to explore the ETI task (Chambers, 2013; Huang
et al., 2016; Li et al., 2020, 2021a, 2022; Jin et al.,
2022; Xu et al., 2023; Edwards and Ji, 2023). Typi-
cal approaches utilize probabilistic generative mod-
els (Chambers, 2013; Nguyen et al., 2015), ad-
hoc clustering techniques (Chambers and Jurafsky,
2011) and neural networks (Huang and Ji, 2020;
Shen et al., 2021) to induce event clusters. Yuan
et al. (2018) study the event profiling task and
utilizes a Bayesian generative model to obtain clus-
ters. Shen et al. (2021) design an unsupervised
method to generate salient event types by clus-
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tering predicate-object pairs. Recently, Li et al.
(2022) propose a co-training framework to combine
abstraction-based and token-based representations
for the task.

Despite these successful efforts, existing meth-
ods cannot link new event types to the existing on-
tology, and lack the ability to generate meaningful
names for new event types.

6 Conclusion

In this paper, we define a new event ontology com-
pletion task, aiming at simultaneously achieving
event clustering, hierarchy expansion and type nam-
ing. Furthermore, we propose a hierarchical struc-
ture evolution network (HALTON), which achieves
the goals via collaboration between neighborhood
contrastive clustering, hierarchy-aware linking and
in-context learning-based naming. Experimental re-
sults on three datasets show that our method brings
significant improvements over baselines.

Limitations

In this paper, the size of used datasets is relatively
small and the datasets are most in the newswire
genre. To facilitate further research on this task,
constructing a large-scale and high-quality dataset
is an important research problem. In addition, sim-
ilar to the event type induction, the proposed event
ontology completion task also requires labeled in-
stances for training models and constructing the
existing event ontology. The ultimate goal of the
event ontology completion task is to automatically
construct the event ontology structure from scratch.
We plan to address the event ontology completion
task in the unsupervised scenario.
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A Training and Inference Procedure

Algorithm 1 The HALTON Method

Require: Labeled dataset Dl = {(xli, yli)} and un-
labeled dataset Du = {xui } for training, an-
other unlabeled instances Dû = {xûi } for in-
ference, existing event ontology T , model pa-
rameters Θ, learning rate η.

Ensure: Optimized model parameters, and com-
pleted event hierarchy.

1: for epoch← 1 to L do
2: Compute the Lf on Dl and Du;
3: Optimize model parameters via gradient de-

scent Θ = Θ− η∇ΘLf ;
4: end for
5: Cluster unlabeled data Dû via trained model;
6: Link each cluster to T using the greedy expan-

sion algorithm;
7: Generate type names via in-context learning-

based naming module.

B Known and Unknown Types

B.1 ACE Dataset

The known event types include: Trial-Hearing, Die,
Transfer-Money, Injure, End-Position, Elect, Meet,
Phone-Write, Transport, and Attack.

The unknown event types include: Merge-Org,
Start-Org, Declare-Bankruptcy, End-Org, Pardon,
Extradite, Execute, Fine, Sentence, Appeal, Con-
vict, Sue, Release-Parole, Arrest-Jail, Charge-
Indict, Acquit, Demonstrate, Start-Position, Nom-
inate, Transfer-Ownership, Marry, Divorce, and
Be-Born.

B.2 ERE Dataset

The known event types include: Attack, Transport-
Person, Transfer-Money, Contact, Die, Broadcast,
Transfer-Ownership, Meet, End-Position, and Cor-
respondence.

The unknown event types include: Arrest-
Jail, Start-Position, Trial-Hearing, Elect, Charge-
Indict, Artifact, Transaction, Demonstrate, Sen-
tence, Marry, Convict, Transport-Artifact, Be-Born,
Release-Parole, Injure, Sue, Pardon, Nominate, Ex-
ecute, Start-Org, End-Org, Divorce, Acquit, Ex-
tradite, Merge-Org, Appeal, Fine, and Declare-
Bankruptcy.
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B.3 MAVEN Dataset
The known event types include: Causation, Pro-
cess_start, Attack, Hostile_encounter, Catastrophe,
Motion, Competition, Killing, Process_end,
Social_event, Conquering, Statement, Self_motion,
Arriving, Destroying, Coming_to_be, Bod-
ily_harm, Death, Creating, and Military_operation.

The unknown event types include:
Damaging, Cause_change_of_strength,
Cause_change_of_position_on_a_scale, Hold,
Control, Earnings_and_losses, Getting, Becom-
ing, Arranging, Know, Preventing_or_letting,
Presence, Escaping, Defending, Action, Mo-
tion_directional, Cause_to_be_included, Change,
Traveling, Placing, Participation, Influence,
Change_of_leadership, Judgment_communication,
Expressing_publicly, Name_conferral, Request,
Giving, Supporting, Recording, Removing,
Agree_or_refuse_to_act, Using, Supply, Commu-
nication, Reporting, Choosing, Sending, Bringing,
and Departing.

C Baselines and Evaluation Metrics for
Event Clustering

C.1 Baselines
• SS-VQ-VAE (Huang and Ji, 2020) first uses the

BERT to encode the event trigger, and then pre-
dicts the type by looking up a dictionary of dis-
crete latent representations. It also utilizes a vari-
ational autoencoder to avoid overfitting problem.

• ETYPECLUS (Shen et al., 2021) first selects
salient predicates and object to represent events.
Then, it leverages a dictionary to disambiguate
predicate senses. Finally, it embeds and clusters
the events in a latent spherical space.

• TABS (Li et al., 2022) proposes an abstraction-
based representation, which is complementary
to the token-based representation of events. It
devises a prompt to elicit semantic knowledge in
pre-trained language models for clustering.

C.2 Evaluation Metrics
• ARI (Hubert and Arabie, 1985) measures the

similarity between two cluster assignments. The
number of pairs in the same (different) clusters
is denoted as TP (TN). The ARI is computed as
follows:

ARI =
RI− E(RI)

max RI− E(RI)
, RI =

TP + TN

Ne
,

where Ne is the total number of instances. E(RI)
is the expectation of the RI.

• NMI is the normalized mutual information score,
which is calculated as follows:

NMI =
2× MI(Y ;C)

H(Y ) + H(C)
,

where Y and C denote the ground truth and pre-
dicted clusters, respectively. H(·) is the entropy
function. MI(Y ;C) denotes the mutual informa-
tion between Y and C.

• BCubed (Bagga and Baldwin, 1998) averages
the precision and recall of each instance. The
B-Cubed precision is defined as follows:

BCubed-P =
1

Ne

Ne∑

i=1

|C(ei) ∩ Y (ei)|
|C(ei)|

,

where Y (·) is the mapping function from an in-
stance to its ground truth cluster. Similarly, we
can compute the B-Cubed recall. The B-Cubed
F1 is calculated by their harmonic average.

• Accuracy estimates the quality of clustering by
finding a permutation from predicted cluster la-
bels to the ground-truth that gives the highest
accuracy:

Accuracy = max
σ∈Perm(k)

1

Ne

Ne∑

i=1

1(y∗i = σ(yi)),

where k is the number of clusters. Perm(k)
denote all permutation functions.

D Baselines and Evaluation Metrics for
Hierarchy Expansion

D.1 Baselines
• Type_Similarity first computes the prototype for

the new type by averaging all instance represen-
tations belonging to the type. Then, it uses the
BERT (Devlin et al., 2019) to encode known type
names. Finally, it links the new type to the exist-
ing ontology based on the similarity between the
prototype and known type representations.

• LLMs_Prompt first devises a prompt, and then
utilizes the LLMs (i.e., ChatGPT) to fill it. The
prompt is defined as follows:

The existing event ontology consists of these event
types, including T1, T2, ..., TN. Please link the
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new event type to the correct position of the event
ontology. The answer should be one of these
existing event type names. The following is an
example:

– Trigger: trigger1, Sentence: s1
– Answer: one known type

Trigger: trigger2, Sentence: s2, Answer: .

D.2 Evaluation Metrics
• Taxonomy metric (Dellschaft and Staab, 2006)

compares the predicted position of the clusters
and the golden position in the hierarchy. The
taxonomy precision (Taxo_P) is formulated as
follows:

Taxo_P =
1

|C|
∑

t∈C

|u(tp) ∩ u(tg)|
|u(tp)|

,

where C are predicted clusters. tp and tg denote
the predicted and golden positions of the event
type t, respectively. u(tp) is the union of all the
ancestors and itself of the predicted position tp.
We can compute the recall (Taxo_R) in a similar
way.

E Baselines and Evaluation Metrics for
Type Naming

E.1 Baselines
• T5_Template devises a template and utilizes T5

(Raffel et al., 2020) to fill it. The template is
defined as follows:

⟨Context⟩. According to this, the trigger word of
this [MASK] is ⟨Trigger⟩.
In the template, ⟨Context⟩ represents the text that
describes the event. ⟨Trigger⟩ is a placeholder
that is replaced by the actual trigger in the pro-
totype instance. [MASK] is expected to be filled
with the type name.

• Trigger_Sel randomly selects an event trigger
from clusters as the new type name.

E.2 Evaluation Metrics
• Rouge-L (Lin, 2004) measures the degree of

matching based on the longest common subse-
quence between generated names and golden
type names, which can be computed as follows:

Plcs =
LCS(X,Y )

n

Rlcs =
LCS(X,Y )

m

Flcs =
(1 + β2)PlcsRlcs

Rlcs + β2Plcs
,

Datasets Methods Rouge-L BERTScore

ACE

SS-VQ-VAE+ICLN 9.62 34.27
ETYPECLUS+ICLN 14.31 31.39
TABS+ICLN 16.78 33.50
TABS 17.49 29.40

HALTON (Ours) 24.09 46.24

ERE

SS-VQ-VAE+ICLN 10.86 26.81
ETYPECLUS+ICLN 7.19 27.32
TABS+ICLN 12.69 31.12
TABS 11.90 28.03

HALTON (Ours) 16.20 39.32

MAVEN

SS-VQ-VAE+ICLN 15.86 32.67
ETYPECLUS+ICLN 13.31 28.85
TABS+ICLN 24.28 36.41
TABS 16.02 36.24

HALTON (Ours) 30.89 41.14

Table 6: Type naming results of augmented baselines
on the ACE, ERE and MAVEN datasets, respectively.
“ICLN” denotes the in-context learning-based naming
module.

where X is the golden type name, and Y denotes
the generated name. m and n denote the length
of X and Y , respectively. LCS(X,Y ) is the
longest common subsequence between X and Y .
β is a hyper-parameter.

• BERTScore (Zhang et al., 2020) computes the
semantic similarity between generated names and
ground-truth labels by using BERT to obtain con-
textual representations. The precision is formu-
lated as follows:

P =
1

|Y |
∑

yi∈Y
max
xj∈X

xT
j yi,

where X and Y denote the the ground-truth la-
bel and generated type names, respectively. yi

is the embedding of i-th token in Y . After sym-
metrically calculating the recall, we can get the
BERTScore F1 based on their harmonic average.

For the two evaluation metrics, the generated
type names and golden type names are both com-
posed of node names from the root to the leaf in
the ontology tree.

F Augment Baselines with In-Context
Learning-based Naming

We augment the event clustering baselines with the
proposed in-context learning-based naming mod-
ule. The results are shown in Table 6. From the
table, we can observe that the three baselines with
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(a) ETYPECLUS (b) HALTON (Ours)

Figure 6: The feature visualization of ETYPECLUS and
our method for event clustering after t-SNE dimension
reduction.

the type naming technique can achieve better or
comparable performance than the original TABS.
It indicates that the proposed in-context learning-
based naming module is very effective.

G Visualization of Event Clustering

In section 4.6, we show the feature visualization of
TABS and our method for event clustering. In this
section, we present the visualization result of the
ETYPECLUS, which is shown in Figure 6. From
the result, we can see that the ETYPECLUS fails
to distinguish the unlabeled instances. By con-
trast, our method can learn discriminative features,
which proves the effectiveness of our method.

H Implementation Details

In our implementations, our method uses the Hug-
gingFace’s Transformers library4 to implement the
the uncased BERT base and T5 base models. The
learning rate is initialized as 1e-4 with a linear
decay. We utilize the Adam algorithm (Kingma
and Ba, 2014) to optimize model parameters. The
batch size is set to 128. The hyper-parameter for
the hinge loss in BCE loss is set to 2. The number
of neighbors K is set to 3. The number of training
epochs is 100. Each experiment is conducted on
NVIDIA RTX A6000 GPUs.

4https://github.com/huggingface/transformers
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