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Abstract

Transformer-based models have achieved great
success on sentence pair modeling tasks, such
as answer selection and natural language infer-
ence (NLI). These models generally perform
cross-attention over input pairs, leading to pro-
hibitive computational costs. Recent studies
propose dual-encoder and late interaction ar-
chitectures for faster computation. However,
the balance between the expressive of cross-
attention and computation speedup still needs
better coordinated. To this end, this paper in-
troduces a novel paradigm MixEncoder for ef-
ficient sentence pair modeling. MixEncoder
involves a lightweight cross-attention mecha-
nism. It avoids the repeated encoding of the
same query for different candidates, thus al-
lowing modeling the query-candidate interac-
tion in parallel. Extensive experiments con-
ducted on four tasks demonstrate that our Mix-
Encoder can speed up sentence pairing by over
113x while achieving comparable performance
as the more expensive cross-attention mod-
els. The source code is available at https:
//github.com/ysngki/MixEncoder.

1 Introduction

Sentence pair modeling, such as natural language
inference, question answering, and information
retrieval, is an essential task in natural language
processing (Nogueira and Cho, 2020; Qu et al.,
2021; Zhao et al., 2021). These tasks can be de-
picted as a procedure of scoring the candidates
given a query. Recently, Transformer-based mod-
els (Vaswani et al., 2017; Devlin et al., 2019) have
shown promising performance on sentence pair
modeling tasks due to the expressiveness of the
pre-trained cross-encoder. As shown in Figure 1(a),
the cross-encoder takes a pair of query and candi-
date as input and calculates the interaction between
them at each layer by the input-wide self-attention
mechanism. Despite the effective text representa-
tion power, the cross-encoder leads to exhaustive

computation costs, especially when the number of
candidates is very large ( e.g., the interaction will
be calculated N times if there are N candidates).
This computation cost, therefore, restricts the use
of these cross-encoder models in many real-world
applications (Chen et al., 2020).

To tackle this issue, we propose a lightweight
cross-attention mechanism, called MixEncoder,
that speeds up the inference while maintaining
the expressiveness of cross-attention. Specifically,
the proposed MixEncoder accelerates the cross-
attention by performing attention only from candi-
dates to the query, involving few tokens and only
at a few layers. This lightweight cross-attention
avoids repetitive query encoding, supporting the
processing of multiple candidates in parallel and
thus reducing computation costs. Additionally,
MixEncoder allows to pre-compute the candidates
into several dense context embeddings and to store
them offline to accelerate the inference further.

We evaluate MixEncoder for sentence pair mod-
eling on four benchmark datasets related to tasks
of natural language inference, dialogue, and infor-
mation retrieval. The results demonstrate that Mix-
Encoder better balances the effectiveness and effi-
ciency. For example, MixEncoder achieves a sub-
stantial speedup of more than 113x over the cross-
encoder and provides competitive performance.

2 Background

Extensive studies, including dual-encoder (Reimers
and Gurevych, 2019) and late interaction models
(MacAvaney et al., 2020; Gao et al., 2020; Chen
et al., 2020; Khattab and Zaharia, 2020), have been
proposed to accelerate the transformer inference on
sentence pair modeling tasks.

As shown in Figure 1, dual-encoders process
the query and candidates separately, allowing pre-
computing the candidates to accelerate online in-
ference, resulting in fast inference speed. However,
this speedup is built upon sacrificing the expres-
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Figure 1: Illustration of three popular sentence pair
approaches, where N denotes the number of candidates
and s denotes the relevance score of candidate-query
pairs. The cache stores the pre-computed embeddings.
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Figure 2: Overview of proposed MixEncoder.

siveness of cross-attention (Luan et al., 2021; Hu
et al., 2021; Zhang et al., 2021). Alternatively,
late-interaction models adjust dual-encoders by ap-
pending an interaction component, such as a stack
of Transformer layers (Cao et al., 2020; Nie et al.,
2020), for modeling the interaction between the
query and the cached candidates. These approaches
still suffer from the high costs of the interaction
component (Chen et al., 2020).

3 Method

In this section, we introduce the details of the
proposed MixEncoder, which simplifies cross-
attention by enabling pre-computation, reducing
the times of query encoding, and reducing the num-
ber of involved tokens and layers.

3.1 Candidate Pre-computation

Given a candidate that is a sequence of tokens
Ti = [t1, · · · , tl], we experiment with two strate-
gies to encode these tokens into k context embed-
dings in advance, where k ≪ l: (1) prepending
k special tokens {Si}ki=1 to Ti before feeding Ti

into the Transformer encoder (Vaswani et al., 2017;
Devlin et al., 2019), and using the output at these
special tokens as context embeddings (S-strategy);
(2) maintaining k context codes (Humeau et al.,

2020) to extract global features from output of the
encoder by attention mechanism (C-strategy). The
default configuration is S-strategy as it provides
slightly better performance. The pre-computed con-
text embeddings E ∈ RN×k×d are cached for on-
line inference, where N is the number of candi-
dates.

3.1.1 Query Encoding
Since the cross-encoder performs N times of query
encoding, which contributes to the inefficiency, a
straightforward way to accelerate the inference is
to reduce the encoding times of the query. Here we
encode the query without taking its candidates into
account, thus requiring the encoding only once.

To preserve the expressiveness of the cross-
attention, the simplified cross-attention is per-
formed at several interaction layers. As shown
in Figure 2, the context embeddings Ej−1 of can-
didates are allowed to attend over the intermedi-
ate token embeddings of the query, thus obtaining
context-aware representations Ej and Hj for the
query and its candidates.

Concretely, at each interaction layer, the key and
value matrices of the query are utilized by candi-
dates in two ways. (1) Producing contextualized
representations for the candidates:

Ej = Attn(Q′, [K ′;K], [V ′;V ]), (1)

where Q′, K ′, V ′ are derived from the Ej−1 with
a linear transformation. Ej is supposed to con-
tain semantics from both the query and candidates.
(2) Compressing the semantics of the query into a
vector for each candidate:

Hj = Gate(Attn(Q∗,K, V ), Hj−1), (2)

where Q∗ ∈ RN×d is derived from Ej−1 by a pool-
ing operation, H ∈ RN×d stands for the candidate-
aware query states and H0 is initialized as a zero
matrix.

3.2 Prediction
Let H and E denote the query states and the can-
didate context embeddings generated by the last
interaction layer, respectively. For the i-th can-
didate, its representation is the mean of the i-th
row of E, denoted as ei. The representation of the
query with respect to this candidate is the i-th row
of H , denoted as hi. The cosine similarity between
ei and hi is used as the semantic similarity. Addi-
tionally, we can pass ei and hi to a classifier for
classification tasks.
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Table 1: Time Complexity of the attention module. We use q, c to denote the query and candidate length, respectively.
d indicates the hidden layer dimension, N indicates the number of candidates for each query and k indicates the
number of context embeddings for each candidate.

Model Total (N = 1) Pre-computation (N = 1) Online
Dual-BERT d(c2 + q2) + d2(c+ q) dc2 + d2c dq2 + d2q
Cross-BERT d(c+ q)2 + d2(c+ q) 0 N(d(q + c)2 + d2(q + c))

MixEncoder d(c2 + q(q + k) + k2) + d2(c+ q + k) dc2 + d2c dq2 + d2q +N(k + q + d)dk

3.3 Time Complexity

Table 1 presents the time complexity of the Dual-
BERT, Cross-BERT, and our proposed MixEncoder.
We can observe that MixEncoder supports offline
pre-computation to reduce the online time complex-
ity. During the online inference, the query encod-
ing cost term (dq2 + d2q) of MixEncoder does not
increase with the number of candidates since it con-
ducts query encoding only once. Moreover, Mix-
Encoder’s query-candidate term N(k + q + d)dk
can be reduced by setting k as a small value, which
can further speed up the inference.

4 Experiments

Datasets. We evaluate MixEncoder on three
paired-input tasks over four datasets, including
MNLI (Williams et al., 2018) for natural language
inference, MS MARCO passage reranking (Bajaj
et al., 2018) for information retrieval, and DSTC7
(Yoshino et al., 2019), Ubuntu V2 (Lowe et al.,
2015) for utterance selection for dialogue.

Baselines. (1) Cross-BERT is the original
BERT (Devlin et al., 2019). (2) Dual-BERT
(Sentence-BERT) is proposed by Reimers et al.
(Reimers and Gurevych, 2019). (3) Deformer
(Cao et al., 2020) is a decomposed Transformer
that utilizes lower layers to encode sentences
separately and then uses upper layers to encode
text pairs together. (4) Poly-Encoder (Humeau
et al., 2020) encodes the query and its candidates
separately and performs a light-weight late
interaction. (5) ColBERT (Khattab and Zaharia,
2020) is a late interaction model which adopts the
MaxSim operation to obtain relevance scores. This
operation prohibits the utilization of ColBERT
on classification tasks. (6) VIRT (Li et al., 2022)
performs the cross-attention at the last layer and
utilizes knowledge distillation during training.

Training Details. While training models on MNLI,
we use the labels provided in the dataset. While

training models on the other three datasets, we
use in-batch negatives (Karpukhin et al., 2020; Qu
et al., 2021). Detailed settings are provided in A.1.

5 Results

Table 2 shows the experimental results of baselines
and three variants of MixEncoder. We measure the
inference time of all the baseline models for queries
with 1000 candidates and report the speedup.

5.1 Performance Comparison

Variants of MixEncoder. To study the effect of
the number of interaction layers and that of the
number of context embeddings per candidate, we
consider three variants, denoted as MixEncoder-a,
-b, and -c, respectively. Specifically, MixEncoder-a
and -b set k as 1. The former performs interaction
at the last layer and the latter performs interaction
at the last three layers. MixEncoder-c is similar to
MixEncoder-b but with k = 2.

Dual-BERT and Cross-BERT. The performance
of the dual-BERT and cross-BERT are reported in
the first two rows of Table 2. We can observe that
MixEncoder consistently outperforms the Dual-
BERT. The variants with more interaction layers or
more context embeddings generally yield more im-
provement. For example, on DSTC7, MixEncoder-
a and MixEncoder-b achieve an improvement by
0.7% (absolute) and 1.6% over the Dual-BERT, re-
spectively. Moreover, MixEncoder-a provides com-
parable performance to the Cross-BERT on both
Ubuntu and DSTC7. MixEncoder-b can even out-
perform the Cross-BERT on DSTC7 (+0.6), since
MixEncoder can benefit from a large batch size
(Humeau et al., 2020). However, the effectiveness
of the MixEncoder on MS MARCO is slight.

We can find that the difference in the inference
time between the Dual-BERT and MixEncoder
is minimal, while Cross-BERT is 2 orders of
magnitude slower than these models.
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Table 2: Performance of Dual-BERT, Cross-BERT and three variants of MixEncoder on four datasets.

Model
MNLI Ubuntu DSTC7 MS MARCO Speedup Space

Accuracy R1@10 MRR R1@100 MRR R1@1000 MRR(dev) Times GB
Cross-BERT 83.70.1 83.10.7 89.40.5 66.80.6 75.20.4 23.3 36.0 1.0x -
Dual-BERT 75.20.1 81.60.2 88.50.1 65.81.0 74.20.7 20.3 32.2 132x 0.3

PolyEncoder-64 76.80.1 82.30.5 88.90.4 66.41.5 74.80.9 20.3 32.3 130x 0.3
PolyEncoder-360 77.30.2 81.80.2 88.60.1 65.70.6 74.00.3 20.5 32.4 127x 0.3

ColBERT × 82.90.3 89.30.2 67.20.7 74.80.4 22.8 35.4 35.2x 8.6
VIRT 78.30.3 83.10.2 89.40.2 66.50.7 74.90.2 21.5 32.3 33.3x 52.7

Deformer 82.00.1 83.20.4 89.50.2 66.31.0 75.30.6 23.0 35.7 1.9x 52.7
MixEncoder-a 77.50.4 83.10.1 89.40.1 66.90.5 74.90.2 20.4 32.0 113x 0.3
MixEncoder-b 77.80.2 83.20.0 89.50.1 68.20.8 75.80.5 20.7 32.5 89.6x 0.3
MixEncoder-c 78.40.4 83.30.1 89.50.0 66.70.4 74.80.3 20.0 31.9 84.8x 0.6

Table 3: Ablation analysis for MixEncoder-a and -b.

Ubuntu DTSC7
Variants -a -b -a -b
Original 89.5 89.5 74.9 76.1
w/o H 88.9 89.1 74.0 73.9
w/o E 89.2 89.3 74.8 75.2

Late Interaction Models. From Table 2, we have
the following observations. First, among all the late
interaction models, Deformer that adopts a stack of
Transformer layers as the late interaction compo-
nent consistently shows the best performance on all
the datasets. This demonstrates the effectiveness
of cross-attention. In exchange, Deformer shows
limited speedup (1.9x). Compared to the ColBERT
and Poly-Encoder, MixEncoder outperforms them
on the datasets except for MS MARCO. Although
ColBERT consumes more computation than Mix-
Encoder, it shows worse performance than MixEn-
coder on DSTC7 and Ubuntu. This demonstrates
that the lightweight cross-attention can achieve a
better trade-off between efficiency and effective-
ness. However, on MS MARCO, MixEncoder and
poly-encoder lag behind the ColBERT by a large
margin. We conjecture that MixEncoder falls short
of handling term-level matching. We will elaborate
on it in section A.4.

5.2 Ablation Study

Representations. We conduct ablation studies to
quantify the impact of two key components (E and
H) utilized in MixEncoder. The results are shown
in Table 3. All components contribute to a gain in
performance. It demonstrates that the simplified
cross-attention can produce effective representa-
tions for both the query and its candidates.
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Figure 3: Parameter analysis on the interaction layers
and pre-computed context embeddings.

Interaction layers. Figure 3(a) shows the
results when MixEncoder performs interaction
at Transformer layers upper than x. Increasing
interaction layers cannot continuously improve the
ranking quality. On both Ubuntu and DSTC7, the
performance of MixEncoder achieves a peak with
the last three layers utilized for interaction. More
experiments are reported in section A.6.

Context embeddings. We study the effect of
the number of candidate embeddings and the pre-
computation strategies with the last layer to per-
form the simplified cross-attention. From Figure
3(b), it is observed that the S-strategy generally
outperforms the C-strategy, and a larger k can lead
to a better performance for the S-strategy.

Table 4 shows the average time per example for
different models. It is shown that MixEncoder con-
sumes more time as k increases. Nevertheless, the
difference in timing between Dual-BERT and Mix-
Encoder is rather minimal, whereas Cross-BERT
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is significantly slower by two orders of magnitude.

Table 4: Query processing times with 1,000 candidates
and the last layer utilizing simplified cross-attention.

Model Time (ms)
Dual-BERT 7.2
Cross-BERT 949.4

MixEncoder (k=1) 8.4
MixEncoder (k=2) 9.1
MixEncoder (k=3) 10.0
MixEncoder (k=4) 11.5
MixEncoder (k=10) 24.3

6 Conclusion

In this paper, we propose MixEncoder to balance
the trade-off between performance and efficiency.
It involves a lightweight cross-attention mechanism
that allows us to encode the query once and pro-
cess all the candidates in parallel. Experimental
results demonstrate that MixEncoder can speed
up sentence pairing by over 113x while achieving
comparable performance as the more expensive
cross-attention models.
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Limitations

Although MixEncoder has been demonstrated to
be effective in cross-attention computation, we rec-
ognize that MixEncoder does not perform well on
MS MARCO. It indicates that our MixEncoder
falls short of detecting token overlapping since it
loses token-level features by pre-encode candidates
into several context embeddings. Moreover, Mix-
Encoder is not evaluated on a large-scale evalua-
tion dataset, such as an end-to-end retrieval task,
which requires the model to retrieve top-k candi-
dates from millions of candidates (Qu et al., 2021;
Khattab and Zaharia, 2020).
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A More Details

A.1 Training Details

For Cross-BERT and Deformer, which require ex-
haustive computation, we set the batch size as 16
due to the limitation of computation resources. For
other models, we set the batch size as 64. All the
models use BERT (based, uncased) with 12 layers
and fine-tune it for up to 50 epochs with a learning
rate of 1e-5 and linear scheduling. All experiments
are conducted on a server with 4 Nvidia Tesla A100
GPUs, which have 40 GB graphic memory.

A.2 Datasets

The statistics of datasets are detailed in Table 5.
We use accuracy to evaluate the classification per-
formance on MNLI. For other datasets, MRR and
recall are used as evaluation metrics.

Table 5: Statistics of experimental datasets.

Dataset MNLI MS MACRO DSTC7 Ubuntu V2

Train
# of queries 392,702 498,970 200,910 500,000
Avg length of queries 27 9 153 139
Avg length of candidates 14 76 20 31

Test

# of queries 9,796 6,898 1,000 50,000
# of candidates per query 1 1000 100 10
Avg length of queries 26 9 137 139
Avg length of candidates 14 74 20 31

A.3 In-batch Negative Training

We change the batch size and show the results in
Figure 4. It can be observed that increasing batch
size contributes to better performance. Moreover,
we have the observation that models may fail to di-
verge with small batch sizes. Due to the limitation
of computation resources, we set the batch size as
64 for our training.

A.4 Error Analysis

In this section, we take a sample from MS MARCO
to analyze our errors. We observe that MixEncoder
falls short of detecting token overlapping. Given
the query "foods and supplements to lower blood
sugar", MixEncoder fails to pay attention to the
keyword “supplements," which appears in both the
query and the positive candidate. We conjecture
that this drawback is due to the pre-computation
that represents each candidate into k context em-
beddings. It loses the token-level features of the
candidates. On the contrary, ColBERT caches all
the token embeddings of the candidates and esti-
mates relevance scores based on token-level simi-
larity.
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A.5 Inference Speed
We conduct speed experiments to measure the on-
line inference speed for all the baselines. Con-
cretely, we sample 100 samples from MS MARCO.
Each of the samples has roughly 1000 candidates.
We measure the time for computations on the GPU
and exclude time for text reprocessing and moving
data to the GPU.

Table 6: Time to evaluate 100 queries with 1k can-
didates. The Space used to cache the pre-computed
embeddings for 1k candidates are shown.

Model
Time (ms) Space (GB)

1k 1k
Dual-BERT 7.2 0.3

PolyEncoder-64 7.3 0.3
PolyEncoder-360 7.5 0.3

ColBERT 27.0 8.6
Deformer 488.7 52.7

Cross-BERT 949.4 -
MixEncoder-a 8.4 0.3
MixEncoder-b 10.6 0.3
MixEncoder-c 11.2 0.6

A.6 Interaction Layers
From Table 7, it is observed that performing cross-
attention at higher layers generally yields better
performance. Since we use the output of the fi-
nal interaction layers as the sentence embeddings,
choosing low layers enables the early exit mecha-
nism.

Table 7: Results (Recall@1) of performing simplified
cross-attention at two interaction layers on DSTC.

Layer 12 10 8
2 65.4 64.8 64.3
4 66.4 65.7 66.2
6 67.1 65.5 66.0
8 66.6 65.4 -

10 67.4 - -
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