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Abstract
Document-level Relation Extraction (DocRE)
intends to extract relationships from documents.
Some works introduce logic constraints into
DocRE, addressing the issues of opacity and
weak logic in original DocRE models. How-
ever, they only focus on forward logic con-
straints and the rules mined in these works of-
ten suffer from pseudo rules with high standard-
confidence but low support. In this paper,
we proposes Bidirectional Constraints of Beta
Rules(BCBR), a novel logic constraint frame-
work. BCBR first introduces a new rule miner
which model rules by beta contribtion. Then
forward and reverse logic constraints are con-
structed based on beta rules. Finally, BCBR
reconstruct rule consistency loss by bidirec-
tional constraints to regulate the output of the
DocRE model. Experiments show that BCBR
outperforms original DocRE models on relation
extraction performance (∼2.7 F1) and logic
consistency(∼3.1 Logic). Furthermore, BCBR
consistently outperforms two other logic con-
straint frameworks. Our code is available at
https://github.com/Louisliu1999/BCBR.

1 Introduction

In recent years, DocRE attracts significant attention
from researchers, with its intention to distinguish
the relations between entity pairs in the documents.
It’s not limited to sentence-level relation extrac-
tion (Zeng et al., 2014; Zhang et al., 2017; Han
et al., 2018; Wang et al., 2021). It aims to uncover
the dependencies between entities in different sen-
tences of one document (Zhou et al., 2021; Ma
et al., 2023). The challenges in DocRE mainly
include two aspects: first, it’s difficult to capture
complex long-range dependencies between entity
pairs in documents; second, it’s prone to errors
in logical reasoning due to lack of logic. To ad-
dress the aforementioned challenges, the academic
community has made a lot of efforts.

∗∗ These authors contributed equally.
†† Corresponding authors

Document: [1] Porsche is currently enjoying
record profits after a two-year downturn, but the
export-reliant company has hit a pothole in
Argentina. [2] … the Argentine government
announced Wednesday.
Entities: Porsche, Argentina, Argentine
Relations: based_in0(Porsche, Argentina), gpe0
(Argentina, Argentine)
Rule: based_in0-x(e0, e2) ← based_in0(e0, e1) 
∧ gpe0 (e1, e2) 
Prediction: ←←←←←←

Porsche

Argentina

Argentine
based_in0-x

Figure 1: A case of logic constraint DocRE. Different
colors represent different entities. Solid lines represent
the relationships predicted by a general DocRE model,
while dotted lines represent the relationships predicted
by rule-based constraints.

Based on the use of rules, we can classify pre-
vious DocRE works into two categories: plain
DocRE models and logic constraint DocRE models.
In plain DocRE models, attention is mainly given
to learning more powerful implicit representations.
These methods include models based on sequence
encoders (Wang et al., 2019; Xu et al., 2021a;
Zhou et al., 2021), and models based on graph
encoders (Zeng et al., 2020; Christopoulou et al.,
2019). Although these methods have achieved de-
cent results, their inferences are non-transparent
and lack logic, making them prone to errors in
logical inference. Meanwhile, the combination of
relation extraction frameworks and logical rules
has alleviated the issues of low transparency and
weak logic. As the Figure 1 shows, we can derive
two relations based_in0 (Porsche,Argentina)
and gpe0 (Argentina,Argentine) from the doc-
ument. When the rule is applied,we can pre-
dict the relation based_in0-x between Porsche
and Argentina. LogiRE(Ru et al., 2021) is
the first work that introduces logical rules into
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document-level relation extraction. It employed
the Expectation-Maximization (EM) algorithm to
iteratively update the rule generator and relation
extractor, optimizing the results of relation extrac-
tion. However, rule generator and relation extractor
are in isolation. The EM algorithm enables joint
optimization of the two models, but it can still lead
to suboptimal results. MILR(Fan et al., 2022) ad-
dresses the issue of suboptimality by jointly train-
ing the relation classification and rule consistency
losses. But MILR utilizes confidence-based meth-
ods to mine rules, which can lead to pseudo rules
with high standard-confidence but low support, af-
fecting the effectiveness of relation extraction.

In the paper, we propose BCBR, a novel frame-
work which assists relation extraction with the help
of logical rules. BCBR models the bidirectional
constraints of beta rules and optimizes relation ex-
traction through rule consistency loss. (1) The prior
rule set derived from the documents is different
from the one extracted from the knowledge graph.
Textual data has a relatively small volume, and
the inter-document correlations are low, leading to
sparsity in the prior rule set. Thus, general rule
miners in previous works cause the prevalence of
pseudo rules with high standard-confidence but low
support. To tackle this problem, we utilize the beta
distribution to model the rules and consider both
their successful predictions and failures to filter
the rules. (2) In addition, we discovered that the
constraints between rule head and rule body are
bidirectional, while previous methods often only
considered the forward constraints from rule body
to rule head. Therefore, we introduce reverse con-
straints from rule head to rule body. (3) Finally,
based on above constraints, we reconstruct the rule
consistency loss to enhance the performance of
the original DocRE models. We summarize our
contributions as follows:

• To our knowledge, we first propose a rule
miner that utilizes the Beta distribution to
model rules.

• We introduce reverse logic constraint to en-
sure that the output of DocRE models satisfies
the necessity of rules.

• We model bidirectional logic constraints as
reasonable probability patterns and turn them
into rule consistency loss.

• Our experiments demonstrate that BCBR sur-

passes LogiRE and MILR in terms of both
relation extraction performance and logic con-
sistency.

2 Related Work

2.1 Rule Learning

Rule learning is the foundation of logic constraint
DocRE. Rule learning is primarily applied in the
field of knowledge graphs, but DocRE can draw on
its ideas. Currently, rule learning methods can be
divided into three types: symbol-based rule learn-
ing, embedding-based rule learning, and differen-
tiable rule learning based on TensorLog (Cohen,
2016). Symbol-based rule learning aims to mine
rule paths of high frequency on knowledge graphs
more efficiently. Galárraga et al. proposes the open-
world assumption and utilizes pruning strategy to
mine rules. Meilicke et al. adopts a bottom-up
rule generation approach. Embedding-based rule
learning focuses on learning more powerful em-
beddings for entities and relations. Omran et al.
calculates the similarity between rule head and rule
body to select better rules. Zhang et al. iteratively
learns embeddings and rules to generate the rule set.
TensorLog-based methods transform the rule learn-
ing process into a differentiable process, allowing
neural network models to generate rules. For ex-
ample, Sadeghian et al.; Sadeghian et al. trains a
rule miner by using bidirectional RNN model, and
Xu et al.utilizes transformer model.

2.2 Document-level Relation Extraction

Previous works on DocRE can be divided into
two categories: plain DocRE and logic constraint
DocRE. Plain document-level relation extraction
focuses on learning more powerful representations
(Zheng et al., 2018; Nguyen and Verspoor, 2018).
There are methods based on sequence models that
introduce pre-trained models to generate better rep-
resentations (Wang et al., 2019; Ye et al., 2020; Xu
et al., 2021b), Zhou et al. sets an adaptive threshold
and uses attention to guide context pooling. Ma
et al. uses evidence information as a supervisory
signal to guide attention modules. Graph-based
methods model entities and relations as nodes and
edges in a graph and use graph algorithms to gener-
ate better representations (Zeng et al., 2020; Wang
et al., 2020).

However, previous works lack transparency and
logic, making them prone to errors in logical in-
ference. Currently, research on logic constraint
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Document
[1] Heidi, the world famous girl from the Swiss
Alps who first appeared in a novel 121 years
ago… [2]… funded by the Zürich-based film
company Vega and directed by German film
maker Markus Imboden, is to be launched in
Germany on Thursday…

Gold Annotations
create_by(Heidi, Markus),
directed_by(Heidi, Markus),
……

Beta Rule Miner
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Backbone

Rules
𝑆𝑆𝑠𝑠𝑐𝑐: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏 𝑐𝑐0 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏(𝑐𝑐0, 𝑐𝑐1)
𝑆𝑆ℎ𝑐𝑐: ¬𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏 𝑐𝑐0, 𝑐𝑐1 ← ¬𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏
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Joint Traning
𝑳𝑳𝒄𝒄𝒄𝒄𝒄𝒄 𝑳𝑳𝒈𝒈𝒄𝒄𝒃𝒃𝒃𝒃𝒉𝒉𝒄𝒄
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Figure 2: The framework of BCBR. The left is a plain DocRE model, the right is the Beta rule miner and the middle
is the bidirectional logic constraint module and joint training module.

document-level relation extraction is limited. There
are two noteworthy works in this area: LogiRE(Ru
et al., 2021)and MILR (Fan et al., 2022). LogiRE
involves two modules, the rule generator and the
relation extractor. It uses the EM algorithm to ef-
ficiently maximize the overall likelihood. But this
method often leads to suboptimal results due to the
isolation between rule generator and relation ex-
tractor. To address this limitation, MILR constructs
a joint training framework that combines rule con-
sistency loss and relation classification loss of the
backbone model. Previous works only applied for-
ward logic constraints, while our works introduce
reverse logic constraints and enhance the result of
backbone model.

3 Method

In this chapter, we introduce our framework –
Bidirectional Constraints of Beta Rules(BCBR)
(Fig.2). We define concepts related to DocRE and
rules(Sec.3.1). Then We propose a novel rule ex-
traction method(Sec.3.2) and model bidirectional
logic constraints based on rules(Sec.3.3). Finally,
we construct rule consistency loss and jointly train
with relation classification loss to enhance relation
extraction performance(Sec.3.4).

3.1 Preliminaries

Document-level Relation Extraction Given a
documentD and entities E = {ei}n1 . Entities consti-
tute entity pairs (eh, et)1≤h,t≤n,h ̸=t, which eh and
et indicate the head entity and tail entity, respec-
tively. The task of DocRE is to distinguish the
relation r between each entity pair (eh, et), where
r ∈ R andR = R∪{NA}. R is a set of relations
and NA indicates there is no relation on the entity
pair.

Logic Rules We define a binary variable r (eh, et)
to indicate the existence of r ∈ R between eh
and et. When r is true, r (eh, et) = 1; otherwise,
r (eh, et) = 0. A rule consists of rule head and rule
body. The rule head is denoted as rhead (e0, el),
and the rule body is defined as the conjunction of
l binary variables, denoted as rbody (e0, el). We
define the rule set as S and the pattern of rules is
as follows:

rhead (e0, el)← r1 (e0, e1)∧ ...∧rl (el−1, el) (1)

where ei ∈ E , l represents the rule length, and
rhead (eh, et) and ri (ei−1, ei) are referred to as the
head atom and the body atom, respectively.

On the basis of Closed World Assump-
tion(CWA)(Galárraga et al., 2015), we introduce
two concepts: standard confidence and head cover-
age. Standard confidence refers to the conditional
probability of rule head being satisfied given that
the rule body is satisfied. The standard confidence
of rule s can be modeled as the following condi-
tional probability distribution:

psc (s) =
C (rhead ∧ rbody)

C (rbody)
(2)

C (·) represents a counter.
Head coverage refers to the conditional probabil-

ity of rule body being satisfied given that the rule
head is satisfied. The head coverage of rule s can
be modeled as the following conditional probability
distribution:

phc (s) =
C (rhead ∧ rbody)

C (rhead)
(3)

Backbone Model Paradigm Our approach in-
volves using logic rules to assist the original
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DocRE model, which can be generalized to any
backbone DocRE model. Therefore, we define the
paradigm of the backbone model here. For all en-
tity pairs (eh, et) in the document, the backbone
model generates a score G (eh, et) for their relation
r. The probability of this triple being true is defined
as follows:

P (r | eh, et) = σ (G (eh, et)) (4)

where σ (·) is a sigmoid function.
During training, the backbone model uses bi-

nary cross-entropy loss or adaptive threshold loss to
compute the relation classification loss Lcls. Dur-
ing inference, the model sets a global threshold
or uses a learned adaptive threshold to determine
whether the triple r (eh, et) holds:

ρr (eh, et) = I (P (r | eh, et) > θ) (5)

where I (·) represents the indicator function, and
θ represents a threshold. If the probability of
the triple being true satisfies the threshold, then
ρr (eh, et) = 1, indicating that the triple r (eh, et)
holds. Conversely, if the probability does not sat-
isfy the threshold, then ρr (eh, et) = 0, indicating
that the triple r (eh, et) does not hold.

3.2 Beta Rule Miner

Rule mining methods on knowledge graphs are
mainly based on the large-scale and data-intensive
essence of knowledge graphs. However, when
these methods are transferred to document data
(Ru et al., 2021; Fan et al., 2022), they still rely
on confidence to filter rules. It leads to a inadapt-
able phenomenon that there are massive pseudo
rules with high standard-confidence but low sup-
port. Therefore, we abandon the approach of using
confidence or support alone and instead use the
Beta distribution to model rules. In this section, we
propose a new rule mining method called beta rule
miner.

The Beta distribution Beta(αs, βs) for rule s
has two parameters, which we set as follows:

αs = C (φ (s) = 1) + 1 (6a)

βs = C (φ (s) = 0) + 1 (6b)

where φ(s) represents whether rule s holds. Tak-
ing the example of mining high-confidence rules, if
both rbody and rhead exist for rule s, then φ(s) = 1,
indicating that the rule holds. Conversely, if rbody
exists for rule s but rhead does not, then φ(s) = 0,

Algorithm 1 Beta Rule Miner
Input: training set’s labels : T , rule template set

generated by labels : Stemplate, lower bound
of integration for Beta distribution : k, rule
fitness threshold : η

Output: high quality rules : S
1: S ← {}
2: for s in Stemplate do
3: αs = 1
4: βs = 1
5: for TD in T do
6: if rbody (e0, el) in TD and rhead (e0, el) in

TD then
7: αs += 1
8: else if rbody (e0, el) in TD and

rhead (e0, el) not in TD then
9: βs += 1

10: end if
11: end for
12: ρs = Π(Ps (x > k) > η)
13: if ρs == 1 then
14: S.add(s)
15: end if
16: end for
17: return S

indicating that the rule does not hold. The proba-
bility density function of the Beta distribution for
rule s is given by:

fs (x;αs, βs) =
xαs−1 (1− x)βs−1

B (αs, βs)
(7)

where x ∈ [0, 1] and B(·) represents the beta func-
tion. Next, we calculate the integration of the Beta
distribution for rule s (rule fitness). It determines
whether rule s is a high-quality rule or not.

Ps (x > k) =
∫ 1
k fs (x;αs, βs) dx (8a)

ρs = I (Ps (x > k) > η) (8b)

where k is the lower bound of integration for Beta
distribution and η is the threshold for rule fitness.
We select s as a high-quality rule when the integra-
tion of its Beta distribution satisfies the threshold.

As shown in Algorithm 1, we summarize how to
extract high quality rules. For each rule s, we cal-
culates αs and βs (lines 5-11). Then we computes
Ps(x > k) using equations (7) and (8a) (line 12)
and add high standard-confidence rules to the rule
set using equation (8b) (lines 13-17).
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3.3 Bidirectional logic constraints

We utilize the above rules to impose constraints on
the DocRE task. However, previous methods only
employed forward logic constraints from rbody to
rhead(Fan et al., 2022). They could not leverage
the reverse logic constraints from rhead to rbody
due to the uncertainty of rule body atoms. BCBR
models the reverse logic constraints based on head-
coverage rules, thereby compensating for the loss
of constraint conditions. Below, we provide a de-
tailed explanation of the modeling process for bidi-
rectional logic constraints:
Forward logic constraints Forward logic con-
straints exist in high standard-confidence rules. As
shown in Equation (2), when rbody occurs and rhead
simultaneously occurs, it is considered to satisfy
the forward logic constraint. Conversely, if rhead
does not occur, it is considered not to satisfy the
forward logic constraint. It represents the suffi-
ciency of rbody for rhead. We model the ideal form
of forward constraints as follows:

P (rhead (e0, el)) ≥ bconf ∗min (P (ri (ei, ei+1)

)) , if min (P (ri (ei, ei+1))) > θ
(9)

where bconf represents the rule fitness of high
standard-confidence rules, l denotes the length of
the rule, and θ is a threshold. Forward constraints
are only generated in high standard-confidence
rules. When the score of the weakest body atom
ri in rbody is greater than θ, the forward constraint
of the rule comes into play. It constrains that the
probability of rhead being present is greater than
the probability of ri being present.
Reverse logic constraints Reverse constraints ex-
ist in high head-coverage rules. As shown in the
probability model in Equation (3), when rhead is
present, rbody is also expected to be present. It is
referred to as satisfying the reverse constraint. Con-
versely, if rbody is not present, it is considered as
not satisfying the reverse constraint. It represents
the necessity of rbody for rhead. The reverse con-
straint is formulated as shown in Equation (10a).
Reverse constraint differs from the rule form of for-
ward constraint shown in Equation (1), as it derives
rbody from rhead. rbody contains multiple uncer-
tain body atoms because the entities connecting the
triple may not exist. But conjunction rules require
to consider each triple in constructing the constraint
probability model. So We use De Morgan’s laws
for (10a) and obtain a disjunctive rule as shown in

Equation (10b), which states that if any body atom
does not exist, then rhead does not exist.

rhead (e0, el)→ r1 (e0, e1) ∧ ... ∧ rl (el−1, el)
(10a)

¬rhead (e0, el)← ¬r1 (e0, e1) ∨ ... ∨ ¬rl (el−1, el)
(10b)

We model the ideal probability form of the re-
verse constraint as Equation (11):

P (rhead (e0, el)) ≤ bhead ∗min (P (ri (ei, ei+1)

)) , if min (P (ri (ei, ei+1))) < θ
(11)

where bhead represents the rule fitness of high head-
coverage rules. The inverse constraint is only gen-
erated in high head-coverage rules. When the score
of weakest body atom ri in rbody is less than θ, the
reverse constraint of the rule comes into effect. It
constrains that the existence probability of rhead
must be less than the existence probability of ri.

3.4 Rule consistency loss

In addition to the original relation classification
loss Lcls of backbone models, we construct a rule
consistency loss based on the bidirectional con-
straints of beta rules. This loss is jointly trained
with Lcls to improve the logical consistency and
performance of relation extraction.

The rule consistency loss is derived from the bidi-
rectional constraints of beta rules and consists of
two parts: forward loss generated by high standard-
confidence rules and reverse loss generated by high
head-coverage rules. The loss function is formu-
lated as shown in equations (12a) and (12b).

Lsc =
∑

s∈Ssc

∑

d∈D
max (0, (log (bconf ) + log (min

(P (ri | ei−1, ei)))− log (P (rhead | e0,
el)))) ∗ ρrmin (eh, et) (12a)

Lhc =
∑

s∈Ssc

∑

d∈D
max (0,− (log (bhead)− log (min

(P (ri | ei−1, ei))) + log (P (rhead | e0,
el)))) ∗ ρrmin (eh, et) (12b)

where Ssc and Shc represent the sets of high
standard-confidence rules and high head-coverage
rules, respectively. bconf and bhead are their rule
fitness. ρrmin (eh, et) is an indicator function men-
tioned in equation (5), which takes 1 if the weakest
triple in the rule body holds true, and 0 otherwise.

We combine the bidirectional constraint losses
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into a unified loss, which is jointly computed with
Lcls. The formulation is as follows:

Lglobal = Lcls + λ ∗ (Lsc + Lhc) (13)

where λ is a relaxation factor that reflects the
weight of the rule consistency loss.

4 Experiments

4.1 Datasets
To demonstrate the ability of our method to gener-
alize, we conducted evaluations on three datasets
for document-level relation extraction. including
DWIE(Zaporojets et al., 2021), DocRED(Yao et al.,
2019), and Re-DocRED(Tan et al., 2022). The de-
tailed information of datasets are shown in Table
1.
DWIE This dataset is a human-annotated collec-
tion used for document-level information extrac-
tion, which includes DocRE. It contains gold rule
labels, which can be used to evaluate the logical
consistency of the output of DocRE models.
DocRED It’s a popular large-scale DocRE dataset,
which is sourced from Wikipedia articles. It is the
most widely used dataset for DocRE, and the ma-
jority of methods are experimented on this dataset.
Re-DocRED It analyzes the causes and impacts
of false negatives in the DocRED dataset and re-
annotates 4,053 documents. Compared to the Do-
cRED dataset, most document-level relation ex-
traction methods show significant improvement in
performance on this dataset.

Dataset #Doc. #Rel. Avg.#Ent.

DWIE
Train 602

65
27.4

Dev 98 28.4
Test 99 26.5

DocRED
Train 3053

96
19.5

Dev 1000 19.6
Test 1000 19.5

Re-DocRED
Train 3053

96
19.4

Dev 500 19.4
Test 500 19.6

Table 1: Statistics of datasets.

4.2 Experimental Setups
Metrics Following the experimental settings of
(Ru et al., 2021) and (Fan et al., 2022), we evaluate
our method using three metrics: F1, Ign F1, and
Logic. The Ign F1 score excludes relation triplets
that involved by either train set or dev set, prevent-
ing leakage of information from the test set. Logic

is used to assess the adherence of our predictions
to the golden rule.
Baselines To verify the generalizability of our
method as a plugin model for DocRE, we select the
following four models as backbone models: BiL-
STM(Yao et al., 2019), GAIN(Zeng et al., 2020),
ATLOP(Zhou et al., 2021), and DREEAM(Ma
et al., 2023). For fairness, we choose bert-base-
cased as the pretraining model for GAIN, ATLOP,
and DREEAM. Meanwhile, we also compare our
model BCBR with other logic constraint DocRE
models – LogiRE(Ru et al., 2021) and MILR(Fan
et al., 2022)1.
Implementation Details For fairness, we conduct
experiments based on the recommended parame-
ters in the baselines. We average the results over
five different random seeds. The specific hyper-
parameter settings for the new parameters intro-
duced by BCBR are provided in Appendix A. All
models were implemented using PyTorch 1.8.1 and
trained on a Quadro RTX 6000 GPU.

4.3 Results & Discussions

Results on DWIE We can observe results on
DWIE in Table 2. Among all baseline models,
our BCBR model consistently outperforms Lo-
giRE and MILR, indicating its strong generality,
making it compatible with the majority of DocRE
models. Building upon the state-of-the-art base-
line model, DREEAM, BCBR achieves 3.33% Ign
F1, 3.34% F1 and 4.02% Logic improvements on
test set, reaching state-of-the-art performance. In
comparison to LogiRE and MILR, BCBR achieves
1.94% Ign F1, 1.40% F1 and 2.83% Logic improve-
ments. It demonstrates that BCBR has achieved
significant improvements in both relation extrac-
tion performance and rule consistency. Meanwhile,
We conducted a comparative experiment between
our beta rule miner and a general rule miner, as
detailed in the Appendix B.
Results on DocRED The experimental results on
DocRED are presented in Table 2. Apart from
DWIE, we only include the performance of strong
baselines on other datasets. LogiRE does not ex-
hibit significant improvements on the DocRED
dataset, primarily due to the presence of a large
number of false negative labels. The EM algo-
rithm used in LogiRE leads to overfitting issues.
On the other hand, MILR and BCBR perform rela-

1Our implementation.
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model
Dev Test

Ign F1 F1 Logic Ign F1 F1 Logic
BiLSTM 40.46 51.92 64.87 42.03 54.47 64.41
BiLSTM+LogiRE 42.59(+2.13) 53.83(+1.91) 73.37(+8.50) 43.65(+1.62) 55.14(+0.67) 77.11(+12.70)
BiLSTM+MILR 43.03(+2.57) 53.90(+1.98) 74.66(+9.79) 43.80(+1.77) 55.48(+1.01) 77.69(+13.28)
BiLSTM+BCBR 43.71(+3.25) 54.61(+2.69) 76.01(+11.14) 45.46(+3.43) 57.13(+2.66) 79.85(+15.44)
GAIN 58.63 62.55 78.30 62.37 67.57 86.19
GAIN+LogiRE 60.12(+1.49) 63.91(+1.36) 87.86(+9.56) 64.43(+2.06) 69.40(+1.83) 91.22(+5.02)
GAIN+MILR 60.44(+1.81) 64.03(+1.48) 83.59(+5.29) 65.19(+2.82) 70.17(+2.60) 87.67(+1.48)
GAIN+BCBR 61.37(+2.74) 64.83(+2.28) 88.29(+9.99) 66.72(+4.35) 71.25(+3.68) 91.69(+5.40)
ATLOP 59.03 64.82 81.98 62.09 69.94 82.76
ATLOP+LogiRE 60.24(+1.21) 66.76(+1.94) 86.98(+5.00) 64.11(+2.02) 71.78(+1.84) 86.07(+3.31)
ATLOP+MILR 59.58(+0.55) 65.51(+0.69) 86.32(+4.34) 65.08(+2.99) 71.85(+1.91) 86.94(+4.18)
ATLOP+BCBR 60.91(+1.88) 66.44(+1.62) 87.13(+5.45) 66.25(+4.16) 73.19(+3.25) 90.27(+7.51)
DREEAM 60.84 66.07 82.43 64.82 71.44 84.78
DREEAM+LogiRE 61.53(+0.69) 66.84(+0.77) 84.06(+1.63) 65.79(+0.97) 73.02(+1.58) 85.27(+0.49)
DREEAM+MILR 61.39(+0.55) 66.51 (+0.44) 83.49(+1.06) 66.21(+1.39) 73.38(+1.94) 85.97(+1.19)
DREEAM+BCBR 62.23(+1.39) 68.07(+2.00) 84.69(+2.26) 68.15(+3.33) 74.78(+3.34) 86.07(+4.02)

Table 2: Main results on DWIE(%).

model
Test

Ign F1 F1
GAIN 57.93 60.07
GAIN+LogiRE 58.62(+0.69) 60.61(+0.54)
GAIN+MILR 58.85(+0.92) 61.01(+0.96)
GAIN+BCBR 59.36(+1.43) 61.37(+1.30)
ATLOP 58.28 60.29
ATLOP+LogiRE 58.52(+0.24) 60.41(+0.12)
ATLOP+MILR 59.07(+0.79) 60.98(+0.69)
ATLOP+BCBR 59.89(+1.61) 61.63(+1.44)
DREEAM 59.08 60.86
DREEAM+LogiRE 59.29(+0.21) 61.03(+0.17)
DREEAM+MILR 60.13(+1.05) 61.78(+0.92)
DREEAM+BCBR 60.77(+1.59) 62.39(+1.53)

Table 3: Main results on DocRED(%).

tively better as they jointly train with DocRE mod-
els. BCBR achieves the best results on this dataset,
with 1.53% Ign F1 and 1.59% F1 improvements.
It demonstrates that BCBR performs better than
LogiRE and MILR on DocRED.

Results on Re-DocRED The results on Re-
DocRED can be seen from Table 4. Due to the
resolution of false-negative labels in DocRED,
most relation extraction models exhibit significant
improvements on this dataset. BCBR achieves
1.34% Ign F1 and 1.29% F1 improvement, which is
slightly higher than the improvement on DocRED.
By this, we can conclude that the BCBR can assist
the backbone model more effectively when a major-
ity of the false-negative label issues are resolved.

model
Test

Ign F1 F1
GAIN 69.77 70.59
GAIN+LogiRE 70.53(+0.76) 71.48(+0.89)
GAIN+MILR 70.82(+1.05) 71.78(+1.19)
GAIN+BCBR 71.57(+1.80) 72.34(+1.75)
ATLOP 70.86 71.68
ATLOP+LogiRE 71.83(+0.97) 72.77(+1.09)
ATLOP+MILR 71.86(+1.00) 72.58(+0.90)
ATLOP+BCBR 72.43(+1.57) 73.22(+1.54)
DREEAM 71.45 72.16
DREEAM+LogiRE 72.23(+0.78) 72.92(+0.76)
DREEAM+MILR 72.28(+0.83) 73.03(+0.87)
DREEAM+BCBR 72.74(+1.29) 73.50(+1.34)

Table 4: Main results on Re-DocRED(%).

4.4 Ablation study

To demonstrate the effectiveness of each compo-
nent of the BCBR framework, we conduct abla-
tion experiments, and the experimental results are
shown in Table 5. We use the DWIE dataset and
perform the experiments on the strongest baseline
model DREEAM. In the table, BR and BC refer
to the Beta Rule and Bidirectional Constraint, re-
spectively. We exclude the beta rules using the
original rule miner and exclude the bidirectional
constraint using the rule forward constraint. From
the table, we can observe that when exclude one of
the components, our method still outperforms the
baseline approach. This indicates that both com-
ponents are effective. The quality of rules and the
comprehensiveness of logic constraints are both

2262



Document

[1] All season long, Bayern Munich have been consumed with achieving one goal:
reaching the final of the Champions League…[2] After finishing a distant second
place to Dortmund in the Bundesliga and dismally losing to them 5-2 in the German
Cup final…

Predictions of DREEAM: 

Predictions of BCBR: Rule 𝑠𝑠𝑠𝑠𝑠𝑠: vs e0, e1 ← vs(e1, e0)

ChatGPT

Prompt: …if there is a relationship {vs} from Bayern to Dortmund , please choose
the relationship from Dortmund to Bayern from the following relationships: {vs},
{won_vs}… None.
Output: {vs}

Documents

[1] This is Modi's fourth trip to the US after taking office as prime minister, and the
Indian leader's schedule in the US capital includes holding talks with President
Barack Obama...[2] …to boost US investment into India, particularly in the energy
sector.

Predictions of DREEAM: 

Predictions of BCBR: Rule 𝑠𝑠𝑠𝑠𝑠𝑠: head_of_gov e0, e2 ← head_of_gov-x e0, e1 ∧ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔(e1, e2)

ChatGPT

Prompt: … if there is a relationship {head_of_gov-x} from Modi to Indians, and a
relationship {gep0} from Indian to India, please choose the relationship from Modi
to India from the following relationships: {head_of_gov-x}, {head_of_gov},
{head_of_state}, {head_of_state-x}, … None.
Output: {head_of_gov-x}

Documents
[1] Berlin court rules Google Street View is legal in Germany. [2]Last Tuesday, the
Berlin State Supreme Court (Kammergericht) announced its… [3] allow Germans
to opt-out of the service to have their house obfuscated as well.

Predictions of DREEAM: 

Predictions of BCBR: 
Rule 𝑠𝑠ℎ𝑠𝑠: ¬agency_of-x e0, e2 ← ¬based_in𝑔(e0, e1) ∨ ¬gep𝑔(e1, e2)

ChatGPT

Prompt: …if there is a relationship {gep0} from Germany to Germans, and not a
{based_in0} from Berlin court to Germany please choose the relationship from
Berlin court to Germans from the following relationships: {gep0}, {agency_of-x}, …
None.
Output: {agency_of-x}

Berlin court 

Germany Germans
gep𝑔

Berlin court 

Germany Germans
gep𝑔

vs

vs

Bayern Dortmund

Bayern Dortmund

vs

head_of_gov

Modi Indian India
head_of_gov-x gep0

Modi Indian India
head_of_gov-x gep0

Figure 3: Several BCBR inference cases on DWIE and the predictions of the large language model-ChatGPT on
them. Different colors represent different entities. Green solid lines represent correct predictions, red solid lines
represent incorrect predictions, and gray dotted lines represent non-existent relations that correspond to rules.

crucial factors.

model
Dev Test

Ign F1 F1 Ign F1 F1
DREEAM+BCBR 62.23 68.07 68.15 74.78
DREEAM+BC 61.94 67.86 67.74 74.42
DREEAM+BR 60.94 67.19 66.57 73.55
DREEAM 60.83 66.07 64.82 71.44

Table 5: Ablation study on the DWIE dataset(%).

4.5 Case study & LLM
We list some rules mined by our Beta Rule Miner
and their beta scores in Table 6. From the table, we
can learn about various rule patterns that we can
mine. Then we present several inference cases of
BCBR framework on the DWIE dataset, as shown
in Figure 3. We compare the results of BCBR with
the strongest baseline - BREEAM and highlight the
advantages of using logic constraints. We also com-
pare ours to the outputs of large language models
to demonstrate the significance of our task during
the era of large language models. In the first case,
BREEAM can only predict the relation vs from
Bayern to Dortmund, while our BCBR can pre-
dict the relation vs from Dortmund to Bayern
due to the assistance of rules. However, ChatGPT

also choose the correct answer, which indicates
that general DocRE models cannot even perform
simple logical inference, but there is no signifi-
cant gap between our framework and ChatGPT in
simple logical inference. In the second example,
BREEAM also cannot predict the head_of_gov re-
lation from Modi to India, while ChatGPT makes
an incorrect prediction. This fully demonstrates the
superiority of our method in complex logical infer-
ence. In the third example, the rule used is different
from the front two. It is a rule that satisfies the re-
verse constraint. We can infer the non-existence of
the rule head agency_of -x by the non-existence
of the rule body atom baesd_in0. Both BREEAM
and ChatGPT cannot satisfy reverse constraint and
make an incorrect prediction, which reflects the
unique advantage of our method in reverse con-
straints. However, BCBR is not in conflict with
ChatGPT, as logic constraints can enhance the rea-
soning ability of large models. Thus, ChatGPT can
work together with logic constraints to improve the
performance of DocRE. The integration will be a
interesting direction in future research.

5 Conclusion

In this paper, we propose a novel logic constraint
framework BCBR, which utilises bidirectional
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Rule Patterns The Mined Beta Rules With Their Beta Scores
rhead(e0, e1)← r1 (e0, e1) agent_of (e0, e1)← minister_of (e0, e1) 0.99
rhead(e0, e2)← r1 (e0, e1) ∧ r2 (e1, e2) in0-x (e0, e2)← in0 (e0, e1) ∧ gpe0 (e1, e2) 0.96
¬rhead(e0, e1)← ¬r1 (e0, e1) ¬head_of (e0, e1)← ¬member_of (e0, e1) 0.99
¬rhead(e0, e2)← ¬r1 (e0, e1) ∨ ¬r2 (e1, e2) ¬agent_of -x (e0, e2)← ¬agency_of (e0, e1) ∨ ¬gpe0 (e1, e2) 0.99

Table 6: Case study of rules mined by our beta rule miner.

logic constraints of beta rules to regulate the output
of DocRE. We are the first to propose the use of
beta distribution for modeling rules, which effec-
tively solves the problem of pseudo-rules. Then we
model the reverse logic constraints and utilize bidi-
rectional constraints of beta rules to construct rule
consistency loss. By jointly training with relation
classification loss, we improve the performance of
DocRE. Experimental results on multiple datasets
demonstrate that BCBR outperforms baseline mod-
els and other logic constraint frameworks.

Limitations

Our BCBR brings additional rule consistency loss,
resulting in a significant increase in training time.
We need to traverse all rules when processing each
document to generate rule consistency loss. It leads
to a significant increase in time cost. We will opti-
mize the code structure in future work to achieve
convergence of the model in a relatively short pe-
riod of time.
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A Hyper-Parameter Settings

We detail the hyperparameter settings of BCBR on
different datasets in Table 7.

Hyper-param DWIE DocRED Re-DocRED
maxL 2 2 2
epoch 70 100 100
ksc 0.9 0.8 0.9
khc 0.9 0.8 0.9
η 0.9 0.9 0.95
λ 1e-3 1e-4 1e-4

Table 7: Hyper-parameter settings on different datasets.
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Figure 4: Comparison of the amount of rules mined
by different rule miners across different intervals. The
gray cluster represents the rules generated by a general
rule miner, while the red and blue clusters represent the
high-standard-confidenc rules and high-head-coverage
rules generated by the Beta rule miner, respectively.

B Rule miner comparison

We analyzed the distribution of rules mined
by the Beta rule miner and the general rule
miner at different support intervals on DWIE
dataset. Beta(SC) and Beta(HC) represent the high-
standard-confidence rules and high-head-coverage
rules extracted by the Beta rule extractor, respec-
tively. The results are shown in Figure 4. We can
observe that the rules mined by Beta rule miner are

mostly scattered in the 101 to 500 support interval,
and there are no low-support rules scattered in the
1 to 10 support interval. In contrast, the general
rule miner has a large number of rules scattered
in the 1 to 10 support interval. It reflects that the
high quality of rules mined by the Beta rule miner
is much higher than that of the general rule miner.
In addition, we can observe the proportion between
Beta(SC) and Beta(HC), which indicates that the
rules satisfying the reverse constraint cannot be ig-
nored. If only high-standard-confidence rules are
used to constrain the relation extraction process,
a large amount of consistency information among
rules will be lost, leading to a decline in the perfor-
mance of relation extraction.
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