Conversing with databases: Practical Natural Language Querying

Denis Kochedykov Fenglin Yin Sreevidya Khatravath
kochedykov@gmail.com fenglinyin@gmail.com sreevidya35@gmail.com
JPMorgan ML CoE JPMorgan ML CoE JPMorgan ML CoE
Abstract other text-to-query model at the core. NLQ allows

In this work, we designed, developed and re-
leased in production DataQue — a hybrid NLQ
(Natural Language Querying) system for con-
versational DB querying. We address multiple
practical problems that are not accounted for
in public Text-to-SQL solutions — numerous
complex implied conditions in user questions,
jargon and abbreviations, custom calculations,
non-SQL operations, a need to inject all those
into pipeline fast and to have guaranteed pars-
ing results for demanding users, cold-start prob-
lem. The DataQue processing pipeline for Text-
to-SQL translation consists of 10-15 model-
based and rule-based components that allows
to tightly control the processing.

1 Introduction

Large amount of companies’ data are stored in
relational databases — operational data, markets’
data, clients data. These data are critical for deci-
sion making, however the most common channel
for decision-makers to get a view of these data
are (semi-) regular reports generated by data anal-
ysis professionals. Quick hypotheses validation
is rarely, if ever, possible for majority of non-
technical business stakeholders. Thus, one of the
most valuable assets of a company — its data — often
appears to be “locked” in the company’s databases.

Another common interface to DBs for non-
technical personnel are data dashboards. However,
they have limitations — set of data views is usually
fixed, not allowing for custom ones without writ-
ing structured queries; the Ul of a dashboard tends
to grow complex very quickly as business users
ask developers to add more and more views, it be-
comes hard to navigate and hard to learn for new
users; adding a new view to a dashboard requires
developer work and takes time.

A solution to the problem are the so called Natu-
ral Language Querying systems with a Text-to-SQL
models (Kumar et al., 2022), (Deng et al., 2022) or

non-technical users to formulate data requests as
natural language questions. For example, “show
me sales last quarter by region”. There is a lot
of focus on NLQ recently in the industry, both
large and specialized vendors offer NLQ solutions:
Qlik, Tableau, PowerBI, IBM Watson, Amazon
QuickSight, Google BigQuery, Tellius, Borealis,
and dozens others. There are also multiple open-
source models and frameworks for Text-to-SQL
conversion trained on public datasets.

There are two critical factors that limit useful-
ness of most vendor and open-source NLQ solu-
tions:

1. The questions that real business users ask
don’t look like the above “nice” data query
— they are full of complex implied conditions,
jargon, abbreviations, business rules, required
custom calculations, non-SQL operations, etc.
The solution should allow quickly and effort-
lessly inject such domain-specific business
logic into the model pipeline and making it
function in a deterministic “guaranteed” way
according to this logic.

2. The requirement for an NLQ solution gener-
ally is to have close to 100% precision — so
that user never unknowingly receives incor-
rect data in the response and makes decisions
based on those incorrect data.

Let us use as a running example one of our in-
ternal applications — a database of daily profit and
losses for thousands of financial trading desks in
countries across the globe organized into a multi-
level multi-dimensional taxonomy of businesses.

Consider a typical and a relatively simple user
question in this usecase: “yoy emea prime ytd pnl
+ forecast”. First we can notice it barely resembles
proper English. Trading floor language is often
very compressed and full of jargon. Public NLQ

372

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 372-379
December 6-10, 2023 ©2023 Association for Computational Linguistics

systems trained on proper English inputs would
be mostly useless on such questions. Unpacking
this question gives us “over the past 5 years, in
every year, take same dates range as between the
first day of the year and the current date, select
P&L for Prime Finance trading desks in EMEA
region countries and concatenate these values with
full year forecasted P&L values”. This is some-
thing that public NLQ systems could parse, but,
unfortunately, real business users never formulate
questions like this. One could think it’s possible to
solve this with a proper query expansion logic —i.e.
making all the above substitutions in the question
itself. However, the business logic in many cases
depends on the 1) the presence or absence of cer-
tain entities, e.g. if "moving avg" is mentioned —
this implies different default date range 2) on the
value of entities, e.g. implied conditions might
be different for different trading desks and 3) on
the DB table that user is asking about. So even to
expand the question, we first need to parse it and
convert to SQL, thus the text-to-sql model should
work on these “short” questions. Then the business
logic is applied on the parsed question and at dif-
ferent stages of parsing — some at NER/NED stage,
some at intent understanding, some at SQL query
construction, etc. See section 4.1 for statistics of
sample user questions.

In the section 2 we review some related work, in
section 3 we review the system architecture and in
section 4 we provide some testing results.

2 Related work

Text-to-SQL translation has become an active re-
search topic for a number of years. Solutions at
early stage were more domain-specific, and of-
ten adopted rule-based approaches (Stratica et al.,
2005). In recent years, several public data sets,
including WikiSQL (Zhong et al., 2017), Spi-
der (Yu et al., 2019b), and CoSQL (Yu et al.,
2019a), became available, which contain hundreds
of databases from diverse domains. Effort is
shifting towards building domain-agnostic generic
model with deep neural networks. The structure
of neural networks model evolved from general
purpose sequence-to-sequence model, to sequence-
to-sketch model (Xu et al., 2017), and normally
employs encoder and decoder structure. On the
encoder side, techniques such as relation-aware
schema encoding (Wang et al., 2021a) has been de-
veloped to help link tokens in question to database

schema. On the decoder side, different techniques
around constrained decoding, such as PICARD
(Scholak et al., 2021), has been developed to im-
prove decoder performance. Instead of decoding
directly into SQL statement, it’s easier to decode
into an intermediate representation of SQL. Differ-
ent ways of generating intermediate representation
of SQL have been proposed in RAT-SQL (Wang
et al., 2021a), Syntax-SQL (Yu et al., 2018), Nat-
SQL (Gan et al., 2021). Another option is to decode
into an abstract syntax tree (AST) (Yin and Neubig,
2017).

Inspired by sequence-to-sketch model and the
AST approach, we designed and developed an NLU
parsing pipeline and slot-based SQL generation en-
gine, as well as a custom AST that can be used
for SQL generation, as well as for modification of
SQL based on business rules. As training of text-
to-SQL model requires large amount of labelled
data, various data augmentation methods have been
proposed and tested (Wang et al., 2021b). We also
developed data augmentation tool using techniques,
such as entity swapping, and paraphrasing. Most
recent advancements in the field are around lever-
aging capability of generative large language mod-
els for Text-to-SQL translation through prompt en-
gineering and in context learning (Pourreza and
Rafiei, 2023).

3 Methodology

3.1 AST

We designed custom Abstract Syntax Tree (AST)
representation for complex queries combining SQL
and non-SQL elements in a tree-like structured
object. The AST is designed to fit sketch-based
and slot-based query generation process, as well as
business rule driven expansion process (see below).
Figure 1 shows an example AST from query “edg
pnl outliers plot”.

3.2 Pipeline

The pipeline of DataQue is presented at high level
in figure 2. Components such as NER, NED, AST
constructor, and AST expansion component are
core/critical components. We also have utility com-
ponents such as intent classifier, OOD classifier,
follow-on classifier, and dialog state tracker. We
will describe the components one by one.

373

chart:
data_sets:
- custom operation:
operations:
- trend_outlier: trend_outlier

data_sets:
- sqgl:
from: pnl
label: edg

select:
- aggregation: null
column: EQ_DAILY_PNL
where:
- column: EQ_LEVEL_3
operator: '='
value:
- GLOBAL EDG

Figure 1: Example AST serialized into YAML format.

Intent classifier

What: Classifies if the input user utter-
ance is one of the conversational intents
(hi/bye/thanks/frustration/etc) or a data question.

Why: Not all the inputs into the system are
proper data questions, we don’t want to try to trans-
late to SQL an input “hi”.

How: A standard transformer-based text clas-
sifier; we crowd-sourced some examples of con-
versational intent utterances and we used the test
examples of data questions as training examples
for intent classifier.

Exact pattern matching component

What: Matches user utterance against list of prede-
fined regular expressions and, if a match is found —
retrieves corresponding SQL translation.

Why: For some simple queries users need a guar-
anteed result, e.g. a query like “pnl” — there are too
many implied conditions in it like date range, aggre-
gation, geography, etc, to pass it through pipeline.

How: A list of regular expressions and corre-
sponding AST translations.

NER (Named Entities Recognition) component

What: ldentifies entities in the input utterance -
trading desk names, countries, dates and ranges
“now”, “last week”, etc), numerical columns (like
“pnl”,), analytics operations (“moving avg”, “std”
“runrate”, etc), aggregations (“yoy”, “daily”, etc),
postprocessing operations (“chart”, “outliers”,
etc), financial products (“cash”, “derivs”, “bro-
kerage”, etc), and multiple others.
Why: There are multiple reasons to have NER
and NED (Named Entities Disambiguation) as sep-

arate explicit components rather than to include it

if non-query,
return text reply

I Intent i

—

If query doesn't match
one of onboarded datasets, ——

return text response
NED
entity resolution/linking

Dataset classifier

Datatable
schema

If question is recognized
as out of scope,
intent QutOfScope ~——>»
(ask for clarification)

Follow-on classifier

Slot filling
component (DST)

,I Dialog manager
AST templates
and filling rules AST Constructor

AST Expansi I I AST
rule:

Figure 2: High-level schematic pipeline of DataQue
conversational NLQ solution.

implicitly in the way the tokens are encoded in a
transformer-based model’s attention, as done, e.g
in (Wang et al., 2021a). Mainly, because many of
the business rules for expansion of AST depend on
the set of entities identified in the question. For
example, when user mentions “runrate” or “daily
avg”, it triggers multiple business rules AST expan-
sions: 1) the formula for the calculation is included
into the AST using only the business days for av-
eraging 2) if date range is not specified, “year to
date” is used (and this itself depends on presence
of another entity — date_range). It’s very hard if
possible at all to specify this sort of logic in the
attention-based encoding of tokens. Secondary rea-
son is that model-based tokens attribution requires
sizable training data and, because data for practical
NLQ applications are quite different from public
datasets — these data need to be collected from
scratch, we have a cold-start problem.

How: We use 3 complementary NER compo-
nents: 1) regular-expression-based and dictionary-
based extraction 2) standard transformer-based
NER model trained on a small set of domain-
specific data 3) standard NLP libraries like Spacy
and Duckling for standard entities like dates,
money, etc.

374

Table classifier

What: Uses the wording of the question and ex-
tracted entities to recognize which DB tables the
question refers to, e.g. P&L table, market data
table, etc

Why: We need table classifier to feed into the
downstream components: 1) we need to determine
which table(s) NED will link the extracted entities,
2) the business rules for AST expansion are often
different for different DB tables, so we need to
understand how to expand the parsed question’s
AST.

How: Standard transformer-based classifier us-
ing the wording of the questions and the extracted
entities as inputs. We use the small set of table
specific questions to train the classifier.

NED (Named Entities Disambiguation)

What: Resolves the face value of an entity extracted
from the question: 1) standard resolution for dates
(“yesterday” — last business day — date of the last
week’s Friday), money, etc 2) for entities that refer
to the DB schema — link them either to a table name
or a name of a column in a table or an individual
value in one of the columns in a table.

Why: To be able to form an SQL query, we need
to resolve face-value of extracted entities to their
numerical values or canonical values from the DB
table(s).

How: For resolving standard entities we use stan-
dard NLP packages like Spacy and Duckling. For
linking entities to DB schema, we use a combi-
nation of approaches: 1) regular-expression-based
and dictionary-based matching, e.g. we have a list
of all typical ways how business-users refer to cer-
tain desks 2) fuzzy matching based on the string
distance. The first approach is also useful when
(often) a single entity cannot be linked to a single
value in the DB table — users refer to multiple val-
ues by one short abbreviation, e.g. they refer to a
group of trading desks rather than a single desk. In
such cases it’s pretty straightforward to add the cor-
responding shortcut to a dictionary-based linking.
The second approach is useful for linking entities
to values in the table with many unique values, e.g.
when a user refers to some trading desk by name
but not use a proper name and rather use some sort
of abbreviation. The DB is scanned regularly, all
columns names are extracted and all unique val-
ues in the table for all non-numerical columns are
extracted and used for linking of entities based on
string distance.

OOD (Out-Of-Domain) classifier

What: A binary classifier that recognizes if the
user’s question is in-scope for the system or not.

Why: One critical requirement for a practical
NLQ system is that user never unknowingly re-
ceives data that doesn’t match the the user’s ques-
tion. This means the system needs to produce
a confidence score for each text-to-sql transla-
tion and, if the system is not highly confident in
the translation, it needs to fallback to a clarifica-
tion/disambiguation question to the user. For exam-
ple, when user asks “corr b/w pnl and snp” mean-
ing “compute correlation between daily P&L and
the S&P500 market index this year to date” — al-
though all the entities might be recognized, this
is not something the system can do and it should
respond accordingly. The second important, but
conflicting requirement is that the system needs to
be highly controllable, easily extensible with com-
plex business logic. This means that significant
portions of the system needs to be rule based. How-
ever rule-based components don’t produce confi-
dence scores. To address this, we run a classifier
on the parsing results that says if the question is
likely to be in-scope question and the parsing result
is likely to be correct or otherwise. The classifier
can produce a confidence score that can be thresh-
olded and, for low confidence, the system resorts
to fallback clarification with the user.

How: We train a classifier using a variety of
features — the wording of the question, the # of
entities recognized in the question, % of tokens
in the question that are not entities, if there are
duplicate entities recognized in the question (e.g.
2 date ranges), confidence of model-based NER
components, # of entities that were not linked to
DB schema and other. We train the classifier using
a small set of domain-specific parsing examples
as the positive class and we generate examples for
the negative class in 2 ways 1) by running random
out of domain sentences through the system 2) by
corrupting positive in-domain examples in various
ways making them non-parsable (randomly intro-
ducing unsupported operations, tables, and analytic
functions).

Follow-on classifier

What: A component that determines which user
questions are follow-on questions to the user’s pre-
vious question and which are genuinely new ques-
tions.

Why: Users’ expectation is that they can refine

375

their question in a conversational manner and “drill
down” exploring their DBs. The logic for process-
ing the question depends on whether it’s a new
question / topic change or a follow-on. For exam-
ple, the conversation user: “emea pnl last year” —
nlq: (...) — user: “+asia”; — nlq: (...) — user:
‘plot” — nlq: (...) — user: “prime pnl last week”;
here

3

* the second utterance “+asia” is a follow-on
question meaning “concatenate to the previ-
ous result a column with P&L from APAC
region countries for the same dates and also
compute the total” and it only can be under-
stood in the context of the previous question,

* the third question is also a follow-on meaning
“plot the above 2 series” and

* the last question is a topic-change.

How: We use a rule-based binary classifier com-
ponent based on features like wording, length, num-
ber of entities in the question and status of memory
slots.

DST (Dialog State Tracker)

What: Component that fills the memory slots with
entities and intents extracted from previous ques-
tions. Slots’ values then used for constructing the
AST for the question. The function of this compo-
nent is to decide — given the entities extracted and
resolved from the current user utterance and the
current state of memory slots — which slots do we
update with the new values, which slots we keep
as-is and which we reset.

Why: Same as the above follow-on classifier,
the DST component allows to carry context from
question to question in a conversational NLQ. Sim-
plistically, we could rely only on the follow-on
classifier: if the question is a follow-on — put all
entities from the question into corresponding slots
and preserve other slots values, if the question is a
topic change — reset all memory slots and put new
values. However, in practice, different slots can
have their own idiosyncratic rules for when to keep
them and when to reset. There are also follow-ons
like “i need asia, not global”, where though two
“region” entities are extracted, only one need to be
put in the corresponding memory slot.

How: We use a simple rule-based 3-class classi-
fier component that determines for each memory
slot if it needs to be filled/reset/kept. Inputs into

the classifier are the follow-on classifier output, the
extracted entities, the current values of the slot.

AST (Abstract Syntax Tree) Constructor

What: Component that generates initial AST based
on parsing results of previous components.

Why: Need to convert natural language query
into instructions on how to extract, process and
render data, so that downstream AST executor can
act on.

How: We have a set of AST templates defined in
YAML format. We populate the templates based on
extracted and resolved/linked entities - populate SE-
LECT, FROM, WHERE, GROUPBY, aggregation,
in the SQL queries in AST, add post-processing
and custom analytics nodes in the AST based on
templates.

AST expansion component

What: Initial AST needs to be expanded based on
implied default conditions and business rules.

Why: The AST that can be constructed from the
user question is often only partially filled. There
are business rules on 1) how to fill in default value
when it’s not available in user query; 2) how to
concatenate additional data for comparison with
requested data; 3) how to present result tables in
certain formats. AST expansion adds all these extra
conditions, data, calculations and formatting.

How: Rules are captured in YAML file, each
rule has triggering condition and corresponding
action. E.g: if date range is missing and analytics
operation present — default to year-to-date; if date
range is this year — pull last five years to compare
with; if multiple group-by conditions — pivot table
to both row and column.

4 Training and evaluation

4.1 Data

Because the trading language and the structure of
the questions are very domain-specific, we cannot
leverage public datasets and had to collect data
internally. It’s not feasible to collect data directly
from traders, so we collected data in 2 steps: 1)
generated synthetic data from template questions
and leveraged internal annotation team to write
more labelled examples; 2) after the system was
released into production, we run it for a short period
of time and collect example questions asked by real
trading desks users.
The datasets we used in training and testing:

376

#1 Synthetic questions: we used ~10 template
question structures and generated ~20k syn-
thetic questions by substituting various admis-
sible combinations of entities’ values

#2 Annotated questions for NER/NED train-
ing: we used internal annotation team to write
~300 example questions and annotate them
with entities and resolutions — linking to DB
schema or resolved value of non-DB entities.

#3 Annotated questions for NER/NED testing:
same source as above, =200 questions

#4 Examples of non-business utterances: an-
notation team wrote ~200 examples of non-
business utterances: greeting, affirm, deny,
thanks, chitchat, etc

#5 Production run questions: ~300 business
questions sampled from initial period of pro-
duction run with real users.

For the questions in dataset #5, some characteris-
tics:

» Average length of questions: 31 characters; 6
tokens.

* Average length of AST SQL: 22 tokens.

» Average length of expanded AST SQL: 33
tokens.

» The SQL’s are single table queries, with about
15% having custom non-SQL analytic or com-
parison operation.

* Average number of special entities (jargon,
abbreviation, etc) in each question is 2.

4.2 System training and evaluation

We evaluated individual components of the system
and the whole system accuracy on a production
flow dataset, we present here only some key com-
ponents evaluation.

NER

As described in the section 3 , the component con-
sists of rule-based and model-based parts. For the
model-based part we used the DIET (Dual Intent
Entity Transformer) model (Bunk et al., 2020) with
12 transformer blocks, batch size 128, trained for
75 epochs. Inputs into the model were 768-dim em-
beddings by Bert-based featurizer. We use combi-
nation of datasets #1 and # 2 above for training and

dataset #3 for testing the NER model. Weighted
average F1 score across all entities types is 97%.

NED

As discussed in section 3, the component is based
on rules, dictionaries and string distance matching
logic, there are no trainable parameters. The dataset
#3 is used for testing the accuracy of NED. The
weighted average F1 score across all entities types
i 96%.

Overall system execution accuracy

We use dataset #5 — production data — for testing
overall system performance. We measure the frac-
tion of queries in the test set giving EM (Exact
Match) of the data returned by the whole system
and the expected data to be returned. This metric
measures the accuracy of all components in the sys-
tem together - rule-based, model-based and purely
engineering like query execution and even the ac-
curacy of the data in DB. The EM score is 88%.

5 Discussion

The overall accuracy of the system is relatively
high at 88%, however, production requirement is
that users never unknowingly get incorrect data
from the system. Error analysis indicated that the
12% of cases when the system didn’t return the
expected data are split approximately 30%/70%
between 1) system returning some data and 2) sys-
tem returning a text message (e.g, Out-of-Domain
classifier recognized the question as OOD or intent
classifier mis-recognized the intent). This means,
in 12%-30% =~ 4% cases, the system returns data
that doesn’t match the user’s question. Further er-
ror analysis indicated that in almost all of these
cases, the system was not able to recognize or re-
solve one of the entities that user has mentioned.
To address these situations, we take "human in the
loop" path and show the user the parsing results in
a simplified form, see fig. 3. This allows users to
recognize when the system incorrectly parsed their
question and returned them not the data they asked.

6 Conclusions

We designed, developed and deployed in produc-
tion a hybrid conversational NLQ system for sev-
eral real-world usecases in a large international
financial institution. The approach allows to ad-
dress multiple conflicting practical requirements —
custom domain language with jargon and abbre-
viations, numerous complex implied conditions

377

pnl for last five years NED

pnlkoieq oany pnt for last five year#;k.l;w 01-01 00:00:00", "2022-01-01 00:00:001

NER

Figure 3: Example “explainability” part of the system’s
output

in the users’ questions, need to incorporate new
business-rules into the model pipeline quickly as
user feedback comes and have a guaranteed behav-
ior of the system, high accuracy and interpretabil-
ity of the results. Vendor solutions or open-source
end-to-end Text2SQL models do not allow for re-
quired level of customization and controllability
for heavily domain-specific applications. We be-
lieve, our hybrid framework strikes a good practical
balance between leveraging pre-trained language
understanding models and rules.

Limitations

One limitation of the approach is the other side of
its strength and is in line with the usual dichotomy
“rules — high precision, low recall, statistical models
— lower precision, but higher recall”. The proposed
approach has a sizeable rule-based part so, while it
is highly controllable and addresses the cold-start
problem, it is not as robust to variations in the
questions, e.g. when understanding the question
requires reasoning or common sense knowledge.
Similarly, it’s not as robust to variations in the di-
alog scenarios outside “question+follow-ons”, to
users explicitly referring to something in the previ-
ous questions or previous answers and other. The
conscious design choice we made that for such vari-
ations the system defaults to error messages, rather
than running a risk of providing incorrect answers.

Another downside of the approach is also the
consequence of using rule-based components in
the pipeline — the set of rules need to be maintained
clean and up-to-date, e.g. the dictionaries, the AST
expansion rules and other. This requires some ef-
fort from the developer team running the system in
production.

Here are a few examples that current solution of
DataQue failed.

1. “How well have I done in this month as com-
pared to last year” — failed to understand in-
tent.

2. “ytd edg pnl excluding corps and converts” —
failed to understand “excluding” operation.

3. “split per stripe” — failed to understand the
group-by condition stated in this follow-on
question.

Future Work

The initial development of the system had the cold-
start problem — business users could not be asked to
write any significant amount of queries and expla-
nations and professional annotators could not repre-
sentatively capture very domain-specific lingo. We
addressed the problem by decomposing the NLQ
pipeline into small tasks and mixing rule-based and
model-based components. Following the produc-
tion release of the system, one immediate direction
of improvement is collecting more users queries
from system usage in order to create larger train-
ing/testing datasets for components.

Another immediate direction of work is leverag-
ing Large Language Models in the pipeline. LLMs
excel in natural language understanding and have
demonstrated proficiency in code generation tasks,
making them seemingly well-suited for NLQ solu-
tions. However, for a domain-specific NLQ task,
initial study indicates that out-of-the-box LLMs
actually struggle to perform. One challenge is the
consistency of the LLMs responses — it far doesn’t
fit the requirement of “close to 100% precision”
in business-critical domains. Another challenge is
latency. To make responses more consistent and ad-
dress all the custom requirements described in this
work, several additional components still needed
in the pipeline. If LLMs are used, multiple calls
are needed and this leads to a significant overall
latency, with complex queries taking over 30-60
seconds to process. In contrast, the solution pre-
sented in this work achieves a latency of less than
one second. It is likely that the ultimate solution
will be a combination of the pipeline presented in
this work with some LLM components.

Ethics Statement

All the work done and discussed in this paper meets
and upholds the ACL Code of Ethics.

References

Tanja Bunk, Daksh Varshneya, Vladimir Vlasov, and
Alan Nichol. 2020. Diet: Lightweight language un-
derstanding for dialogue systems.

378

http://arxiv.org/abs/2004.09936
http://arxiv.org/abs/2004.09936

Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Re-
cent advances in text-to-SQL: A survey of what we
have and what we expect. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 2166-2187, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John Drake, and Qiaofu Zhang.
2021. Naturalsql: Making sql easier to infer from
natural language specifications.

Ayush Kumar, Parth Nagarkar, Prabhav Nalhe, and San-
jeev Vijayakumar. 2022. Deep learning driven natu-
ral languages text to sql query conversion: A survey.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models.

Niculae Stratica, Leila Kosseim, and Bipin C Desai.
2005. Using semantic templates for a natural lan-
guage interface to the cindi virtual library.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2021a. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caim-
ing Xiong. 2021b. Learning to synthesize data for
semantic parsing. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2760-2766, Online. As-
sociation for Computational Linguistics.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440—450, Vancouver, Canada.
Association for Computational Linguistics.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev. 2018.
Syntaxsqlnet: Syntax tree networks for complex and
cross-domain text-to-sql task.

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze Shi,
and Zihan Li. 2019a. Cosql:a conversational text-to-
sql challenge towards cross-domain natural language
interfaces to databases.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019b. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

379

https://aclanthology.org/2022.coling-1.190
https://aclanthology.org/2022.coling-1.190
https://aclanthology.org/2022.coling-1.190
http://arxiv.org/abs/2109.05153v1
http://arxiv.org/abs/2109.05153v1
http://arxiv.org/abs/2208.04415
http://arxiv.org/abs/2208.04415
http://arxiv.org/abs/2304.11015v2
http://arxiv.org/abs/2304.11015v2
http://arxiv.org/abs/2109.05093v1
http://arxiv.org/abs/2109.05093v1
http://arxiv.org/abs/2109.05093v1
http://arxiv.org/abs/55(1):4–19.
http://arxiv.org/abs/55(1):4–19.
http://arxiv.org/abs/1911.04942
http://arxiv.org/abs/1911.04942
http://arxiv.org/abs/1911.04942
https://doi.org/10.18653/v1/2021.naacl-main.220
https://doi.org/10.18653/v1/2021.naacl-main.220
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
http://arxiv.org/abs/1810.05237
http://arxiv.org/abs/1810.05237
http://arxiv.org/abs/1909.05378
http://arxiv.org/abs/1909.05378
http://arxiv.org/abs/1909.05378
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887

