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Abstract

In recent years, active learning has been suc-
cessfully applied to an array of NLP tasks.
However, prior work often assumes that train-
ing and test data are drawn from the same dis-
tribution. This is problematic, as in real-life
settings data may stem from several sources of
varying relevance and quality. We show that
four popular active learning schemes fail to out-
perform random selection when applied to unla-
belled pools comprised of multiple data sources
on the task of natural language inference. We
reveal that uncertainty-based strategies perform
poorly due to the acquisition of collective out-
liers, i.e., hard-to-learn instances that hamper
learning and generalization. When outliers are
removed, strategies are found to recover and
outperform random baselines. In further anal-
ysis, we find that collective outliers vary in
form between sources, and show that hard-to-
learn data is not always categorically harmful.
Lastly, we leverage dataset cartography to in-
troduce difficulty-stratified testing and find that
different strategies are affected differently by
example learnability and difficulty.

1 Introduction

In recent years, active learning (AL) (Cohn et al.,
1996) has emerged as a promising avenue for data-
efficient supervised learning (Zhang et al., 2022).
AL has been successfully applied to a variety of
NLP tasks, such as text classification (Zhang et al.,
2016; Siddhant and Lipton, 2018; Prabhu et al.,
2019; Ein-Dor et al., 2020; Margatina et al., 2022),
entity recognition (Shen et al., 2017; Siddhant and
Lipton, 2018; Lowell et al., 2019), part-of-speech
tagging (Chaudhary et al., 2021) and neural ma-
chine translation (Peris and Casacuberta, 2018; Liu
et al., 2018; Zhao et al., 2020).

However, these works share a major limitation:
they often implicitly assume that unlabelled train-
ing data comes from a single source1 (Houlsby

1Throughout the paper, we use the term “source” to de-

Figure 1: The pool of unlabelled data consists of a
source S, or multiple sources

⋃
i Si, for the single-

source and multi-source AL setting, respectively. The in-
domain test set follows the same distribution of sources.

et al., 2011; Sener and Savarese, 2018; Huang et al.,
2016; Gissin and Shalev-Shwartz, 2019; Margatina
et al., 2021). We refer to this setting as single-
source AL. The single-source assumption is prob-
lematic for various reasons (Kirsch et al., 2021).
In real-life settings we have no guarantees that
all unlabelled data at our disposal will necessar-
ily stem from the same distribution, nor will we
have assurances that all examples are of consis-
tent quality, or that they bear sufficient relevancy
to our task. For instance, quality issues may arise
when unlabelled data is collected through noisy
processes with limited room for monitoring indi-
vidual samples, such as web-crawling (Kreutzer
et al., 2022). Alternatively, one may have access to
several sources of unlabelled data of decent qual-
ity, but incomplete knowledge of their relevance to
the task-at-hand. For instance, medical data may
be collected from various different physical sites
(hospitals, clinics, general practitioners) which may
differ statistically from the targte distribution due
to e.g. differences in patient demographics. Ide-
ally, AL methods should be robust towards these
conditions in order to achieve adequate solutions.

scribe the varying domains of the textual data that we use in
our experiments. More broadly, “different sources” refers to
having data drawn from different distributions.
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In this work, we study whether existing AL meth-
ods can adequately select relevant data points in
a multi-source scenario for NLP. We examine ro-
bustness by evaluating AL performance in both
in-domain (ID) and out-of-domain (OOD) settings,
while we also conduct an extensive analysis to in-
terpret our findings. A primary phenomenon of in-
terest here concerns collective outliers: data points
which models struggle to learn due to high am-
biguity, the requirement of specialist skills or la-
belling errors (Han and Kamber, 2000). While
such outliers were previously found to disrupt
several AL methods for visual question answer-
ing (Karamcheti et al., 2021), their impact on text-
based tasks remains under-explored. Given the
wide body of work on the noise and biases that
pervade NLI (Bowman et al., 2015; Williams et al.,
2017; Gururangan et al., 2018; Poliak et al., 2018;
Tsuchiya, 2018; Geva et al., 2019; Liu et al., 2022),
we may reasonably assume popular NLI datasets
to suffer from collective outliers as well.

Concretely, our contributions can be summarised
as follows: (1) We apply several popular AL
methods in the under-explored multi-source, pool-
based setting on the task of NLI, using RoBERTa-
large (Liu et al., 2020) as our acquisition model,
and find that no strategy consistently outperforms
random selection (§5). (2) We seek to explain
our findings by creating datamaps to explore
the actively acquired data (§6.1) and show that
uncertainty-based acquisition functions perform
poorly due to acquisition of collective outliers
(§6.2). (3) We examine the effect of training data
difficulty on downstream performance (§7.1) and
after thorough experiments we find that uncertainty-
based AL methods recover or even surpass ran-
dom selection when hard-to-learn data points are
removed from the pool (§7.2). (4) Finally, we in-
troduce difficulty-stratified testing and show that
the learnability of acquired training data affects
different strategies differently at test-time (§7.3).
Our code is publicly available at https://github.

com/asnijders/multi_source_AL.

2 Related Work

Multi-source AL for NLP While AL has been
studied for a variety of tasks in NLP (Siddhant and
Lipton, 2018; Lowell et al., 2019; Ein-Dor et al.,
2020; Shelmanov et al., 2021; Margatina et al.,
2021; Yuan et al., 2022; Schröder et al., 2022; Mar-
gatina et al., 2022; Kirk et al., 2022; Zhang et al.,

2022), the majority of work remains limited to set-
tings where training data is assumed to stem from
a single source. Some recent works have sought
to address the issues that arise when relaxing the
single-source assumption (Ghorbani et al., 2021;
Kirsch et al., 2021; Kirsch and Gal, 2021), though
results remain primarily limited to image classifi-
cation. Moreover, these works study how AL fares
under the presence of corrupted training data, such
as duplicating images or adding Gaussian noise,
and they do not consider settings where sampling
from multiple sources may be beneficial due to
complementary source attributes. He et al. (2021)
examine a multi-domain AL setting, but they fo-
cus on leveraging common knowledge between do-
mains to learn a set of models for a set of domains,
which contrasts with our single-model pool-based
setup. Closest to our work, Longpre et al. (2022)
explore pool-based AL over multiple domains and
find that some strategies consistently outperform
random on question answering and sentiment anal-
ysis. However, the authors crucially omit a series of
measurements, as they instead perform a single AL
iteration, limiting the effectiveness of AL, while
complicating comparison with our results.

Dataset Cartography Karamcheti et al. (2021)
employ dataset cartography (Swayamdipta et al.,
2020) and show that a series of AL algorithms fail
to outperform random selection in visual question
answering due to the presence of collective outliers.
Zhang and Plank (2021) apply datamaps to AL and
introduce the cartography active learning strategy,
identifying that examples with poor learnability
often suffer from label errors. Our work contrasts
with both of these works in that we show that hard-
to-learn data is not always unequivocally harmful
to learning. Moreover, both works only examine
learnability of training examples, whereas we also
consider how learnability of acquired data affects
model performance at test-time.

3 Single & Multi-source Active Learning

We assume a warm-start, pool-based AL sce-
nario (Settles, 2010) with access to a pool of un-
labelled training data, Dpool, and a seed dataset
of labelled examples, Dtrain. During each itera-
tion i of AL, we first train a model M with Dtrain

and then use it in conjunction with some acquisi-
tion function A to select a new batch of unlabelled
examples Dbatch from Dpool for labelling. Upon
labelling, these examples are removed from Dpool
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and added to Dtrain, after which a new round of
AL begins.

Di+1
train = Di

train ∪ Di+1
batch

Di+1
pool = Di

pool \ Di+1
batch

Single-source AL For single-source AL, we as-
sume that Dpool is a set of unlabelled data that
stems from a single source S, i.e. Dpool = S.

Multi-source AL For multi-source AL, we as-
sume that Dpool comprises a union of distinct

sources S1, S2, ..., Sn such that Dpool =
n⋃

i=1
Si.

3.1 Data Acquisition
An acquisition function A is responsible for select-
ing the most informative unlabelled data from the
pool, aiming to improve over random sampling. We
use a set of acquisition functions which we deem
representative for the wider AL toolkit: Monte
Carlo Dropout Max-Entropy, (MCME; Gal et al.,
2017) is an uncertainty-based acquisition strategy
where we take the mean label distribution over T
Monte-Carlo dropout (Gal and Ghahramani, 2015)
network samples and select the k data points with
the highest predictive entropy. Bayesian Active
Learning by Disagreement, (BALD; Houlsby et al.,
2011) is an uncertainty-based acquisition strategy
which employs Bayesian uncertainty to identify
data points for which many models disagree about.
Discriminative Active Learning (DAL; Gissin and
Shalev-Shwartz, 2019) is a diversity-based acquisi-
tion function designed to acquire a training set that
is indistinguishable from the unlabelled set.

3.2 Analysis of Acquired Data
At each data acquisition step, we seek to examine
what kind of data each acquisition function has se-
lected for annotation. Following standard practice
in active learning literature (Zhdanov, 2019; Yuan
et al., 2020; Ein-Dor et al., 2020; Margatina et al.,
2021) we profile datasets acquired by strategies via
acquisition metrics. Concretely, we consider the
input diversity and output uncertainty metrics. We
provide more details in Appendix A.1.

Input Diversity To evaluate the diversity of ac-
quired sets in the input space, we follow Yuan et al.
(2020) and measure input diversity as the Jaccard
similarity between the set of tokens from the ac-
quired training set Dtrain and the set of tokens
from the remainder of the unlabelled pool Dpool.

This function assigns high diversity to strategies
acquiring samples with high token overlap with the
unlabelled pool, and vice versa.

Output Uncertainty To approximate the output
uncertainty of an acquired training set Dtrain for a
given strategy, we follow Yuan et al. (2020) and use
a model trained on the entire dataset to compute
predictive entropy of all the examples in the dataset
that we want to examine. The model is trained
on all training data as this grants more accurate
uncertainty measurements.

4 Experimental Setup

Data We perform experiments on Natural Lan-
guage Inference (NLI), a popular classification task
to gauge a model’s natural language understand-
ing (Bowman et al., 2015). We construct the un-
labelled pool from three distinct datasets: SNLI
(Bowman et al., 2015), ANLI (Nie et al., 2019)
and WANLI (Liu et al., 2022). We consider MNLI
(Williams et al., 2017) as an out-of-domain set
to evaluate the transferability of actively acquired
training sets. For more details see Appendix A.2.

Experiments We apply AL with two distinct
end-goals: in-domain (ID) generalization, where
the same source(s) are used for both the unla-
belled pool Dpool and the test set Dtest, and out-of-
domain (OOD) generalization, where we evaluate
on the test set of an external source of which no
training data was present in the unlabelled pool.

Constructing multi-source pools For multi-
source AL, the unlabelled pool comprises the union
of the SNLI, ANLI and WANLI training sets. During
model selection, we similarly assume the union
of SNLI, ANLI and WANLI validation sets. For
both training and validation data we down-sample
sources to the minority source size to obtain pools
with even shares per source. We sub-sample train-
ing data for each source to reduce experiment run-
times. This yields a pool of 60K unlabelled training
examples comprised of 20K shares of each source.

AL Parameters We assume an initial seed train-
ing set of size |Di=0

train| = 500 and an acquisition
size k = 500, such that k examples are acquired
per round of AL. We perform 7 rounds of AL: the
final actively acquired labelled dataset Di=7

train com-
prises 4K examples. We run each experiment 5
times with different random seeds to account for
stochasticity in parameter initializations.
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Figure 2: AL single-source in-domain learning curves.

5 Results

5.1 AL over single sources

We first provide single-source AL results in Fig-
ure 2. AL has mixed performance across sources;
it fails to consistently outperform random selection
on SNLI and WANLI, though most strategies tend
to outperform random on ANLI. However, none of
the strategies consistently outperform others across
sources. Moreover, the extent of improvement over
the acquisition phase varies between tasks; e.g., for
SNLI, strategy curves are close and the accuracy
improvement from 500 to 4K examples is small.
This is also reflected in test outcomes (Table 1),
with models performing similarly across sources.

Observing Table 2,2 we find that uncertainty-
based methods (BALD, MCME) tend to acquire the
most uncertain data points, as expected. Still, dif-
ferences between strategies are small for WANLI

and ANLI. Conversely, RANDOM and DAL tend
to acquire data with greater diversity in the input
space, but again variance across methods is low.
Here, observed homogeneity in the input space
may explain why test outcomes lie closely together:
if the acquired training sets per strategy are very
similar, we should expect to see similarly small
differences in test outcomes for models trained on
them. Relating these outcomes to the per-source
learning curves in Figure 2, however, we observe
no clear relation between metric results and perfor-
mance outcomes: acquiring uncertain or diverse
data does not seem to be predictive of AL success
throughout the acquisition process.

5.2 AL over multiple sources

Next, we provide the results of our multi-source
setting, as described in §3, and observe that again

2See Table 9 for standard deviations in the Appendix.

SNLI ANLI WANLI

RANDOM 87.09± 0.30 39.90± 1.02 70.24 ± 0.70

DAL 87.49± 0.20 39.84± 1.15 69.80± 1.00

BALD 87.37± 0.40 40.16 ± 0.69 69.54± 0.70

MCME 87.58 ± 0.80 40.15± 0.60 69.07± 1.20

Table 1: Single-source AL test results. At test-time, the
labeled set Dtrain comprises 4K examples.

Task Strategy I-Div. Unc. N E C
RANDOM 0.259 0.051 0.34 0.33 0.33

SNLI DAL 0.267 0.067 0.38 0.29 0.33
BALD 0.249 0.072 0.32 0.31 0.37
MCME 0.261 0.093 0.32 0.34 0.34
RANDOM 0.324 0.208 0.47 0.38 0.15

WANLI DAL 0.321 0.223 0.49 0.38 0.13
BALD 0.317 0.213 0.40 0.39 0.21
MCME 0.318 0.229 0.38 0.35 0.27
RANDOM 0.492 0.082 0.43 0.32 0.26

ANLI DAL 0.467 0.084 0.47 0.3 0.23
BALD 0.478 0.094 0.39 0.30 0.31
MCME 0.491 0.110 0.37 0.31 0.31
RANDOM 0.276 0.405 0.41 0.34 0.25

Multi DAL 0.276 0.463 0.47 0.34 0.19
BALD 0.220 0.445 0.34 0.32 0.35
MCME 0.323 0.556 0.40 0.30 0.30

Table 2: Profiling strategy acquisitions for single-source
and multi-source AL in terms of input diversity (I-Div.),
uncertainty (Unc.) and class distributions (N: neutral,
E: entailment, C: contradiction) across seeds. Each
strategy is profiled after all rounds of AL.

AL fails to consistently outperform random sam-
pling on the aggregate ID test set of SNLI, ANLI

and WANLI (Figure 3, bottom left). We also evalu-
ate on the OOD MNLI that was not present in the
unlabelled training data (Figure 3, top left) and still
find that AL fails to outperform RANDOM.

Analyzing the acquired data in terms of input di-
versity, uncertainty and label distributions (Table 2)
There do not appear to be clear relations between
metric outcomes and strategy performance other-
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SNLI ANLI WANLI MNLI

RANDOM 85.9± 0.9 | 85.3± 0.3 37.8± 1.2 | 37.9± 0.8 67.7± 1.6 | 67.2± 0.9 74.2± 2.3 | 74.4± 1.5

MCME 85.9± 0.7 | 84.3± 0.6 38.6 ± 1.0 | 38.4± 0.9 67.4± 0.4 | 66.3± 0.7 77.8 ± 1.3 | 75.6± 2.2

BALD 86.3 ± 1.0 | 85.8± 0.2 36.9± 1.3 | 36.1± 0.5 68.4 ± 1.1 | 65.9± 1.1 75.8± 0.9 | 74.3± 1.6

DAL 84.3± 1.2 | 85.3± 0.9 37.8± 1.2 | 37.3± 1.3 68.0± 0.6 | 68.1± 1.0 74.6± 1.2 | 76.6± 2.6

Table 3: Multi-source AL test outcomes with and without hard-to-learn instances removed. Cell scheme to be
read as ablated | original. Bold denotes best score for each test set overall and underline best score per setting. At
test-time, the labeled set Dtrain comprises 4K examples.
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Figure 3: Multi-source AL OOD (MNLI) and ID (SNLI,
ANLI, WANLI) learning curves. On the left, the unla-
belled pool has been left untreated; on the right, hard-
to-learn data was removed from the pool.

wise, i.e., acquiring diverse or uncertain batches
does not seem to lead to higher performance.

6 Dataset Cartography for AL Diagnosis

Our findings in both single and multi-source AL
settings, for both in-domain and out-of-domain
evaluations, showed poor performance of all al-
gorithms (§5). We therefore aim to investigate if
the answer for the observed AL failure may lie in
the presence of so-called collective outliers: ex-
amples that models find hard to learn as a result
of factors, such as high ambiguity, underspecifica-
tion, requirement of specialist skills or labelling
errors (Han and Kamber, 2000). Collective out-
liers can be identified through dataset cartogra-
phy (Swayamdipta et al., 2020), a post-hoc model-
based diagnostic tool which plots training examples
along a so-called learnability spectrum.

6.1 Creating Datamaps
Dataset Cartography assumes that the learnability
of examples relative to some model can be quan-
tified by leveraging training dynamics, where for
each example we measure at fixed intervals (1)
the mean model confidence for the gold-truth label
throughout training and (2) the variability of this
statistic. After gathering these statistics we can
plot datasets on a datamap: a 2D graph with mean
confidence on the Y-axis and confidence variability
on the X-axis. The resulting figure enables us to
identify how data is distributed along a learnability
spectrum (see an example in Figure 4).

We construct datamaps by training a model on
the entire pool, i.e. 60K examples in total. Every
1
2 epoch we perform inference on the full training
set to get per-example confidence statistics, where
the prediction logit corresponding to the gold-truth
label serves as a proxy for model confidence. Vari-
ability is computed as the standard deviation over
the set of confidence measurements. Following
Karamcheti et al. (2021), we classify examples
along four difficulties via a threshold on the mean
confidence value p (Figure 4). We provide more
details in the Appendix A.5.

6.2 Strategy Maps for Multi-source AL
We show the datamaps for random sampling and
the MCME acquisition functions on the multi-source
AL setting in the top row of Figure 4 (see Ap-
pendix A.5 for all datamaps). Examining the first
datamap, it appears that randomly sampling from
all sources in equal proportions tends to yield pre-
dominantly easy-to-learn instances, with dimin-
ishing amounts of ambiguous and hard-to-learn
instances. Conversely, we find that MCME acquires
considerably more examples with moderate to low
confidence, suggesting a tendency to acquire hard
and impossible examples. Note that these outcomes
mirror the findings by Karamcheti et al. (2021) for
VQA. Observing the per-difficulty acquisition over
time (Figure 4 bottom row), we observe that BALD
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Figure 4: Top row: Strategy maps for RANDOM and MCME for multi-source AL. Correctness denotes how often
the model predicts the correct label. Bottom row: Acquisition by difficulty over time for RANDOM, DAL, BALD and
MCME. We provide additional datamap plots in the appendix (Section A.5).

and MCME initially favour easy examples, but as
more examples are acquired, we observe a shift
towards medium, hard and impossible examples.
One explanation for these trends is that in early
phases of AL, models have only been trained on
small amounts of data. At this stage, model con-
fidence is still poorly calibrated and consequently
confidence values may be noisy proxies for uncer-
tainty. As the training pool grows, model confi-
dence will more accurately reflect example diffi-
culty enabling uncertainty-based strategies to iden-
tify difficult data points.

7 Stratified Analysis on Data Difficulty

We begin our analysis of collective outliers by ex-
ploring impossible data points in the three NLI
datasets we use; SNLI, ANLI and WANLI. We de-
note as impossible data points those that yield a
confidence value in the range 0 ≤ p ≤ 0.25 (§6.1).
We provide some examples in Table 4 and in the
Appendix A.7. We find that impossible examples
from SNLI and WANLI are more prone to suffer
from label errors and/or often lack a clear correct
answer, which may explain their poor learnability.
Conversely, we find impossible ANLI examples to
exhibit fewer of these issues - we hypothesize that

their difficulty follows rather from requirement of
advanced inference types, e.g. identifying relevant
information from long passages and numerical rea-
soning about dates of birth and events.

7.1 Examining the effect of training data
difficulty

Now that we are able to classify training examples
as easy, medium, hard and impossible (§6.2), we
proceed to explore the effect of data difficulty on
learning and per-source outcomes. In this set of ex-
periments, we aim to answer the research question:
What data would the most beneficial training set
consist of, in terms of data difficulty per example?
We conventionally (i.e., non-AL experiment) train
RoBERTa-large on training sets of various diffi-
culties. Each training set comprises 4K examples,
i.e. the same amount of examples that would be
acquired after all rounds of AL. We consider the
following combinations of data: EM, EMH, MH,
HI and EMHI, where E denotes easy, M medium,
H hard and I impossible examples.3

3For a given run, examples are sampled from each dif-
ficulty in equal proportion. For instance, when training on
the easy-medium (EM) split the training set comprises 2K
easy-to-learn instances and 2K medium-to-learn instances.
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Src. Premise Hypothesis GT P Conf.

SNLI A skier in electric green on the edge of a ramp
made of metal bars.

The skier was on the edge
of the ramp.

N E 0.976

SNLI Man sitting in a beached canoe by a lake. a man is sitting outside N E 0.980

WANLI The first principle of art is that art is not a way
of life, but a means of life.

Art is a way of life. E C 0.944

WANLI Some students believe that to achieve their goals
they must take the lead.

Some students believe that
to achieve their goals they
must follow the lead.

E C 0.630

ANLI Marwin Javier González (born March 14, 1989) is
a Venezuelan professional baseball infielder with
the Houston Astros of Major League Baseball (MLB).
Primarily a shortstop, González has appeared at
every position except for pitcher and catcher for
the Astros.

He is in his forties. C N 0.769

ANLI The Whitechapel murders were committed in or near
the impoverished Whitechapel district in the East
End of London between 3 April 1888 and 13 February
1891. At various points some or all of these eleven
unsolved murders of women have been ascribed to the
notorious unidentified serial killer known as Jack
the Ripper.

The women killed in the
Whitechapel murders were
impoverished.

N E 0.832

Table 4: Impossible NLI training examples. GT denotes the gold truth label; P denotes the model prediction and
Conf. denotes the prediction confidence. We provide more examples per source in the appendix (Section A.7).

Results We provide test results for all combina-
tions of training data difficulty in Table 5. We first
observe that models trained only on HI data consis-
tently perform the worst, resulting in a drop of up
to ~50%(!) points in accuracy compared to the EM
split for SNLI and ~40% for MNLI. Surprisingly,
we find that models trained on MH perform worse
than splits that include easy examples, except for
ANLI. Intuitively, this makes sense: of all datasets,
ANLI features the most difficult examples, and thus
it is plausible that hard-to-learn instances translate
to more learning gains than easy ones. The EMHI
split slightly underperforms relative to the EM and
EMH splits. Otherwise, we do not observe great
differences between the latter two splits. In the
second part of Table 5, we compute the average
performance for easy test sets (SNLI ∪ MNLI), hard
(ANLI ∪ WANLI) and all test sets combined. We can
now observe very clear patterns. The more difficult
data points we include in the training set, the more
the performance on an easy test set drops (AVG-
EASY↓). Similarly, when testing on a harder test
set, the more difficult the training data the better
(AVG-HARD↓), but without including data points
that are characterized as impossible. Overall, we
observe a strong correlation between training and
test data difficulty, and we conclude that we should
train models on data of the same difficulty as the
test set, while always removing data points that

are impossible to be learned from the model (i.e.
collective outliers).

7.2 Ablating Outliers for AL

Having uncovered the effects of data difficulty on
learning outcomes, we now examine how the pres-
ence or absence of hard and impossible instances
affects AL strategy success. Specifically, we repeat
our multi-source AL experiment (§5.2) whilst ex-
cluding hard and impossible (HI) examples from
Dpool. Employing datamap statistics, we compute
the product of an example’s mean confidence and
its variability for the entire unlabelled pool, af-
ter which we exclude the 25% of examples with
the smallest products, following Karamcheti et al.
(2021). Examples are filtered out for each source
dataset separately to preserve equivalence in source
sizes.

Results Examining the learning curves (Figure
3, right) and the final test results (Table 3, left), it
appears that excluding HI examples particularly
affects the performance of uncertainty-based acqui-
sition strategies (MCME and BALD): across sources,
both strategies do consistently better. Moreover,
for ANLI, MCME clearly outperforms random selec-
tion and even achieves a higher accuracy compared
to the non-ablated run. Similar results are obtained
for the OOD MNLI dataset: previously, none of the
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SNLI ANLI WANLI MNLI AVG-EASY AVG-HARD AVG-ALL

EM 85.95 ± 0.90 36.85± 1.05 68.34 ± 0.68 76.16 ± 2.32 81.06 52.60 66.83
EMH 84.98± 0.56 37.84± 0.79 68.16± 0.66 75.50± 2.00 80.24 53.00 66.62

MH 76.32± 1.04 39.11 ± 0.79 63.56± 1.38 69.82± 6.10 73.07 54.47 62.20

HI 33.57± 1.60 34.00± 0.69 45.89± 3.85 32.69± 1.93 33.13 39.95 36.54

EMHI 79.12± 0.80 38.41± 0.57 64.52± 1.38 73.52± 0.07 76.32 51.47 63.89

Table 5: Multi-source test outcomes for training data of varying difficulty. Row headers denote difficulty splits,
with E denoting easy, M medium, H hard and I impossible examples. Column headers denote the test set. We also
compute the average over SNLI+MNLI (easy), ANLI+WANLI (hard) and all 4 datasets, respectively.

strategies consistently outperformed random, but
after ablating HI instances both BALD and MCME

are either on par with random or outperform it.
Intuitively, under normal circumstances MCME and
BALD tend to acquire more difficult examples than
RANDOM or DAL, which typically leads to poorer
models (§7.1). Therefore, we should expect to see
improvements when these instances are ablated (i.e.,
removed).

7.3 Stratified Testing

Having established that some strategies acquire
more hard and examples than others (§6.2), training
on such examples can both hurt or help generaliza-
tion (§7.1), and removal of this data can help strate-
gies improve (§7.2), a question arises: Do strate-
gies that predominantly acquire data of a certain
difficulty also perform better on test data of that
difficulty? To investigate this we introduce strati-
fied testing: stratifying test outcomes in terms of
difficulty. Here, we follow the approach as outlined
in Section 6.1, but this time training a cartography
model on the test set to obtain learnability measure-
ments for each test example. This enables us to
observe how strategies perform across test exam-
ples of varying difficulties.

Results Table 6 shows the AL results for strati-
fied testing for both ablated (i.e., HI removed) and
the original setting. We observe in the pre-ablation
experiments (right side) that RANDOM and DAL

tend to do better on easy and medium data relative
to MCME and BALD, while conversely they under-
perform when tested on hard and impossible exam-
ples. The same pattern also occurs also in the OOD
setting (MNLI). In the ablation setting (left side),
we find that across all sources, HI examples tends
to yield a performance drop on hard and impossi-
ble examples for all strategies. Corroborating our
previous analysis (§7.1), our findings here suggest
that it is essential to have data of the same diffi-
culty in both unlabelled pool and in test set. Next,

Task D RANDOM MCME BALD DAL

E 95.4 | 95.0 95.0 | 93.3 95.5 | 94.8 93.7 | 94.6
SNLI M 69.0 | 67.7 70.2 | 68.0 70.5 | 69.5 67.8 | 68.2

H 46.3 | 44.6 48.5 | 46.0 47.1 | 49.2 44.7 | 45.8
I 17.7 | 17.2 20.3 | 22.1 20.7 | 22.2 18.4 | 17.5
E 81.4 | 81.7 77.0 | 79.2 82.1 | 73.8 81.8 | 79.9

ANLI M 62.2 | 62.1 61.7 | 57.8 61.1 | 57.1 63.1 | 59.8
H 39.3 | 40.2 42.9 | 41.6 39.2 | 39.7 39.0 | 38.5
I 14.4 | 14.2 15.7 | 17.0 12.6 | 14.5 14.2 | 15.0
E 94.3 | 92.9 92.7 | 91.2 95.2 | 90.9 94.1 | 93.1

WANLI M 72.7 | 69.6 71.4 | 69.9 72.7 | 67.9 72.3 | 73.8
H 41.9 | 40.4 43.1 | 44.2 42.4 | 40.7 40.6 | 41.0
I 12.7 | 14.4 14.0 | 16.6 11.9 | 14.7 13.9 | 14.6
E 93.3 | 93.6 94.3 | 92.8 94.4 | 92.4 93.4 | 93.8

MNLI M 72.6 | 72.9 78.6 | 74.7 75.9 | 72.8 74.7 | 78.1
H 41.8 | 44.5 51.9 | 49.3 45.7 | 46.7 46.1 | 48.3
I 12.8 | 15.7 20.9 | 19.5 13.1 | 16.9 12.6 | 18.5
E 91.0 | 90.8 89.8 | 89.1 91.8 | 88.0 90.7 | 90.4

All M 69.3 | 68.1 70.5 | 67.6 70.0 | 66.8 69.4 | 69.9
H 42.3 | 42.4 46.5 | 45.3 43.6 | 44.1 42.6 | 43.4
I 14.4 | 15.3 17.7 | 18.8 14.6 | 17.1 14.8 | 16.4

Table 6: Multi-source strategy comparison (accuracy)
for difficulty-stratified test outcomes between original
training set and training set with hard-to-learn exam-
ples excluded. Test examples (D) belong to Easy (E),
Medium (M), Hard (H) and Impossible (I) sets. Cell
scheme to be read as ablated | original.

we find that under ablation, RANDOM does moder-
ately better on easy and medium, while DAL shows
marginally lower test outcomes on medium and
hard examples. For the uncertainty-based strate-
gies, ablation tends to yield improvements across
all difficulties, with MCME outperforming BALD

on hard examples. We hypothesize that with HI
instances absent, uncertainty-based methods se-
lect the “next-best” available data: medium exam-
ples which offer greater learning gains than easy
ones. Overall, we find that post-ablation, BALD and
MCME outperform both RANDOM and DAL across
most difficulty splits.

8 Conclusion and Future Work

Our work highlights the challenge of successfully
applying AL when the (training) pool comprises
several sources which span various domains in the
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task of NLI. Similar to Karamcheti et al. (2021),
we show that uncertainty-based strategies, such
as MCME and BALD, perform poorly (§5) due to
acquisition of collective outliers which impede suc-
cessful learning (§6.2). However, these strategies
recover when outliers are removed (§7.2). Practi-
cally, this suggests that uncertainty-based methods
may fare well under more carefully curated datasets
and labelling schemes, while alternative strategies
(e.g. diversity-based) may be preferable in cases
with poorer quality guarantees (e.g. data collec-
tion with limited budget for annotation verification).
Next, we find that performance outcomes between
strategies differ for test data of various difficulties
(§7.3). On the one hand, this complicates strategy
selection: it is unclear whether a strategy that per-
forms well on hard data but poorer on easy data
is preferable to a strategy with opposite proper-
ties. On the other hand, knowing which strategies
work well for test data of a certain difficulty may
be advantageous when the difficulty of the test set
is known, in out-of-domain settings (Lalor et al.,
2018).

Lastly, in contrast with Karamcheti et al. (2021)
and Zhang and Plank (2021), we have shown that
cases exist in which training examples in the hard-
to-learn region do not hamper learning but are
in fact pivotal for achieving good generalization
(§7.1). Consequently, there may be value in refin-
ing existing cartography-based methods such that
they can discriminate between useful and harm-
ful hard-to-learn data. More broadly, our findings
underscore the potential of understanding these
phenomena for other NLP tasks and datasets.
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Limitations

In our work, we have shown that standard AL al-
gorithms struggle to outperform random selection
in some datasets for the task of NLI, which is in
fact rather surprising as a large body of work has
shown positive AL results in a wide spectrum of
NLP tasks. Still, we are not the first to show neg-

ative AL results in NLP, as Lowell et al. (2019);
Karamcheti et al. (2021); Kees et al. (2021) have
shown similar problematic behavior in the cases of
text classification, visual question answering and
argument mining, respectively.

More broadly, while AL outcomes have shown
to not always reliably generalize across models and
tasks (Lowell et al., 2019), we recognise that in our
work several experimental conditions remain under-
explored which warrant further attention. First, this
work mostly examined point-wise acquisition func-
tions; it remains unclear whether our outcomes
hold for batch-wise functions. Similarly, it is un-
known how the chosen model-in-the-loop affects
strategy outcomes. We use RoBERTa-Large, a com-
paratively powerful large language model. Some
authors hypothesize that as such models are already
able to achieve great performance even with ran-
domly labeled data, this could significantly raise
the bar for AL algorithms to yield substantial per-
formance improvements on top of a random se-
lection baseline (Ein-Dor et al., 2020). Combined
with the relative homogeneity of acquired batches
between sources in terms of input diversity, this
would explain why strategies tend to do similar
across the board at test-time both in the presence
and absence of hard-to-learn examples. Another
factor tying into this is that small differences be-
tween results may be connected to the so-called
inverse cold-start problem. This problem states
that there may be cases where the initial seed set
is too large, leaving comparatively little room for
substantial improvements in sample efficiency. We
leave further exploration of these variables to future
work.

Another area within AL research which warrants
further examination concerns the evaluation on out-
of-domain datasets of which no data is present in
the pool of unlabelled training data. Particularly,
the majority of work typically assumes that acqui-
sition is target-agnostic, i.e., target validation and
test sets are assumed to be decoupled entirely from
the acquisition process. This can be problematic
as for different target sets, different subsets of the
unlabelled training data may yield the best possi-
ble performance. Consequently, performance out-
comes on some out-of-domain test data may not
necessarily pose as reliable signals for determining
the best strategy, for if a different target set had
been chosen, a previously ’poor’ performing strat-
egy may suddenly achieve the best result. Despite
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this being a clear shortcoming of the existing AL
toolkit, it remains an understudied area within AL
research.

While this problem may be partially alleviated
by evaluating strategies on a large and diverse array
of target sets, the issue remains that current acqui-
sition functions do not acquire data with respect to
the target set. This problem becomes even more ap-
parent in a multi-source setting, where depending
on the target set at hand, acquiring data from the ap-
propriate source(s) may be pivotal to achieve good
performance. In such cases, we may want to ex-
plicitly regularise the acquisition process towards
target-relevant training data. A small body of work
has examined ways in which such target-aware ac-
quisition could be formalized - most noticeably in
the work of Kirsch et al. (2021), who introduce sev-
eral methods to perform test-distribution aware ac-
tive learning. While examination of such methods
lies outside the scope of this work, we recognize
its potential for future work on multi-source AL.
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A Appendix

A.1 Analysis metrics
Following standard practice in active learning lit-
erature (Zhdanov, 2019; Yuan et al., 2020; Ein-
Dor et al., 2020; Margatina et al., 2021) we profile
datasets acquired by strategies via acquisition met-
rics. Concretely, we consider the input diversity
and output uncertainty metrics.

Input Diversity Input diversity quantifies the di-
versity of acquired sets in the input space, meaning
that it operates directly on the raw input passages.
We follow (Yuan et al., 2020) and measure input
diversity as the Jaccard similarity J between the
set of tokens from the acquired training set Dtrain,
V , and the set of tokens from the remainder of the
unlabelled pool Dpool, V′, which yields:

J (V,V′) = | V ∩ V′ |
| V ∪ V′ |

This function assigns high diversity to strategies
acquiring samples with high token overlap with the
unlabelled pool, and vice versa.

Output Uncertainty To approximate the output
uncertainty of an acquired training set Dtrain for
a given strategy, we train RoBERTa-large to con-
vergence on the entire 60K training set. We then
use the trained model to perform inference over
Dtrain. Following (Yuan et al., 2020), the output
uncertainty of each strategy is computed as the
mean predictive entropy over all examples x in its
acquired set Dtrain:

− 1

|Dtrain|
∑

x∈Dtrain

C∑

c=1

p(y = c | x) log p(y = c | x)

A.2 Datasets
As mentioned in the paper (§4), we perform ex-
periments on Natural Language Inference (NLI), a
popular text classification task to gauge a model’s
natural language understanding (Bowman et al.,
2015; Williams et al., 2017). We recognize that
NLI is somewhat artificial by nature - making it of
lesser practical relevance for real-life active learn-
ing scenarios. However, recent work has sought to
address shortcomings of existing NLI benchmarks
such as SNLI (Bowman et al., 2015) and MNLI

(Williams et al., 2017). This has lead to the emer-
gence of novel approaches to dataset-creation such
as Dynamic Adversarial Data Collection (ANLI,

(Nie et al., 2019)) and worker-and-AI-collaboration
(WANLI, (Liu et al., 2022)). As we seek to investi-
gate how characteristics of data gathered through
such alternative protocols may affect acquisition
performance in a multi-source active learning set-
ting, using NLI for our experiments is a natural
choice. We construct the unlabelled pool from
three distinct datasets: SNLI, ANLI and WANLI.
Next, we consider the Multi Natural Language In-
ference (MNLI) corpus (Williams et al., 2017) as an
out-of-domain challenge set to evaluate the trans-
ferability of actively acquired training sets. We
provide datasets statistics in Table 7.

A.3 Training details & Reproducibility
We use RoBERTa-large (Liu et al., 2020) from
Huggingface (Wolf et al., 2019) as our model-in-
the-loop and optimize with AdamW (Loshchilov
and Hutter, 2018), with a learning rate of 2e − 6
and a batch size of 32. We use Dropout with
p = 0.3. Hyperparameters were chosen follow-
ing a manual tuning process, evaluating models on
classification accuracy. For the BALD and MCME
strategies we use 4 Monte Carlo Dropout samples.
Our framework is implemented in PyTorch Light-
ning; transformers are implemented using the. All
experiments were ran on a single NVIDIA Titan
RTX GPU. Trialling all acquisition functions for
7 rounds of active learning (assuming experiments
are ran in series), for a single seed, requires ap-
proximately 21 hours of compute. See Table 8 for
per-strategy runtimes.

A.4 Detailed Results
Acquisition Factor For the multi-source ex-
periments we also plot the acquisition factors: a
source-strategy-specific statistic which indicates
how much data of a given source is acquired
by some strategy, normalized by the share of
that source in the unlabelled pool at the time of
that acquisition round. This statistic is useful to
interpret how much a strategy tends to acquisition
of one source relative to others.

We normalize to correct for the effect that
acquiring e.g. mostly SNLI data in an early round
causes it to take up a relatively smaller share in
the unlabelled pool in the next round, and by the
simple consequence of there being fewer SNLI
examples, they may have a lower likelihood to
be acquired in those future rounds compared to
examples from other sources.. As this could distort
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Label Distributions
Source Train Val Test

N E C Size N E C Size N E C Size
SNLI 183.4K 182.7K 183.1K 549.5K 3.2K 3.3K 3.3K 9.8K 3.2K 3.4K 3.2K 9.8K
ANLI 61.7K 46.7K 37.4K 146K 0.7K 0.7K 0.7K 2.2K 0.7K 0.7K 0.7K 2.2K

WANLI 48.8K 39.1K 14.4K 103K 1.2K 0.9K 0.4K 2.5K 1.2K 0.9K 0.4K 2.5K
MNLI-m* n/a n/a n/a n/a n/a n/a n/a n/a 1.6K 1.7K 1.6K 4.9K

Table 7: Statistics for the used datasets. N = Neutral, E = Entailment, C = Contradiction. For MNLI, only a held-out
test set was used, and thus statistics for the training and dev set are omitted. Since WANLI only has a train and test
set, we split its test set in two equally sized subsets and use one half as our validation set.

RANDOM DAL BALD MCME
Runtime 190± 19 269± 15 350± 62 450± 90

Table 8: Total runtime per strategy in minutes. Scheme follows mean ± standard error format.

Figure 5: Aggregate validation accuracy for models
trained on data of various difficulties. Training data
difficulty appears to affect convergence speed: models
trained on easier training sets converge earlier, whilst
inclusion of hard and impossible models requires more
steps to converge. In our experiments, models trained
only on hard/impossible examples never surpass at-
chance performance and suffer from model failure more
often.

our impressions of the extent to which strategies
acquire examples from different sources, we
ideally want to correct for this.

We thus compute the acquisition factor for
a given round as (1) the amount of source examples
that were actually acquired by the strategy for
that round, divided by (2) the amount of source
examples that would be acquired under random
sampling from the unlabelled pool at that point.
For instance, if BALD has an acquisition factor
of > 1 for SNLI, it means that it acquired more
SNLI examples from the unlabeled pool than it
would have under random sampling. Conversely,
the Random sampling baseline will always have
consistent acquisition factors of 1, since the
quantities in the numerator and denominator will

be approximately the same: random selection
always acquire as much from a source as it would
under random selection. See Figure 6 for a
graphical explanation.4

A.5 Dataset Cartography

As mentioned in Section 6.1, we train a RoBERTa-
large model on a training set comprised of the en-
tire unlabelled pool of training examples, i.e. 60K
examples in total.5 Every 1

2 epoch we perform in-
ference on the full training set to get per-example
confidence statistics, where the prediction logit cor-
responding to the gold-truth label serves as a proxy
for model confidence. Variability is computed as
the standard deviation over the set of confidence
measurements. We stop training after 3 epochs or
after no improvement in validation accuracy on the
aggregate of validation sets was observed. Follow-
ing Karamcheti et al. (2021), we classify examples
along four difficulties via a threshold on the mean
confidence value p.

Note on model discrepancy When studying the
strategy maps, it is instructive to note that there
exists a discrepancy between models which may
distort the truthfulness of learnability measure-
ments. That is, the cartography model that was
used to obtain confidence/variability measurements

4Please note that these figures solely serve to support the
textual explanation and should not be regarded as results oth-
erwise.

5The AL experiments are simulations, where we have the
ground truth labels for the data of the pool, but we consider
them unlabelled. So in this case, we use the original labelled
dataset to train the cartography model.
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Task Strategy I-Div. Unc. N E C
RANDOM 0.259± 0.002 0.051± 0.002 0.34 0.33 0.33

SNLI DAL 0.267 ± 0.002 0.067± 0.002 0.38 0.29 0.33
BALD 0.249± 0.004 0.072± 0.005 0.32 0.31 0.37
MCME 0.261± 0.004 0.093 ± 0.005 0.32 0.34 0.34
RANDOM 0.324 ± 0.005 0.208± 0.012 0.47 0.38 0.15

WANLI DAL 0.321± 0.003 0.223± 0.008 0.49 0.38 0.13
BALD 0.317± 0.001 0.213± 0.005 0.40 0.39 0.21
MCME 0.318± 0.002 0.229 ± 0.009 0.38 0.35 0.27
RANDOM 0.492 ± 0.003 0.082± 0.004 0.43 0.32 0.26

ANLI DAL 0.467± 0.008 0.084± 0.004 0.47 0.3 0.23
BALD 0.478± 0.007 0.094± 0.003 0.39 0.30 0.31
MCME 0.491± 0.007 0.110 ± 0.004 0.37 0.31 0.31
RANDOM 0.276± 0.003 0.405± 0.012 0.41 0.34 0.25

Multi DAL 0.276± 0.004 0.463± 0.018 0.47 0.34 0.19
BALD 0.220± 0.012 0.445± 0.025 0.34 0.32 0.35
MCME 0.323 ± 0.004 0.556 ± 0.011 0.4 0.3 0.3

Table 9: Profiling strategy acquisitions for single-source and multi-source active learning in terms of mean input
diversity (I-Div.), mean uncertainty (Unc.) and class distributions (N: neutral, E: entailment, C: contradiction)
across seeds, following a mean ± std cell scheme. Each strategy is profiled after all rounds of active learning:
|Dtrain| = 4K.

(a) SNLI Acquisition factors
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(b) Acquisitions by source
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(c) Acquisitions by source

Figure 6: Acquisition factor explained. By design, random selection acquires a random sample of the unlabelled
pool. Since the pool is initialized with even amounts of each source, random consistently acquires a uniform sample
over sources, as can be seen in (b). Consequently, the SNLI acquisition factor for Random steadily hovers around
1 in (a). Conversely, BALD initially acquires mostly SNLI examples, as reflected by its high initial acquisition
factor. This corresponds to its absolute acquisition statistics in (c), where we note that initially BALD acquires
predominantly SNLI.

for datamap construction was trained on the entire
pool of 60K examples, whereas the model used
during AL is exposed to at most 4K examples af-
ter completing all rounds of acquisition. Conse-
quently, examples which were found to be easy
by the cartography model are likely to be substan-
tially more difficult for the AL model. As datamaps
are inherently model-based, the generated strategy
maps should be interpreted as skewed estimates of

the true learnability spectra. While we recognize
the potential value of preserving scale equivalence
when using dataset cartography for analysis, we
choose to follow Karamcheti et al. (2021) and in-
tend to employ datamaps as a post-hoc diagnostic
tool. In other words, we are interested in examin-
ing example learnability in an absolute sense (i.e.
with respect to the entire pool) rather than a rela-
tive sense (with respect to the acquired data). Here,
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(a) SNLI Val. Acc. (b) SNLI Acquisition (c) SNLI Test Acc.

(d) ANLI Val. Acc. (e) ANLI Acquisition (f) ANLI Test Acc.

(g) WANLI Val. Acc. (h) WANLI Acquisition (i) WANLI Test Acc.

Figure 7: In-domain multi-source Active Learning. The left-most graph represents the learning curve per strategy,
plotting the validation performance as more labelled data is acquired. The middle graph plots the acquisition factor
per source: how much a strategy acquires of a source, normalized by the share that source takes up in the wider data
pool. Shaded regions indicate standard errors. Active learning fails to consistently beat random.

we also note that a model trained on a larger set
of examples will likely more accurately reflect the
true difficulty of examples. This is important if we
want to draw new insights on the learnability of
NLI datasets in a wider sense.

A.6 Impact of data difficulty on training time

We find that models quickly learn simple examples
while requiring more iterations for complex ones
(See Figure 5). A similar outcome was observed
by Lalor et al. (2018) who employ item response
theory for data difficulty estimation - interestingly
however, their difficulty parameters are estimated
via a human population, while our difficulty es-

2202



0.0 0.1 0.2 0.3 0.4
Variability

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Dataset Map for SNLI

Easy Med Hard Imp.

Learnability

0%
25%
50%
75%
100%

[p > 0.75]
[p > 0.5]
[p > 0.25]
[p > 0.0]

0.00 0.25 0.50 0.75 1.00

Correctness

0%
25%
50%
75%
100%

0.00 0.25 0.50 0.75 1.00

Confidences

0%
25%
50%
75%
100%

0.0 0.1 0.2 0.3 0.4

Variability

0%
25%
50%
75%
100%

0.0 0.1 0.2 0.3 0.4
Variability

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Dataset Map for WANLI

Easy Med Hard Imp.

Learnability

0%
25%
50%
75%
100%

[p > 0.75]
[p > 0.5]
[p > 0.25]
[p > 0.0]

0.00 0.25 0.50 0.75 1.00

Correctness

0%
25%
50%
75%
100%

0.00 0.25 0.50 0.75 1.00

Confidences

0%
25%
50%
75%
100%

0.0 0.2 0.4

Variability

0%
25%
50%
75%
100%

Figure 8: Dataset Maps for SNLI and WANLI training data. The majority of SNLI examples lie in the easy-to-learn
region. For WANLI, datapoints are more evenly distributed across the learnability spectrum and exhibit greater
variability.
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Figure 9: Strategy maps for the Random and MC-Max-entropy strategies for multi-source active learning. The
latter acquires considerably more hard-to-learn instances.
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Figure 10: Strategy maps for multi-source active learning, plotted per source.
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Figure 11: Profiling acquisitions for strategies over time. Y-axis denotes amount of acquired examples per round.
The right graph plots the acquisition of hard and impossible examples. Dark bars indicate standard deviations across
seeds. MCM-Entropy and BALD acquire notably more hard and impossible instances relative to random sampling.
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Task Diff. Random MCME BALD DAL
E 95.4± 0.9 | 95.0± 0.4 95.0± 0.5 | 93.3± 0.7 95.5± 1.0 | 94.8± 0.3 93.7± 1.2 | 94.6± 0.8

SNLI M 69.0± 2.6 | 67.7± 1.2 70.2± 1.6 | 68.0± 1.2 70.5± 2.6 | 69.5± 1.2 67.8± 2.4 | 68.2± 2.5
H 46.3± 3.5 | 44.6± 1.9 48.5± 1.6 | 46.0± 2.2 47.1± 3.2 | 49.2± 2.9 44.7± 2.2 | 45.8± 3.9
I 17.7± 1.7 | 17.2± 1.7 20.3± 2.4 | 22.1± 0.9 20.7± 1.7 | 22.2± 0.4 18.4± 2.0 | 17.5± 2.2

E 81.4± 4.9 | 81.7± 4.3 77.0± 4.1 | 79.2± 1.4 82.1± 3.1 | 73.8± 2.1 81.8± 3.5 | 79.9± 3.4
ANLI M 62.2± 2.7 | 62.1± 0.4 61.7± 3.5 | 57.8± 0.9 61.1± 1.6 | 57.1± 4.0 63.1± 2.3 | 59.8± 3.1

H 39.3± 3.3 | 40.2± 0.7 42.9± 3.2 | 41.6± 2.4 39.2± 2.6 | 39.7± 2.6 39.0± 2.0 | 38.5± 1.5
I 14.4± 2.4 | 14.2± 2.2 15.7± 2.0 | 17.0± 0.8 12.6± 1.2 | 14.5± 1.8 14.2± 1.7 | 15.0± 1.9

E 94.3± 2.0 | 92.9± 1.4 92.7± 0.8 | 91.2± 0.7 95.2± 0.9 | 90.9± 1.1 94.1± 0.4 | 93.1± 1.3
WANLI M 72.7± 3.2 | 69.6± 3.5 71.4± 1.2 | 69.9± 2.2 72.7± 1.7 | 67.9± 3.0 72.3± 3.1 | 73.8± 2.1

H 41.9± 2.7 | 40.4± 1.6 43.1± 2.6 | 44.2± 1.2 42.4± 4.6 | 40.7± 2.6 40.6± 1.9 | 41.0± 3.4
I 12.7± 1.5 | 14.4± 1.4 14.0± 2.0 | 16.6± 4.7 11.9± 2.6 | 14.7± 4.4 13.9± 2.8 | 14.6± 3.6

E 93.3± 2.0 | 93.6± 0.6 94.3± 0.9 | 92.8± 1.2 94.4± 0.8 | 92.4± 0.8 93.4± 1.3 | 93.8± 1.5
MNLI M 72.6± 3.8 | 72.9± 1.5 78.6± 2.0 | 74.7± 4.6 75.9± 1.6 | 72.8± 4.4 74.7± 3.4 | 78.1± 4.6

H 41.8± 3.8 | 44.5± 1.0 51.9± 4.9 | 49.3± 3.3 45.7± 4.1 | 46.7± 3.3 46.1± 3.9 | 48.3± 4.7
I 12.8± 3.8 | 15.7± 1.8 20.9± 2.9 | 19.5± 1.4 13.1± 2.0 | 16.9± 1.9 12.6± 2.2 | 18.5± 6.3

E 91.0± 6.7 | 90.8± 5.8 89.8± 7.7 | 89.1± 5.9 91.8± 5.9 | 88.0± 8.4 90.7± 5.5 | 90.4± 6.4
All M 69.3± 5.3 | 68.1± 4.4 70.5± 6.4 | 67.6± 6.7 70.0± 5.8 | 66.8± 6.8 69.4± 5.2 | 69.9± 7.6

H 42.3± 4.2 | 42.4± 2.5 46.5± 5.1 | 45.3± 3.7 43.6± 4.8 | 44.1± 4.9 42.6± 3.9 | 43.4± 5.3
I 14.4± 3.3 | 15.3± 2.2 17.7± 3.8 | 18.8± 3.4 14.6± 4.1 | 17.1± 4.1 14.8± 3.2 | 16.4± 4.2

Table 10: Multi-source in-domain strategy comparison for difficulty-stratified test outcomes between original
training set and training set with hard-to-learn examples excluded. Values denote test accuracies and standard
deviations. We consider performance on test examples belonging to the Easy (E), Medium (M), Hard (H) and
Impossible (I) sets.
Cell scheme to be read as ablated | original.

timations follow directly from training dynamics.
This echoes a similar finding by (Zhang and Plank,
2021), who show that cartography-based model
confidence scores strongly correlate with human
agreement on SNLI validation data. Similarly, it
may be of interest to see whether examples which
many different models identify as ambiguous cor-
relate with human judgements of ambiguity, e.g.
with respect to human label distributions (Nie et al.,
2020; Chen et al., 2020), or annotator disagreement
scores.

A.7 Hard-to-learn Data
In the tables below, we present various cases of
hard-to-learn examples (i.e., collective outliers) for
the NLI datasets we examine.
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Table 11: Impossible (0 ≤ p ≤ 0.25) training examples from SNLI. GT denotes the gold truth; P. denotes the model
prediction and Conf. the confidence associated with the predicted label.

Ex. Premise Hypothesis GT P. Conf.

(1) A skier in electric green on the edge of
a ramp made of metal bars.

The skier was on the edge of the ramp. N E 0.976

(2) A skier in electric green on the edge of
a ramp made of metal bars.

The brightly dressed skier slid down the
race course.

E C 0.770

(3) A man wearing a red sweater is sitting
on a car bumper watching another person
work.

people make speed fast at speed breaker. C N 0.799

(4) Middle-aged female wearing a white
sunhat and white jacket, slips her hand
inside a man’s pants pocket.

The man and woman are playing together. C N 0.869

(5) A young girl jumps off of a couch and
high into the air

the young lady knows how to fly in sky C N 0.765

(6) A young boy jumps into the oncoming wave. The boy is at a lake. C N 0.951

(7) A woman taking her wallet out of her
purse at a vendor stand

A woman buying something from a vendor. E N 0.892

(8) A group of people standing on a rock
path.

A group of people are hiking. E N 0.972

(9) Woman sitting in tree with dove. The lady is touching a dove. N E 0.920

(10) A lady standing on the corner using her
phone.

The lady has a smartphone. N E 0.753

Table 12: Impossible (0 ≤ p ≤ 0.25) training examples from WANLI. GT denotes the gold truth; P. denotes the
model prediction and Conf. the confidence associated with the predicted label.

Ex. Premise Hypothesis GT P. Conf.

(1) The first principle of art is that art is not
a way of life, but a means of life.

Art is a way of life. E C 0.944

(2) "Must be right good stock," Fenner observed. "Must be pretty good stock,"
Fenner said.

C E 0.646

(3) He believes that the best thing to do is to buy
the firm at a reasonable price.

If the firm is cheap, it is best
to buy it.

N E 0.964

(4) A piece of paper with a stamp on it is worth
less than a piece of paper without a stamp.

A piece of paper without a stamp
is worth more than a piece of
paper with a stamp.

E C 0.818

(5) It was the only time he had seen her laugh. He had never seen her laugh
before.

C N 0.502

(6) The musician shook his head. The musician moved his head up and
down.

C E 0.510

(7) Some students believe that to achieve their
goals they must take the lead.

Some students believe that to
achieve their goals they must
follow the lead.

E C 0.630

(8) The very nature of the "American Dream" is that
it is not always attainable

The American Dream is attainable. N C 0.817

(9) This might be an issue for a company that is
in the process of introducing a new product.

Every company is always in the
process of introducing a new
product.

E N 0.894

(10) Would Higher Interest Rates Stimulate Saving? Higher interest rates would not
stimulate saving.

E N 0.929
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Table 13: Impossible (0 ≤ p ≤ 0.25) training examples from ANLI. GT denotes the gold truth; P. denotes the
model prediction and Conf. the confidence associated with the predicted label. Instances are comparatively less
characterized by noisy labels or ambiguity; rather, their difficulty arises through requirement of more advanced
inference types, e.g. identifying relevant information from long passages, multi-hop reasoning to connect subjects to
events and numerical reasoning about dates of birth and events.

Ex. Premise Hypothesis GT P. Conf.

(1) Glaiza Herradura-Agullo (born February 24, 1978) is a Filipino
former child actress. She was the first-ever grand winner
of the Little Miss Philippines segment of "Eat Bulaga!" in
1984. She starred in RPN-9’s television series "Heredero" with
Manilyn Reynes and Richard Arellano. She won the 1988 FAMAS
Best Child Actress award for her role in "Batas Sa Aking Kamay"
starring Fernando Poe, Jr. .

Herradura-Agullo
was born in the
80’s

C E 0.941

(2) The Whitechapel murders were committed in or near the
impoverished Whitechapel district in the East End of London
between 3 April 1888 and 13 February 1891. At various points
some or all of these eleven unsolved murders of women have been
ascribed to the notorious unidentified serial killer known as
Jack the Ripper.

The women
killed in the
Whitechapel
murders were
impoverished.

N E 0.832

(3) Departure of a Grand Old Man is a 1912 Russian silent film about
the last days of author Leo Tolstoy. The film was directed by
Yakov Protazanov and Elizaveta Thiman, and was actress Olga
Petrova’s first film.

Olga performed in
many films before
This one

C N 0.922

(4) Gay Sex in the 70s is a 2005 American documentary film about
gay sexual culture in New York City in the 1970s. The film
was directed by Joseph Lovett and encompasses the twelve years
of sexual freedom bookended by the Stonewall riots of 1969
and the recognition of AIDS in 1981, and features interviews
with Larry Kramer, Tom Bianchi, Barton Lidice Beneš, Rodger
McFarlane, and many others.

Gay Sex in the 70s
was directed by a
gay man.

N E 0.907

(5) Héctor Canziani was an Argentine poet, screenwriter and film
director who worked in Argentine cinema in the 1940s and
1950s. Although his work was most abundant in screenwriting
and poetry after his brief film career, he is best known for
his directorship and production of the 1950 tango dancing film
Al Compás de tu Mentira based on a play by Oscar Wilde.

He did direct a
movie after 1950

N E 0.944
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