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Abstract

Recently, the identification of free connective
phrases as signals for discourse relations has
received new attention with the introduction
of statistical models for their automatic extrac-
tion. The limited amount of annotations makes
it still challenging to develop well-performing
models. In our work, we want to overcome
this limitation with semi-supervised learning
from unlabeled news texts. We implement a
self-supervised sequence labeling approach and
filter its predictions by a second model trained
to disambiguate signal candidates. With our
novel model design, we report state-of-the-art
results and in addition, achieve an average im-
provement of about 5% for both exactly and
partially matched alternatively–lexicalized dis-
course signals due to weak supervision.

1 Introduction

Understanding the underlying structure of a text is
a fundamental problem in computational linguis-
tics. In discourse analysis, shallow discourse pars-
ing in particular, we aim to identify individual dis-
course relations within a text. Thus we can gain
information that helps in downstream tasks such
as automatic summarization, machine translation,
and document classification. The study of connect-
ing phrases not only helps in understanding the
way people connect their thoughts but also in the
identification of discourse relations anchored by
them. For our work, we use the third version of
the Penn Discourse Treebank (PDTB) (Prasad
et al., 2018) that distinguishes between explicit
relations (signaled by a closed set of discourse con-
nectives, e.g because, and, if-then, and before) and
alternative lexicalizations (signaled by connect-
ing phrases other than discourse connectives, e.g.
this means, for that reason, and it all adds up to). In
total, the PDTB contains 25878 signaled relations,
most of which belong to the group of explicit rela-
tions (94%). Only 1638 connecting phrases build

the group of free connective phrases, in the cor-
pus referred to as alternative lexicalizations. While
explicit relations are more commonly used to ver-
balize expansions and comparisons between text
spans, alternative lexicalizations often point to lex-
ically grounded causal relations. Also, they po-
tentially contain information, e.g. the phrase the
most crucial reason for that gives also evidence
about the reason’s importance, which is useful for
understanding the full discourse.

In our work, we aim to overcome the problem of
very limited training data available for free connec-
tive phrases and examine a weakly-supervised sce-
nario for continuously improving a model through
its own predictions. We regularize these predic-
tions by re-ranking the extracted signals through
a separate model trained to discriminate possible
signal candidates into signals with or without dis-
course usage. Summarized, our contributions are:
We (i) present a novel architecture and provide
state-of-the-art results for recognizing alternative
lexicalizations in the recent version of the PDTB.
Further, we (ii) improve its performance of recog-
nizing phrases by integrating unlabeled data into
the training process using weak supervision.

2 Related Work

Self-supervised learning (Yarowsky, 1995), the
most simple semi-supervised learning algorithm,
extends its training data by adding new samples
with confident predictions on different data. Self-
training has been successfully applied on con-
stituent parsing (McClosky et al., 2006) by incorpo-
rating a re-ranking strategy (Charniak and Johnson,
2005; Collins and Koo, 2005) to improve parsing
results and reduce the bias of the trained model.
Also, Suzuki and Isozaki (2008) improved perfor-
mance on part-of-speech tagging via sequence la-
beling. In recent work, Nishida and Matsumoto
(2022) study the empirical effectiveness of boot-
strapping annotations from out-of-domain data and
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show its positive impact for BERT-based discourse
dependency parsers. For candidates selection, they
study criteria inspired by Steedman et al. (2003).

Chou et al. (2014) approach semi-supervised
learning for named entity recognition, a similar
training problem (sequence labeling) as ours. They
propose an additional model for estimating con-
fidence (self-testing) and removing samples with
low scores. Braud et al. (2016) first apply semi-
supervised learning to RST discourse parsing using
multiple views on the data by incorporating various
auxiliary tasks, such as PDTB discourse parsing.
Knaebel and Stede (2020b) improved their argu-
ment extraction by jointly training three separate
models so-called tri-training on additional news
documents. Recently, Kobayashi et al. (2021) suc-
cessfully bootstrapped RST sub-trees using a com-
bination of simpler feature-based teachers to train
a more complex neural student.

The group of alternative lexicalized relations has
been rarely studied. Prasad et al. (2010) did initial
work on the identification and analysis of alterna-
tive lexicalized relations in an older PDTB version.
Synková et al. (2017); Rysová and Rysová (2015)
distinguished two classes of alternative lexicaliza-
tions and developed a dictionary approach for more
regular alternative lexicalized phrases. Most re-
cently, Knaebel and Stede (2022) implemented the
first automatic neural-based model for recognizing
alternative lexicalizations on a sentence level us-
ing a binary sequence labeling approach. In this
work, we build on their approach and adapt this
model to the paragraph level, similar to the explicit
connective model of Kurfalı (2020).

3 Method

3.1 Recognizing alternative lexicalizations

The recognition of alternative-lexicalized discourse
signals (AltLex) in the PDTB corpus is challenging
due to the higher complexity of the phrases when
compared to explicit signals for example, and the
limited number of training samples. While Knaebel
and Stede (2022) predict binary labels (is-part-of
the signal) on the sentence level, we follow Kurfalı
(2020) and integrate more context into the model
by training the whole model on the paragraph level.
Accessing more context seems unavoidable for im-
proving performance as discourse signals naturally
link to phrases outside their sentence. We make use
of pre-trained large language models and fine-tune
the base model combined with an additional token

classification layer on top of it.
Shifting from sentences to paragraphs results in

potentially having an arbitrary number of signals.
For this purpose, we use a three-class encoding sim-
ilar to Kurfalı (2020): single signals, e.g. following,
resulting, not, and soon, multi-word signals, e.g.
for this reason and in addition to, and no signal
otherwise. We limited our experiments to continu-
ous signals, e.g. we removed phrases like the more
[. . . ], the more, which removes a minor number
of samples but allows for decoding the labeled se-
quence without redundancy. We did not choose a
more complex signal encoding, such as BIOS and
BIOES, due to the lack of available training data
and the resulting class imbalance.1

3.2 Learning from unlabeled data

In this work, we study self-training, which is a
very basic but effective semi-supervised learning
technique that uses a model’s self-estimation to in-
tegrate confident predictions from unlabeled data.
However, this technique has a high bias due to rein-
forcing its own false predictions. We overcome this
problem by, first, improving the base performance
of our signal extractor by building an ensemble of
three separately trained models. Second, we follow
the idea of McClosky et al. (2006) and introduce
a separate model for confidence estimation that
not only reduces the bias of a singly self-trained
model but also simplifies the determination of a
confidence score.

To estimate the model’s confidence in its pre-
dicted alternatively–lexicalized phrases, referred
to as candidates, we design an auxiliary task to
disambiguate signal candidates produced by the
labeling model. We want to learn to discriminate
candidate phrases into those related to an AltLex
or not. We adapt previous work on explicit sense
classification (Knaebel and Stede, 2020a) to alter-
native lexicalizations and simultaneously predict
whether a possible candidate phrase is used as a dis-
course signal and if so, we learn to predict its sense.
Instead of learning only a single sense level, we
jointly learn sense versus no-sense prediction on
coarse and fine senses as Long and Webber (2022)
suggest in their work. In a short ablation study (see
Appendix A), we show that our chosen disambigua-
tion architecture works with similar performance
as a simple binary classifier.

1We did some initial studies with BIOS and BIOES encod-
ings, but the performance was not satisfying.
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Figure 1: Overview of the learning process: Phase 1 refers to the cyclic self-supervised learning procedure (alternates
between labeling and candidate discrimination). Phase 2 concludes the final training on combined data.

Our self-learning approach consists of two
phases (compare Figure 1). In Phase 1 (Recall),
we optimize our signal labeling model (Signal Ex-
traction) with respect to high recall. Therefore,
we lower the weight for the None class, which is
the dominating class label, and thus implicitly rein-
force a higher focus on the other class labels. The
resulting increase in the recall value simultaneously
leads to a reduction in the precision value of the
model. We first extract signal candidates from the
PDTB which results in a fuzzy version, in order
to train a second model for signal disambiguation
(Signal Classifier). In the final step of a single
iteration, we extract signals from a different cor-
pus (here NYT see Section 4.1) and filter these
signals, based on the confidence score, before we
use the confident paragraph samples together with
the original training data. Confident paragraphs are
defined based on the individual signal confidence,
such that signals are removed if the confidence
is below a relation threshold τrel and the remain-
ing signals’ minimum is higher than a paragraph
threshold τpar. In Phase 2 (F1Score), we use the
finally extracted confident paragraphs and train a
new model on signal extraction, but this time all
class labels are equally weighted and the model is
optimized for F1 score.

4 Experiments

4.1 Experimental Settings

The Unlabeled Corpus Most, but not all (Web-
ber, 2009), documents of the PDTB are news ar-
ticles. To learn about alternative lexicalizations
from a different corpus, as there is relatively lit-
tle annotated data currently available, we choose
another news wire corpus, under the assumption
of an easier adaption of a similar domain com-
pared to other genres. The New York Times An-
notated Corpus 2, referred to as NYT, contains

2https://doi.org/10.35111/77ba-9x74

about 1.8 million documents published by the New
York Times between 1987 and 2007. For our work,
we use a random subset of documents, 200 per
month from the years 2000–2002, sampled only
once before the experiments. The reduced corpus
is due to computational feasibility, the years were
selected randomly. We selected NYT to comple-
ment the PDTB training data because much more
data is available and it has similar quality and struc-
ture of articles as in the Wallstreet Journal corpus,
which is used for the PDTB. For example, we de-
cided against the CNN/DM corpus used in a differ-
ent study (Kobayashi et al., 2021) because of the
largely absent paragraph structure.

Hyper-Parameter Settings For data preparation,
we split 10% of documents from the PDTB corpus
for testing purposes. While we use varying test
splits for the general evaluation of the architecture,
also to compare to previous work, we use the same
test split for the evaluation of the self-supervised
setting. After creating a separate test set, in each
run, we split another 10% of the remaining training
documents for validation. To increase the repro-
ducibility of our experiments, we use the same
validation splits for each model run, e.g. we have
the same 3 and 5 splits for model ensembles and
evaluations, respectively. For both types of models,
signal labeling and sense classification, the batch
size is 32. We train for at most 10 epochs and stop
after 3 epochs without any improvement. For opti-
mization, we chose Adam with decoupled weight
decay (Loshchilov and Hutter, 2019) and an initial
learning rate of 1e−4 that is reduced linearly over
the maximum training epochs. As we observed
overfitting with a too-small dropout rate, we set it
to 0.4 for both models. For embedding paragraphs,
we chose the base architecture of RoBERTa (Liu
et al., 2019) that has shown good performance on
several other tasks related to discourse process-
ing (Long and Webber, 2022; Koto et al., 2021;
Guz et al., 2020). We fix all but the last two layers
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for signal labeling. For the disambiguation model,
we extract all hidden units from the model and
propagate them to our classifier. As the input size
of RoBERTa is limited, we truncate the tokenized
paragraph. Only less than 1% of the paragraphs are
affected by this truncation. For signal classification,
we remove training examples where a signal occurs
after the limit.

During the adaption phase, we focus on the
recognition of alternative lexicalizations rather than
whether predictions are correct or not, as we later
train an additional model that filters wrong predic-
tions. We identify two crucial hyper-parameters:
First, we examine changing the majority class
weight (None class) for the cross-entropy loss. Sec-
ond, we study the influence of negative samples
on the training progress. In agreement with our ex-
periments (for details see Appendix B), we chose
0.01 for the majority class weight as the next step’s
small increase in recall did not justify the higher
decrease in precision. Further, our results indicate
that there is no advantage in reducing the number
of negative samples.

For both phases, we set the relation threshold
τrel to 0.33 as we measured a good balance of
true and false predictions on the PDTB data. For
the paragraph threshold τpar we use a value of
0.7 during training, as we focus on optimizing the
recognition rate (recall) of the extraction model in
this phase. In the second phase, we study varying
thresholds ranging from 0.4 to 0.9 for minimal
paragraph relation confidence.

4.2 Experimental Results

First, we evaluate our novel architecture and com-
pare its base performance with the initial work by
Knaebel and Stede (2022). In their work, they
measure the overlap within sentences containing
an alternative lexicalization. We, therefore, re-run
their neural labeling model and use the same evalu-
ation metrics (exact–match) as for this paper. Re-
sults are averaged over 10 random splits and pre-
sented as mean (M) and standard deviation (SD). In
our evaluation under similar conditions, the base-
line (M=34.07% F1, SD=6.09) is clearly outper-
formed by our introduced model (M=45.48% F1,
SD=5.08). We also study the performance of en-
sembles as used in our self-learning setting and
simply combine the output probabilities of three
random models. The performance further improves
(M=51.68% F1, SD=3.28) and we observe a de-

creasing standard deviation.
Results of our final experiments are shown in

Figure 2 and in more detail in Appendix D. We
compare the baseline trained on the original PDTB
dataset with models of varying paragraph thresh-
olds τpar (0.4 to 0.9) that incorporate data from
the NYT corpus into their training data. We uti-
lize partial matching as introduced by Xue et al.
(2016), and define the matching overlap based on
the F1 score of two connecting phrases. Partial-
Match and Exact-Match refer to 70% and 90% F1
matching thresholds, respectively. For example,
our model recognizes two of three words of the
signal greatly expanding collaboration correctly,
resulting in 0.66 recall, 1.0 precision, and thus 0.83
F1, this signal would count as partially matched but
not exactly. All Experiments run on the same test
set, with varying training and validation splits, 5
repetitions each. Interestingly, all models perform
best at a τpar of 0.6, which is in accordance with
the threshold suggested by Nishida and Matsumoto
(2022). Our model (M=47.38% F1, SD=1.22) with
all unlabeled data and τ = 0.6 improves the base-
line (M=42.95% F1, SD=2.52) by more than 4%
F1 score on exact match.

4.3 Analysis of Selected Cases

In this section, we would like to show some se-
lected signal examples that we noticed while re-
viewing the results. First, we look at the predictions
of our recall-optimized signal extraction model
(without filtering predictions by our second classi-
fier) within the PDTB training data. This model has
repeatedly recognized phrases (after, and, on the
other hand, at the same time, further, if, because
[of], among others) as alternative lexicalizations al-
though, in terms of their surface form, they should
rather belong to the group of explicit connectors.
We assume some of these phrases are only partially
recognized alternative phrases e.g. signals in which
the referential expression is missing after this situ-
ation and because of that event. We also identify
cases where individual parts of the signal belong
to explicit connectives, while their conjunction is
rather considered as an alternative lexicalization,
e.g. since and then. Despite a large number of pos-
sible explicit signals, most of the confused signals
are filtered in the second step and are therefore not
considered signals at all. Interestingly, we noticed
that the model identifies a few signals at the begin-
ning of a paragraph, similar as discussed by Prasad
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Figure 2: Final model evaluation: Comparison of baseline trained on the original dataset (horizontal dotted) and final
models trained on data including NYT corpus with varying paragraph threshold τpar (0.4 to 0.9) during prediction
phase. All experiments run on the same test set, with varying training and validation splits, 5 repetitions. Evaluation
is done using partial (dashed lines) and exact (straight lines) matching as explained in Section 4.2.

et al. (2017), that are per definition not included in
the PDTB annotations, e.g. That explains why, To
illustrate, All this illustrates that, and What’s more.
Besides different variations of gerunds, we found
phrases such as at the most, that may mean, and
even that that are likely being used as discourse
signals without checking their context. The inte-
gration of the model’s output in future annotation
processes may be beneficial in identifying more
discourse signals.

Next, we examine the predicted alternative lexi-
calizations in the NYT data. Here, we found quite a
few change verbs, e.g. dimishing, bolstering, stim-
ulating, absorbing, contributing and negating, that
never occurred in the training data. There is about
the same number (20 each) of variants of alternative
lexicalizations containing the word reason in both
data sets which have no overlap with the respec-
tive other data set, e.g. the reason is probably that,
the reasons for that finding, and that alone is rea-
son for where identified in NYT but not in PDTB.
We further found, that our model tends to predict
shorter signals (average length of 9) compared with
the PDTB training dataset (average length of 13).
The longest extracted signals with respect to token
counts are one reason for the cooperative ads is
that, the overhaul was spurred in part by, and and
that might partly explain why.

5 Discussion and Conclusions

We developed a new paragraph-based architecture
to extract alternatively–lexicalized discourse sig-
nals and presented state-of-the-art performance.
Initial experiments on incorporating non-annotated
data showed a further increase in performance.

Size seems to matter for this learning too, as
this principle often holds for deep learning models.
Although the gaps are rather small for up to 10,000
sampled documents, we think the distance for the
largest set of documents is very clear. Due to time
and computation constraints, we could not identify
an upper performance bound yet.

We notice throughout our signal extraction ex-
periments a confusion between alternative lexical-
izations and explicit connectives. We assume the
model to have problems clearly understanding their
difference, as both kinds of phrases signal dis-
course relations. Filtering the connecting phrases
as we have done seems unavoidable. Contrary to
this, however, it seems worthwhile to soften the
boundaries between these two categories and de-
velop models that combine both types. This is not
trivial due to the differences between both signal
types (explicit signals are usually shorter recurring
phrases with higher frequencies; AltLex signals
tend to be longer phrases with more variance).
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Limitations

Although the new architecture works well on
PDTB-like structured data, we are often challenged
with texts without clear paragraph structure. This
would make it either necessary to pre-process texts
and split sentences into semantically closed para-
graphs such that our proposed model takes advan-
tage of the surrounding context, or develop a new
sentence-based model which was not successful in
previous work.

Limiting the model to predict only continuous
alternative lexicalizations does not highly affect re-
sults on the PDTB, but might have a more consider-
able impact on other text genres, e.g. speeches and
debates. This would require the use of a more com-
plex signal encoding as mentioned in Section 3.1.
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Model Precision Recall F1

Baseline 83.54 (5.99) 59.45 (12.34) 68.84 (9.68)
Coarse 86.32 (4.83) 51.78 (9.22) 64.36 (7.82)
Binary 85.18 (4.81) 56.81 (8.80) 67.80 (6.87)

Table 1: Ablation Study for the AltLex Candidate Clas-
sifier. Results show mean and standard deviation for 10
runs each.

A Candidate Disambiguation: Ablation
Study

Discourse signal disambiguation is a fundamental
step in our weakly-supervised learning cycle for
improving the prediction quality of our signal ex-
traction model. We intuitively followed previous
work on signal-based sense classification (Knaebel
and Stede, 2020a) with the assumption of better re-
sults learning multiple sense levels at once. (Long
and Webber, 2022) Our ablation study in Table 1
shows, that contrary to our assumption the baseline
and a binary classifier that is limited to predicting
the discourse usage of a free connective phrase have
similar performances. Removing the model’s fine-
sense classification drastically reduces the recall
of identified signals but increases precision. This
holds for the binary case, too. Further investiga-
tions are necessary to identify specific differences
in these classifiers.

B Hyperparameters: Loss Weight and
Negative Sampling

During the adaption phase, we focus on the recog-
nition of alternative lexicalizations rather than
whether predictions are correct or not, as we later
train an additional model that filters wrong pre-
dictions. Therefore, we adjust the majority class
weights (None class) of the cross-entropy loss. In
Table 2a, we report macro averaged results for
weights ranging from 1.0 (normal weight) to 0.001
(inverse occurrence weight). As expected, the re-
sults indicate an increase in average recall with a
decrease in average precision at the same time. We
chose 0.01 for the majority class weight as the next
step’s small increase in recall did not justify the
higher decrease in precision.

We also study the influence of negative samples
on the training progress. The results in Table 2b
indicate no advantage of reducing negative samples
for training data, as already mentioned so in the
paper. However, in contrast, a broader study with
varying test partitions showed an increase in recall

Weight Precision Recall F1

1.0 41.63 (1.81) 32.75 (2.22) 36.63 (1.88)
0.5 33.93 (1.06) 39.49 (2.46) 36.43 (0.53)
0.1 21.41 (3.35) 51.52 (1.54) 30.03 (3.23)

0.01 8.13 (0.40) 61.39 (0.37) 14.35 (0.61)
0.001 3.59 (0.77) 63.34 (1.20) 6.78 (1.38)

(a) Weighting the majority class: None. ’1.0’ refers to nor-
mal training while ’0.001’ is close to the inverse of the class
occurrences. By Reducing the None class weight, errors on
remaining classes are stronger penalized, and thus the model
parameters are optimized for recall.

ratio Precision Recall F1

0.0 39.37 (1.29) 35.68 (1.83) 37.42 (1.44)
0.2 40.96 (2.54) 33.14 (0.24) 36.60 (0.95)
0.4 35.78 (1.15) 33.63 (1.59) 34.63 (0.74)
0.6 33.20 (1.89) 32.55 (1.33) 32.87 (1.61)
0.8 25.65 (1.51) 35.19 (1.50) 29.66 (1.43)
1.0 13.02 (0.40) 32.45 (4.37) 18.48 (0.36)

(b) Down-sampling paragraphs without alternative lexicaliza-
tions as a performance factor, range from no sampling at all to
remove all negative samples.

Table 2: Experiments on hyper-parameter settings for
optimizing recall during the first training phase.

τ 2500 5000 10000 40000

0.4 1973 3883 7751 123595
0.5 1423 2816 5690 90016
0.6 572 1110 2256 37472
0.7 308 605 1205 19805
0.8 148 282 607 10216
0.9 46 91 200 3495

Table 3: Number of training samples extracted from
additional pseudo labeled corpus, per corpus sample
size and per relation paragraph threshold.

while reducing the number of negative samples.

C Numbers of Extracted Paragraphs

Table 3 summarizes the number of training sam-
ples that were extracted from a given corpus sample
(limited by the number of documents) and a corre-
sponding relation paragraph threshold that needs
to be satisfied for positive training samples.

D Full Final Results

Table 4 summarizes our final experiments’ results
in full detail. Partial-Match and Exact-Match refer
to 70% and 90% overlap, respectively. In con-
trast to the evaluation with previous work, for this
evaluation, we split test data only once at the very
beginning and stay with it throughout the evalua-
tion. Results are averaged over different validation
splits, though.
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Model Partial-Match Exact-Match
Precision Recall F1 Precision Recall F1

Base 41.08 (4.95) 51.78 (3.58) 45.48 (2.26) 38.82 (5.10) 48.84 (2.90) 42.95 (2.52)
0.4 36.50 (1.50) 55.50 (1.74) 44.00 (0.90) 34.28 (1.62) 52.09 (1.24) 41.31 (0.98)
0.5 38.72 (3.44) 59.22 (3.01) 46.61 (1.50) 35.76 (3.01) 54.73 (3.05) 43.06 (1.29)
0.6 43.02 (1.49) 54.73 (3.27) 48.07 (0.77) 40.12 (1.84) 51.01 (3.00) 44.82 (1.18)
0.7 40.70 (5.78) 53.02 (4.48) 45.51 (1.86) 38.09 (6.12) 49.46 (3.51) 42.52 (2.36)
0.8 42.20 (2.87) 52.40 (2.23) 46.66 (1.67) 40.09 (2.79) 49.77 (1.79) 44.32 (1.52)
0.9 40.41 (3.33) 53.18 (3.49) 45.73 (1.83) 38.20 (3.51) 50.23 (3.19) 43.22 (2.06)

(a) NYT corpus (2500 documents).

Model Partial-Match Exact-Match
Precision Recall F1 Precision Recall F1

Base 41.08 (4.95) 51.78 (3.58) 45.48 (2.26) 38.82 (5.10) 48.84 (2.90) 42.95 (2.52)
0.4 34.97 (1.85) 58.29 (3.58) 43.59 (0.79) 32.69 (2.23) 54.42 (3.19) 40.72 (1.51)
0.5 38.45 (2.06) 56.74 (3.71) 45.71 (1.11) 36.29 (2.22) 53.49 (2.73) 43.12 (1.00)
0.6 40.51 (1.38) 58.29 (3.08) 47.79 (1.89) 37.49 (1.15) 53.95 (2.76) 44.23 (1.62)
0.7 38.78 (3.43) 54.57 (4.06) 45.08 (1.68) 36.66 (3.66) 51.47 (3.12) 42.57 (1.92)
0.8 39.58 (1.82) 55.50 (1.74) 46.16 (1.09) 36.19 (2.24) 50.70 (1.26) 42.19 (1.59)
0.9 42.54 (3.72) 53.64 (4.29) 47.12 (0.67) 38.77 (3.01) 48.99 (4.64) 42.99 (0.72)

(b) NYT corpus (5000 documents).

Model Partial-Match Exact-Match
Precision Recall F1 Precision Recall F1

Base 41.08 (4.95) 51.78 (3.58) 45.48 (2.26) 38.82 (5.10) 48.84 (2.90) 42.95 (2.52)
0.4 32.27 (1.87) 56.90 (3.42) 41.06 (0.82) 34.47 (2.06) 60.78 (3.56) 43.86 (0.90)
0.5 41.08 (4.95) 51.78 (3.58) 45.48 (2.26) 38.82 (5.10) 48.84 (2.90) 42.95 (2.52)
0.6 41.26 (2.75) 56.43 (2.75) 47.57 (1.99) 39.03 (3.03) 53.33 (2.37) 44.99 (2.24)
0.7 40.75 (1.83) 54.42 (2.57) 46.56 (1.51) 38.79 (1.80) 51.78 (2.05) 44.31 (1.31)
0.8 41.42 (3.25) 52.40 (2.48) 46.10 (1.23) 38.61 (3.10) 48.84 (2.25) 42.97 (1.32)
0.9 40.24 (3.44) 53.18 (2.11) 45.70 (2.21) 37.74 (4.16) 49.77 (2.37) 42.82 (3.11)

(c) NYT corpus (10000 documents).

Model Partial-Match Exact-Match
Precision Recall F1 Precision Recall F1

Base 41.08 (4.95) 51.78 (3.58) 45.48 (2.26) 38.82 (5.10) 48.84 (2.90) 42.95 (2.52)
0.4 38.29 (1.94) 62.02 (4.33) 47.22 (1.42) 35.58 (2.18) 57.52 (2.75) 43.85 (0.98)
0.5 42.51 (1.30) 60.31 (1.42) 49.85 (0.99) 39.35 (1.62) 55.81 (1.77) 46.14 (1.49)
0.6 44.13 (2.17) 58.60 (1.60) 50.33 (1.80) 41.54 (1.53) 55.19 (1.42) 47.38 (1.22)
0.7 43.68 (1.96) 55.81 (0.49) 48.98 (1.17) 41.52 (2.49) 53.02 (1.05) 46.55 (1.87)
0.8 44.60 (3.03) 54.42 (1.14) 48.98 (2.05) 42.32 (3.09) 51.63 (1.67) 46.47 (2.30)
0.9 43.54 (3.95) 55.19 (1.24) 48.55 (2.14) 41.00 (4.01) 51.94 (1.47) 45.70 (2.46)

(d) NYT corpus (40000 documents).

Table 4: Full results, partial and exact matching, of final model with varying paragraph threshold (0.4 to 0.9) trained
on data including NYT corpus. All experiments run on the same test set, with varying training and validation splits,
results are averaged over 5 repetitions.
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