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Abstract

As opposed to general English, many concepts
in biomedical terminology have been designed
in recent history by biomedical professionals
with the goal of being precise and concise.
This is often achieved by concatenating mean-
ingful biomedical morphemes to create new
semantic units. Nevertheless, most modern
biomedical language models (LMs) are pre-
trained using standard domain-specific tokeniz-
ers derived from large scale biomedical cor-
pus statistics without explicitly leveraging the
agglutinating nature of biomedical language.
In this work, we first find that standard open-
domain and biomedical tokenizers are largely
unable to segment biomedical terms into mean-
ingful components. Therefore, we hypothesize
that using a tokenizer which segments biomed-
ical terminology more accurately would enable
biomedical LMs to improve their performance
on downstream biomedical NLP tasks, espe-
cially ones which involve biomedical terms di-
rectly such as named entity recognition (NER)
and entity linking. Surprisingly, we find that
pre-training a biomedical LM using a more ac-
curate biomedical tokenizer does not improve
the entity representation quality of a language
model as measured by several intrinsic and ex-
trinsic measures such as masked language mod-
eling prediction (MLM) accuracy as well as
NER and entity linking performance. These
quantitative findings, along with a case study
which explores entity representation quality
more directly, suggest that the biomedical pre-
training process is quite robust to instances of
sub-optimal tokenization.1

1 Introduction

In order to communicate complex concepts pre-
cisely and efficiently, biomedical terminology has
been designed by researchers and medical profes-
sionals by combining existing meaningful mor-

1Our pre-trained model BioVocabBERT is publicly
available at https://huggingface.co/osunlp/
BioVocabBERT.

Ideal
Tokenization

BERT
Tokenization

PubMedBERT
Tokenization

nephr-o-pathy ne-ph-rop-athy nephropathy
nephr-ectomy ne-ph-re-ct-omy nephrectomy

nephr-o-blastoma ne-ph-ro-bla-sto-ma nephr-oblastoma
nephr-o-calcin-osis ne-ph-ro-cal-cino-sis nephr-ocalcin-osis

Table 1: Sub-optimally tokenized biomedical terms con-
taining the ‘nephro’ morpheme illustrate the limitations
of current tokenization methods.

phemes to create new concepts. Many biomedical
terms use general rules to combine meaningful mor-
phemes taken from Greek and Latin (Banay, 1948).
For example, these morphemes often have vowels
that can be omitted such as the ‘-o-’ in ‘nephro’
from Table 1. This ‘-o-’ acts as a joint-stem to
connect two consonantal roots (e.g. ‘nephr-’ + ‘-
o-’ + ‘-pathy’ = ‘nephropathy’), but the ‘-o-’ is
often dropped when connecting to a vowel-stem
(e.g. ‘nephr-’ + ‘-ectomy’ = ‘nephrectomy’, instead
of ‘nephr-o-ectomy’). Students in biomedical fields
often learn the meaning of these elements as well
as the word formation rules to be able to infer the
meaning of unfamiliar words and recall complex
terms more easily.2

Even though the agglutinating nature of biomed-
ical terminology is well known, none of the ex-
isting pre-trained language models consider this
information explicitly when building their tokeniz-
ers. As shown in Table 1, frequent words such
as ‘nephropathy’ and ‘nephrectomy’ are tokenized
by BERT (Devlin et al., 2019) into meaningless
subwords (‘ne-ph-rop-athy’ and ‘ne-ph-re-ct-omy’)
while remaining as whole words for PubMedBERT
(Gu et al., 2021). For more infrequent but still im-
portant medical terms like ‘nephroblastomas’ and
‘nephrocalcinosis’, PubMedBERT encodes them as
‘nephr-oblastoma’ and ‘nephr-ocalcin-osis’. We

2The existence of popular books such as Collins (2007)
emphasize the importance of understanding biomedical termi-
nology design for medical professionals.
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argue that there are more meaningful and effi-
cient ways to tokenize both frequent and infrequent
medical terms using meaningful morphemes like
‘nephr(o)’ (of a kidney), ‘-pathy/-(o)sis’ (disease),
‘-ectomy’ (surgical procedure), ‘calcin’ (calcifica-
tion) and ‘blastoma’ (type of cancer) which could
help models transfer signal directly into infrequent
and even out-of-vocabulary terms.

In this work, we first leverage large-scale mor-
pheme segmentation datasets to more rigorously
evaluate current tokenization methods both quanti-
tative and qualitatively. Using the annotated mor-
pheme segmentation dataset from the SIGMOR-
PHON 2022 Shared Task (Batsuren et al., 2022),
we are able to determine that current tokenizers
such as BERT and the more biomedically relevant
PubMedBERT are very poorly aligned with human
judgments on morpheme segmentation, even when
evaluating on biomedical terminology specifically.

Given that, although the PubMedBERT tok-
enizer exhibits low performance on biomedical
morpheme segmentation, it shows some improve-
ment over BERT’s tokenizer due to its use of
biomedical corpus statistics, we hypothesize that
using a tokenizer that aligns more strongly with
standard biomedical terminology construction for
pre-training could achieve improved performance
in downstream tasks. In order to verify this hypoth-
esis, we create a new tokenizer, BioVocabBERT,
which uses a vocabulary derived from combining
a fine-tuned morpheme segmentation model with
biomedical domain-knowledge from the Unified
Medical Language System (UMLS) (Bodenreider,
2004), a large scale biomedical knowledge base.
Subsequently, we leverage BioVocabBERT, which
greatly outperforms the PubMedBERT tokenizer
on biomedical morpheme segementation, to pre-
train a biomedical language model by the same
name and compare its performance with a repli-
cated PubMedBERT model (to control for any po-
tential differences in the pre-training process) on
two downstream tasks: named entity recognition
(NER) and entity linking.

Surprisingly, we find that the performance of
our BioVocabBERT model is remarkably similar
to the one obtained by our PubMedBERT replica
throughout most datasets tested in fully supervised
NER, low-resource NER and zero-shot entity link-
ing. Small improvements arise in low-resource
NER and zero-shot entity linking but results are in-
consistent across datasets. Additionally, we exam-

ine the model’s robustness to segmentation failures
in a small scale case-study which suggests that even
if the model’s word embeddings are biased by tok-
enization errors, the model’s parameters are able to
overcome such failures quite successfully. Finally,
we measure our models’ language modeling accu-
racy by word frequencies and find a small word
frequency trade-off whose exploration we leave for
future work. Given these findings, we conclude that
biomedical language model pre-training is quite ro-
bust to tokenization decisions which are not well
aligned with human judgments, even when dealing
with highly agglutinating biomedical terminology.

2 Related Work

2.1 Domain-Specific Pre-training

Recent work on domain-specific language mod-
els has demonstrated fairly conclusively that us-
ing domain-specific data for pre-training signifi-
cantly improves language model performance on
in-domain downstream tasks. Many different such
strategies have been proposed with varying degrees
of in-domain vs out-of-domain pre-training data in
fields such as biomedicine (Peng et al., 2020; Lee
et al., 2019; Gu et al., 2021; El Boukkouri et al.,
2022), finance (Wu et al., 2023), law (Chalkidis
et al., 2020), scientific research (Maheshwari et al.,
2021), clinical practice (Alsentzer et al., 2019) and
social media (DeLucia et al., 2022). For biomedi-
cal language models specifically, most work agrees
that pre-training from scratch using an in-domain
corpus, as done by Gu et al. (2021), leads to small
but measurable performance improvements over
other pre-training strategies.

Apart from introducing pre-training from
scratch, Gu et al. (2021) demonstrated the limi-
tations of general domain tokenization for domain-
specific pre-training by showing downstream im-
provements obtained from using a domain-specific
tokenizer, created by standard tokenizer building
algorithms such as WordPiece (Schuster and Naka-
jima, 2012) and BPE (Gage, 1994) on an in-domain
corpus. In-domain tokenizers have also been shown
to improve performance in other domains such as
law (Chalkidis et al., 2020) and more specific ones
like cancer (Zhou et al., 2022). As a result, most
recent biomedical LMs use tokenizers created from
in-domain corpora statistics (Yasunaga et al., 2022;
Luo et al., 2022).
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2.2 Limits of Unsupervised Tokenization

Even though domain-specific tokenizers have be-
come widely used for biomedical LMs, they are
still constructed using mainly unsupervised algo-
rithms which leverage information theoretic met-
rics from large-scale corpora to create subword vo-
cabularies. However, as reported in the SIGMOR-
PHON 2022 Shared Task for morpheme segmen-
tation (Batsuren et al., 2022), these methods align
little with morphological human judgments. Hof-
mann et al. (2021) explore how poor segmentation
affects performance by injecting rule-based deriva-
tional morphology information into the tokeniza-
tion process and showing improvements in word
classification tasks, especially for low-frequency
words. As far as we know, our work is one of the
first to perform a similar morpheme segmentation
analysis on biomedical tokenizers, even though
biomedical terminology is highly agglutinating by
design and should benefit from such analysis.

Furthermore, Hofmann et al. (2020) shows that
introducing derivational morphology signal into
BERT via fine-tuning improves its derivation gen-
eration capabilities, suggesting that performance of
language models could be improved by adding mor-
phologically relevant signal into their pre-training.
Nevertheless, not much work apart from our cur-
rent study has explored how introducing such sig-
nals could affect the pre-training process directly,
especially not in biomedical language models.

3 Supervised Morpheme Segmentation

Recent work evaluating morphological segmenta-
tion at scale such as the SIGMORPHON 2022
Shared Task (Batsuren et al., 2022) demonstrates
the impressive performance of supervised meth-
ods compared to unsupervised methods like BPE
(Gage, 1994) or Morfessor (Creutz et al., 2005),
even for languages with more limited annotated
data than English. In the SIGMORPHON 2022
Shared Task, the organizers compile a large quan-
tity of segmented morpheme data, over half a mil-
lion English words obtained from Wiktionary and
other sources using both hand-crafted and auto-
mated methods (Batsuren et al., 2021).

3.1 Evaluating Biomedical Segmentation

By comparing the SIGMORPHON dataset with
words which appear frequently in the Unified
Medical Language System (UMLS) (Bodenreider,
2004), a large scale biomedical knowledge base,

Train Dev Test

English Set 458,692 57,371 57,755
Biomedical Subset 33,221 4,112 4,123

Table 2: Dataset statistics for the SIGMORPHON 2022
morpheme segmentation dataset and the biomedical
dataset, as defined in §3.1.

we find that a small percentage (approximately
10%) of all annotated words are relevant biomed-
ical terms. We therefore leverage this biomedical
subset to evaluate the biomedical morpheme seg-
mentation performance of several current tokeniza-
tion methods. Due to the large difference in scale of
the full dataset to the biomedical subset, we use the
full SIGMORPHON dataset for training, including
both general english and biomedical words. We
use the same segmentation F1 score the SIGMOR-
PHON Shared Task for evaluation. This score is
calculated as the harmonic mean of precision, the
ratio of correctly predicted morphemes over all pre-
dicted morphemes, and recall, the ratio of correctly
predicted morphemes over all gold-label units. For
more information about these evaluation metrics,
we refer the interested reader to Section 2.3 of Bat-
suren et al. (2022).

Segmentation F1

BERT Tokenizer 16.2
PubMedBERT Tokenizer 19.2

Fine-Tuned CANINE 74.1

BioVocabBERT Tokenizer 48.5

Table 3: Morpheme segmentation performance of base-
line and novel tokenizers on the biomedical subset of
the SIGMORPHON 2022 development set.

As seen in Table 3, both BERT and PubMed-
BERT achieve under 20% segmentation F1 perfor-
mance on the SIGMORPHON biomedical develop-
ment subset. In order to understand why current to-
kenizers obtain such dramatically low segmentation
accuracy, we analyze 50 instances of sub-optimal
tokenization. Apart from words which are not seg-
mented because they exist in the PubMedBERT
vocabulary, most errors are split into three main
categories 1) missing units, 2) compound units and
3) ambiguous connecting vowels. Table 4 shows
descriptions and examples of each type.

3.2 CANINE Fine-Tuning
As opposed to sub-word tokenization, morpheme
segmentation does not require sub-word compo-
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Description Example

Missing
Units

Important biomedical
morphemes missing
from the vocabulary

onc-oneu-ral
‘onco’ (cancer-related)
is not in the vocabulary

Compound
Units

Splitting meaningful
units while creating
meaningless ones

neuroprot-ectant
‘neuroprot’ is meaningless
and splits the meaningful
morpheme ‘protect’

Connecting
Vowels

Vowels which connect
two morphemes
(more ambiguous)

bronch-olith
optimal segmentation
could split ‘o’ from ‘lith’

Table 4: Sub-optimal segmentation types from the
biomedical subset of SIGMORPHON 2022.

nents (morphemes) to map directly onto a word’s
characters. For instance, in Table 5, SIGMOR-
PHON annotations transform the root ‘neur’ into
the word ‘neuron’, introducing further flexibility
and complexity to the task. In order to adapt mor-
pheme segmentation annotations to standard tok-
enization, we design rule-based heuristics that map
each morpheme onto a subset of characters in the
original word. Due to this new formulation and
the success of transformer based models on this
shared task, we choose a character based language
model named CANINE (Clark et al., 2022) as the
model to train for character tagging as morpheme
segmentation. More formally, the segmentation
task is re-framed as classifying each character into
a B(egin) or I(nside) tag, where the B tag indicates
the start of a new morpheme or token.

Original Word Segmentation BI Tags

onconeural onco ##neur ##al BIIIBIIIBI

Table 5: Example of a biomedical term segmented into
morphemes and reformulated into BI tags for CANINE
fine-tuning.

After fine-tuning CANINE on the full SIGMOR-
PHON 2022 training set to create a supervised to-
kenization system, as seen in Figure 1 (left), we
find that it achieves a 74% segmentation F1 score
on the biomedical SIGMORPHON subset, a very
strong result compared to current tokenizers. For
reference, the best segmentation F1 score reported
in the English word-level test set of the SIGMOR-
PHON 2022 Shared Task is 93.7% by the DeepSpin
team (Peters and Martins, 2022). Even though this
score is not comparable to ours due to our use of a
biomedical development subset for evaluation, we
note that our fine-tuned CANINE model’s perfor-

mance is quite strong given that it is designed for
pure tokenization as explained above.

3.3 BioVocabBERT: Domain Knowledge
Injection

Despite its satisfactory segmentation performance,
it is challenging to use our CANINE-based seg-
mentation model as a language model tokenizer
due to its vocabulary-less nature. Since this model
can segment words arbitrarily using our charac-
ter classification framework, unseen words can be
split into subwords which have never been seen
by the LM. Thus, pre-training a language model
using this tokenizer would require allowing the
model to increase its vocabulary size without limit
while training and using an out-of-vocabulary token
when unseen tokens are encountered during infer-
ence. This would lead to a language model with
an exceedingly large vocabulary size (which would
increase the cost of pre-training significantly) and
potentially limited generalization ability to unseen
tokens.

To tackle this problem, we introduce a tokenizer
which uses the same left-to-right decoding algo-
rithm used by BERT and PubMedBERT but replace
its vocabulary with one designed for biomedical
segmentation. In order to build a vocabulary which
covers important biomedical tokens, we leverage
the Unified Medical Language System, a medical
knowledge base which contains approximately 15
million medical concept phrases. As shown in Fig-
ure 1 (center), we extract all single words from
UMLS concept phrases and segment each of them
using the CANINE-based tokenizer. This produces
around 250,000 unique subwords which we fur-
ther reduce to 55,580 by eliminating ones which
only appear once in the CANINE segmented set
of UMLS words. In order to avoid segmenting
standard English words in unintuitive ways due
to the higher proportion of biomedical subwords,
we augment our 55,580 biomedical subwords with
the original BERT vocabulary as seen in Figure 1
(right). After removing duplicate tokens, we are left
with a vocabulary of 80,181 tokens. This carefully
designed vocabulary enables our new tokenizer,
BioVocabBERT, to obtain a segmentation score of
48.5% on the SIGMORPHON biomedical subset
as seen in 3, outperforming the best scoring cur-
rent wordpiece-based tokenizer PubMedBERT by
almost 30 points.
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Figure 1: Overall process for creating our vocabulary for BioVocabBERT’s tokenizer. We first train a CANINE
model on the SIGMORPHON training set (left). We then use this segmentation model to segment all unique UMLS
words (center). Finally, we combine all UMLS subwords with frequency greater than 1 with the original BERT
vocabulary to make our BioVocabBERT vocabulary (right).

4 Experimental Setup

4.1 Biomedical Pre-training

In order to discover whether morpheme segmenta-
tion performance has an effect on the biomedical
language model pre-training process, we compare
the downstream performance of two language mod-
els using tokenizers with very distinct segmentation
performance but otherwise equivalent pre-training
processes. The first model is pre-trained using the
same tokenizer as PubMedBERT while the other
one uses our designed BioVocabBERT tokenizer
and is thus referred to by the same name.

As other BERT based architecture models, we
pre-train these using the masked language mod-
eling objective and choose standard token mask-
ing percentages used in previous work (Gu et al.,
2021). We use the easily accessible and readily pre-
processed corpus used for BlueBERT (Peng et al.,
2020) pre-training which contains around 4 billion
words3. For pre-training, we base our implementa-
tion on the work by Izsak et al. (2021) to obtain the
most efficient pre-training possible. We describe
the data, optimization steps, batch size, hardware
and other pre-training details used for both models
in Table 13 and Appendix B.

4.2 Tasks

In order to determine how tokenization improve-
ments affect the quality of biomedical concept
representation in language models, we narrow our
task selection to those which are more closely
related to entity understanding instead of overall
sentence understanding as is the case with relation
extraction, sentence similarity or natural language
inference. We select named entity recognition

3https://github.com/ncbi-nlp/BlueBERT/
blob/master/README.md#pubmed

(NER) and entity linking (EL), also referred to as
concept normalization, as the two biomedical NLP
tasks which most closely meet this criterion.

NER. We focus on evaluating our models in the
more standard fully supervised fine-tuning NER
setting as is done in previous work (Lee et al., 2019;
Gu et al., 2021). We run hyperparameter tuning on
the development set, the search space used can be
found in Appendix A.

We also study our models’ low-resource NER
performance using 500 and 1000 examples. We
also carry out hyperparameter selection which can
be found in Appendix A. We report results on the
development set only for our low-resource NER
experiments.
Entity Linking. For entity linking, we evaluate
our models’ zero-shot performance as done by Liu
et al. (2021) which allows us to measure entity
representation quality as directly as possible.

4.3 Datasets

For NER, we use all datasets from BLURB (Gu
et al., 2021), a comprehensive biomedical NLP
benchmark. For entity linking, we follow previous
work (Liu et al., 2021) and use four popular entity
linking datasets, three of which are also included
in BLURB as NER datasets. All dataset names
and statistics can be found in Table 6. Below,
we provide brief descriptions for each dataset
we use, for more information about processing
and training splits for these datasets, we refer the
interested reader to the dataset descriptions in Gu
et al. (2021) and Liu et al. (2021).

BC5CDR. The BioCreative V Chemical-Disease
Relation corpus (Li et al., 2016) contains both
disease and chemical annotations on PubMed ab-
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NER EL Train Dev Test

BC5CDR-disease X X 4,182 4,244 4,424
BC5CDR-chem X X 5,203 5,347 5,385
NCBI-Disease X X 5,134 787 960
JNLPBA X 46,750 4,551 8,662
BC2GM X 15,197 3,061 6,325
MedMentions X 282,091 71,062 70,405

Table 6: Dataset statistics.

stracts. We evaluate disease and chemical entity
extraction and linking separately following previ-
ous work (Gu et al., 2021).
NCBI-Disease. The Natural Center for Biotech-
nology Information Disease corpus (Doğan et al.,
2014) contains disease name and concept annota-
tions for 793 PubMed abstracts.
JNLPBA. The Joint Workshop on Natural Lan-
guage Processing in Biomedicine and its Appli-
cations dataset (Collier and Kim, 2004) contains
2,000 abstracts from MEDLINE selected and an-
notated by hand for gene related entities.
BC2GM. The Biocreative II Gene Mention corpus
(Smith et al., 2008) contains 17,500 sentences from
PubMed abstracts labeled for gene entities.
MedMentions. MedMentions (Mohan and Li,
2019) is a large-scale entity linking dataset con-
taining over 4,000 abstracts and around 350,000
mentions linked to the 2017AA version of UMLS.

5 Results & Discussion

5.1 Fully-Supervised NER
As seen in Table 7, our language models obtain
competitive fully-supervised NER results com-
pared to the results reported by Gu et al. (2021),
validating our pre-training and fine-tuning process.
We first find that the differences in performance
between our PubMedBERT and BioVocabBERT
models are very small and inconsistent across NER
datasets. We note that the difference in perfor-
mance between these models is often within the
standard deviation reported within each dataset.
Additionally, we see no pattern in performance
differences based on entity types. For disease
NER, BioVocab underperforms on NCBI-Disease
but overperforms in BC5CDR-disease while in
gene based NER, BioVocabBERT outperforms by
a slightly larger margin on JNLPBA but performs
only on-par on BC2GM. This seems to suggest that,
at least when fine-tuning on a significant number of
examples, PubMedBERT can very adequately com-
pensate for instances of sub-optimal biomedical
segmentation.

PubMedBERT∗ PubMedBERT BioVocabBERT

NCBI-Disease 87.8 87.1 ± 0.8 86.7 ± 0.4
BC5CDR-disease 85.6 84.7 ± 0.2 85.2 ± 0.3
BC5CDR-chem 93.3 93.0 ± 0.3 93.4 ± 0.4
JNLPBA 79.1 78.2 ± 0.6 78.9 ± 0.1
BC2GM 84.5 83.4 ± 0.2 83.5 ± 0.3

Table 7: Comparison of fully supervised NER perfor-
mance for the originally reported PubMedBERT, de-
noted by ∗, our PubMedBERT replica and our BioVo-
cabBERT model. We report 3 runs for each of our
models and provide the average entity-level F1 on the
test set along with its standard deviation.

5.2 Low-Resource NER

To explore whether parity in fully-supervised NER
comes from the effects of large scale fine-tuning
or from the underlying models’ entity represen-
tation quality, we carry out a low-resource NER
study using only 500 and 1,000 training examples.
We present results only on the development set
for this setting. Our results suggest that, even
when fewer training examples are used for fine-
tuning, the difference between models is small. As
shown in Table 8, BioVocabBERT obtains small
and inconsistent improvements in downstream per-
formance over PubMedBERT tokenization across
NER datasets in the low-resource setting. Never-
theless, we note that the largest gains for BioVo-
cabBERT in these low data regimes come from
chemical and genetic NER datasets (BC2GM and
JNLPBA), suggesting that our tokenization strategy
could be especially beneficial for irregular genetic
entities.

PubMedBERT BioVocabBERT Percent ∆

500 1000 500 1000 500 1000

NCBI-disease 77.2 81.2 77.7 80.6 0.5 −0.6
BC5CDR-disease 79.0 81.4 79.3 81.6 0.3 0.2
BC5CDR-chem 91.7 92.2 92.1 92.8 0.4 0.6
BC2GM 69.5 75.5 71.5 76.9 2.0 1.4
JNLPBA 75.6 77.2 76.3 77.6 0.7 0.4

Table 8: Comparing our models on low-resource NER
with 500 and 1,000 examples. We report the entity-level
F1 on the development set for this setting.

5.3 Zero-Shot Entity Linking

Following our low-resource NER results, we evalu-
ate entity representation quality even more directly
by measuring the zero-shot entity linking perfor-
mance of both models. As shown in Table 10,
performance of our models exceeds the original
PubMedBERT results reported by Liu et al. (2021),
validating the quality of our pre-training procedure.
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Sub-optimal Tokenization Word Embedding 5-NN [CLS] Embedding 5-NN

epicarditis
(epic-ardi-tis)

epicardiectomy (epic-ardi-ectomy) pancarditis (panc-ardi-tis)
pancarditis (panc-ardi-tis) perimyocarditis (peri-my-ocardi-tis)
epicardin (epic-ardi-n) myopericarditis (myo-peri-car-di-tis)
epicardium (epic-ardi-um) myoendocarditis (myo-end-ocardi-tis)
endopericarditis (endop-eric-ardi-tis) pleuropericarditis (pleu-rop-eric-ardi-tis)

neuromodulation
(neuromod-ulation)

neuromodulations (neuromod-ulations) neuromodulations (neuromod-ulations)
neuromodulators (neuromod-ulators) neuromodulators (neuromod-ulators)
neuromodulator (neuromod-ulator) neuromodulator (neuromod-ulator)
immunomodulation (immunomod-ulation) neuroexcitation (neuro-exc-itation)
immunoregulation (immunoreg-ulation) neuroregulation (neuro-reg-ulation)

Table 9: In this table we show two PubMedBERT sub-optimal tokenization examples and their nearest neighbors
with respect to word embeddings and ‘[CLS]’ token embeddings. Neighbors in bold are terms that were missed by
the word embeddings but are retrieved correctly by the ‘[CLS]’ embeddings, repairing the sub-optimal tokenization
bias.

We note that the main difference between our pre-
training setup and the original PubMedBERT set-
ting is the use of the masked language modeling
(MLM) objective alone instead of both MLM and
next-sentence prediction (NSP) objectives. This
suggests that the use of the MLM objective only
might be better aligned with obtaining high quality
entity representations.

PubMedBERT∗ PubMedBERT BioVocabBERT

R@1 R@5 R@1 R@5 R@1 R@5

NCBI-Disease 77.8 86.9 88.5 93.5 87.6 92.0
BC5CDR-disease 89.0 93.8 91.7 95.0 91.0 94.1
BC5CDR-chem 93.0 94.6 95.3 96.1 95.4 95.9
MedMentions 43.9 64.7 44.9 65.4 45.4 65.9

Table 10: Comparison of zero-shot entity linking per-
formance for the originally reported PubMedBERT, de-
noted by ∗, our PubMedBERT replica and our BioVo-
cabBERT model.

Additionally, when comparing our models, we
find that BioVocabBERT slightly underperforms
the PubMedBERT replica on all datasets except the
more diverse MedMentions dataset. However, we
note that the improvements obtained in the Med-
Mentions dataset are also quite small at under 1%.
Given the zero-shot nature of this experiment, it
suggests that the entity representations obtained by
these two models are of comparable quality and
that PubMedBERT’s pre-training enables a high
degree of robustness around sub-optimal tokeniza-
tion.

5.4 Case Study: Tokenization Robustness

As shown in the NER and entity linking exper-
iments above, the downstream performance of

biomedical language models appears to be mostly
robust to biomedical concept segmentation which
is not well-aligned with human judgments. To an-
alyze this phenomenon, we take a closer look at
how our pre-trained PubMedBERT model repre-
sents biomedical concepts which are segmented in
apparently erroneous ways by the PubMedBERT
tokenizer. Table 9 contains two words from the
biomedical subset of SIGMORPHON which were
sub-optimally segmented by PubMedBERT. For
each of these words we include two sets of their
5 nearest neighbors according to different embed-
ding types. The first set shows the nearest neigh-
bors obtained using embeddings computed by av-
eraging all subword embeddings that make up a
specific word. The second set comes from using
the ‘[CLS]’ token embedding of our PubMedBERT
model, often used for downstream tasks in standard
fine-tuning. The pool of words from which these
neighbors are obtained consists of all the unique
UMLS words in UMLS phrases used in the con-
struction of BioVocabBERT.

Since it comes directly from subword embed-
dings, the first set of neighbors is meant to show
whether the tokenizer’s sub-optimal segmentation
introduces a bias which distracts the model from
the true semantics of a biomedical term. The sec-
ond neighborhood is meant to more faithfully show
us how the model represents a biomedical concept.
Comparing these two sets can let us determine if
the bias introduced by subword embeddings is suc-
cessfully regulated by the overall model.

We first observe that the bias we expected to
find in the word embedding neighborhoods is ev-
idently present. Most words in these first sets are
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segmented in exactly the same ways as the original
sub-optimally segmented word. As seen in Table
9, the word ‘neuromodulation’ is segmented by
PubMedBERT as ‘neuromod-ulation’, splitting the
meaningful ’modulate’ morpheme down the mid-
dle, an example of the compound error in Table 4.
Due to this, other words with the same subword but
different semantics such as ‘immunomodulation’
(‘immunomod-ulation’) and ‘immunoregulation’
(‘immonoreg-ulation’) are added to the word em-
bedding neighborhood. This is also seen in the sec-
ond example, where the word embedding neighbors
of ‘epicarditis’ (‘epic-ardi-tis’) all contain at least
two of the three original subwords. If these word
embeddings were the final model representations,
this bias could lead to considerable errors in down-
stream tasks like entity linking by up-weighting
terms based on sub-optimal subwords.

Fortunately, we observe that the language model
is able to readily overcome the bias observed in
the word embeddings when it comes to the fi-
nal ‘[CLS]’ representations. The second neighbor-
hoods often contain semantically relevant words
which were segmented differently than the original,
such as ‘neuroexcitation’ (‘neuro-exc-itation’) and
‘neuroregulation’ (‘neuro-reg-ulation’) for ‘neu-
romodulation’ (‘neuromod-ulation’) or ‘perimy-
ocarditis’ (‘peri-my-ocardi-tis’) for ‘epicarditis’
(‘epic-ardi-tis’), which both mean types of inflam-
mation of the pericardium. This shows us that the
language model successfully extracts the seman-
tics of the morpheme ‘neuro’ from ‘neuromod’ as
well as the cardiovascular related semantics from
both ‘epic-ardi’ and ‘ocardi’, effectively mitigating
the detrimental effects seen in the word embedding
neighborhoods from sub-optimal tokenization. We
thus conclude that this same robustness is respon-
sible for the parity observed in downstream tasks
between BioVocabBERT and the original PubMed-
BERT. More examples which show similar trends
as the ones in Table 9 can be found in Table 14 in
Appendix C.

5.5 Word Frequency Study

All the findings above suggest that biomedical lan-
guage model pre-training yields entity representa-
tions which are fairly robust to tokenization failures.
However, it is important to note that the distribu-
tion of rare vs. frequent entities in these small and
medium scale datasets will be naturally skewed
towards frequent entities if not intentionally manip-

1 2-5 5-50 50-
500

500-
5,000

5,000-
500,000

Word Frequency Bins

0

10

20

30

M
LM

 A
cc

ur
ac

y

PubMedBERT
BioVocabBERT

Figure 2: MLM accuracy for our pre-trained models
averaged across 10,000 word instances which fall under
each word frequency bin.

ulated. Therefore, we design an experiment which
explores whether the quality of representations
in BioVocabBERT and our PubMedBERT replica
varies with respect to word frequency. In this exper-
iment, we obtain 10,000 instances of words from
the pre-training corpus in each of the frequency
bins listed in Table 2. We encode the sentence in
which each instance is found and mask the word of
interest. We report the percentage of words which
are predicted correctly using the masked language
modeling head’s prediction in each bin.

We note that both models perform very simi-
larly across frequency bins until the two bins with
the largest frequencies. Our BioVocabBERT model
obtains a somewhat significant advantage in the sec-
ond highest 500-5,000 frequency bin which then
inverts to a similarly significant drop in the cate-
gory with the most frequent words. This trade-off
is likely due to many high frequency words hav-
ing a single token in the PubMedBERT vocabu-
lary, which leads the model to have a natural bias
towards predicting these words. In medium fre-
quency words, PubMedBERT’s bias towards high
frequency words is likely detrimental and BioVo-
cabBERT is able to easily outperform it. This trade-
off appears to be small enough to have little effect
on downstream performance for these models but
we leave exploring its effect for future work.

6 Conclusion

In this work, we first note that current biomedical
tokenization methods are not well aligned with hu-
man judgments and highlight that the agglutinating
nature of biomedical terminology could be affected
by this sub-optimal segmentation. To understand
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whether this limited segmentation performance has
an effect on downstream applications, we first build
a biomedical tokenizer which is better aligned with
human judgments using supervised morpheme seg-
mentation and biomedical domain-knowledge. We
then leverage this tokenizer to pre-train our BioVo-
cabBERT model and compare it with a replicated
PubMedBERT model on the NER and entity link-
ing tasks. Surprisingly, we find that these models
achieve almost exact parity in all datasets evaluated,
suggesting that PubMedBERT’s domain specific
tokenization and pre-training process was already
quite robust to sub-optimal tokenization. We fur-
ther verify this idea with a case-study which qualita-
tively confirms our observations. We hope that our
work can give researchers and practitioners some
insight into how instances of sub-optimal segmen-
tation, which are often jarring to human experts,
could have little effect on a model’s downstream
applicability.

7 Limitations

Although our findings suggest that biomedical lan-
guage model pre-training is quite robust to sub-
optimal tokenization, we note that our work has a
few potential limitations that should be explored
further. The use of a biomedically relevant sub-
set of the SIGMORPHON Shared Task dataset
for evaluating biomedical term tokenization is a
straight-forward and reasonable strategy, however,
it is important to highlight that the resource was not
created for this purpose and might not be perfectly
aligned with ideal biomedical tokenization. Addi-
tionally, we would like to point out that even though
our BioVocabBERT tokenizer outperforms other
equivalent tokenizers like PubMedBERT’s, it sev-
erly underperforms the best possible segmentation
accuracy (48.5 vs 74.1 for our fine-tuned CANINE
model). It is therefore possible, although unex-
pected, that a tokenizer which performs biomed-
ical tokenization at even higher levels could lead
to sudden improvements in the pre-training pro-
cess. Finally, we note that the effects of the BioVo-
cabBERT’s much larger vocabulary size, almost
three times larger than PubMedBERT’s, on the
pre-training process were not explored in depth.
Nevertheless, given that some previous work (Feng
et al., 2022) argues that larger vocabularies lead
to slight improvements in downstream tasks, our
main conclusions are likely to hold.
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A NER Hyperparameter Tuning

We run hyperparameter tuning for each model in
the fully-supervised and low-resource NER settings
and they can both be found in Tables 11 and 12
below.

Learning
Rate

Batch
Size

Warmup
Ratio

Weight
Decay

Total
Epoch

Number

Search
Space

1e-5
3e-5

16
32

0.06 0.1
5
10

Table 11: Hyperparameter search grid used for fully-
supervised NER experiments.

Learning
Rate

Batch
Size

Warmup
Ratio

Weight
Decay

Total
Epoch

Number

Search
Space

1e-5
3e-5

16
32

0.06 0.1
15
25

Table 12: Hyperparameter search grid used for low-
resource NER experiments.

B Pre-training Details

Our models were pre-trained on 4 80GB A100s.
The process took approximately 2 and 3 days re-
spectively for PubMedBERT and BioVocabBERT
given the larger computational requirements of us-
ing an 80,000 subword vocabulary.

Objectives Vocab.
Size

Corpus
Size

Gradient
Steps

Batch
Size

# of
Examples

PubMedBERT
(Original)

MLM
& NSP

28,895 21GB 62,500 8,192 512M

PubMedBERT
(Replica) MLM 28,895 25GB 62,500 8,192 512M

BioVocabBERT MLM 80,181 25GB 62,500 8,192 512M

Table 13: Pre-training details for the original PubMed-
BERT compared to our models.

C More Neighborhood Examples

The neighborhood examples shown in Table 14,
help demonstrate that the general trends discussed
in §5.4 hold more generally for many sub-optimal
segmentation examples.
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Sub-optimal Segmentation Word Embedding 5-NN [CLS] Embedding 5-NN

abdominopelvic
(abdom-ino-pe-lv-ic)

abdominopelvis (abdom-ino-pe-lv-is) abdominocentesis (abdom-ino-cent-esis)
sacropelvic (sacro-pe-lv-ic) thoracopelvic (thorac-ope-lv-ic)
uteropelvic (utero-pe-lv-ic) midpelvic (mid-pe-lv-ic)
abdomino (abdom-ino) sacropelvic (sacro-pe-lv-ic)
midpelvic (mid-pe-lv-ic) extrapelvic (extrap-elvic)

neuroradiography
(neuroradi-ography)

roentgenography (roentgen-ography) neuroradiology (neuroradi-ology)
ventriculography (ventricul-ography) neuroradiologic (neuroradi-ologic)
neuroradiology (neuroradi-ology) encephalography (encephal-ography)
electroretinography (electroretin-ography) neurography (neuro-graphy)
herniography (herni-ography) cerebroangiography (cerebro-angi-ography)

postinfectional
(postin-fection-al)

postinfection (postin-fection) reinfection (rein-fection)
postin (postin) postinfection (postin-fection)
postinjection (postin-jection) superinfection (super-infection)
reinfection (rein-fection) reinfected (rein-fected)
postinfusion (postin-fusion) superinfections (super-infection-s)

neurogastrointestinal
(neuro-ga-st-ro-intestinal)

extragastrointestinal (extra-ga-st-ro-intestinal) extragastrointestinal (extra-ga-st-ro-intestinal)
pangastrointestinal (pan-ga-st-ro-intestinal) pangastrointestinal (pan-ga-st-ro-intestinal)
myoneurogastrointestinal (myo-ne-uro-ga-st-ro-intestinal) enteropancreatic (enter-opancre-atic)
gastrogastric (gastro-ga-st-ric) gastroenteropancreatic (gastroenter-opancre-atic)
gastrogastrostomy (gastro-ga-st-rost-omy) nasopancreatic (nas-opancre-atic)

adrenocorticosteroid
(adrenocortic-oster-oid)

adrenocorticosteroids (adrenocortic-oster-oids) adrenocorticosteroids (adrenocortic-oster-oids)
glucocorticosteroid (glucocortic-oster-oid) adrenocorticotropic (adrenocortic-otropic)
mineralocorticosteroid (mineralocortic-oster-oid) corticoids (cortic-oids)
mineralocorticosteroids (mineralocortic-oster-oids) corticoid (cortic-oid)
glucosteroid (gluc-oster-oid) glucosteroid (gluc-oster-oid)

Table 14: In this table we show more PubMedBERT sub-optimal segmentation examples and their nearest neighbors
with respect to word embeddings and ‘[CLS]’ token embeddings. As in Table 9, bold neighbors were missed by the
word embeddings but are retrieved correctly by the ‘[CLS]’ embeddings, repairing the sub-optimal segmentation
bias.
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