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1 Introduction

There is a trend in the machine learning commu-
nity to adopt self-supervised approaches to pre-
train deep networks. Self-supervised representation
learning (SSL) utilizes proxy supervised learning
tasks, for example, distinguishing parts of the input
signal from distractors, or generating masked input
segments conditioned on the unmasked ones, to
obtain training data from unlabeled corpora. BERT
and GPT in NLP and SimCLR and BYOL in CV
are famous examples in this direction. These ap-
proaches make it possible to use a tremendous
amount of unlabeled data available on the web to
train large networks and solve complicated tasks.
Thus, SSL has the potential to scale up current
machine learning technologies, especially for low-
resourced, under-represented use cases, and democ-
ratize the technologies.

Recently self-supervised approaches for speech
processing are also gaining popularity. There are
several workshops in relevant topics hosted at
ICML 20201, NeurIPS 20202, and AAAI 20223 4.
We also found SSL for speech starting to be one
of the focused topics in special/regular sessions of
mainstream speech conferences such as ICASSP
and Interspeech5 6. On the other hand, there is a
growing synergy between the speech and compu-
tational linguistic community because of the prox-
imity of the two areas. Many problems including
speech assistant, dialog management, speech trans-
lation, and automatic speech recognition attract

1https://icml-sas.gitlab.io/
2https://neurips-sas-2020.github.io/
3https://aaai-sas-2022.github.io/
4Hung-yi Lee, Abdelrahman Mohamed, Shinji Watanabe,

Tara Sainath, Karen Livescu, Shang-Wen Li are in the orga-
nization committee of the workshops at NeurIPS 2020 and
AAAI 2022

5https://self-supervised-sp.github.io/
Interspeech2020-Special-Session

6Organized by Hung-yi Lee, Abdelrahman Mohamed,
Shinji Watanabe, Tara Sainath

researchers from both areas.
Due to the growing popularity of SSL, and the

shared mission of the areas in bringing speech and
language technologies to more use cases with bet-
ter quality and scaling the technologies for under-
represented languages, we propose this tutorial in
the type of Cutting-edge to systematically survey
the latest SSL techniques, tools, datasets, and per-
formance achievement in speech processing. There
is no previous tutorial about similar topic based
on the authors’ best knowledge. The tutorial aims
to make the researchers in speech and language
community aware of existing SSL innovation, and
equipped to try out the new techniques. We also
hope to bring researchers interested in the topics
from both areas connected, catalyze new ideas and
collaboration, and drive the SSL research frontier.

2 Tutorial Structure and Content

This is a three-hour tutorial. In the reference be-
low, the red asterisks (∗) indicate the papers of the
speakers. This tutorial will cover at least 70% of
the content not from the authors’ papers.

2.1 Introduction and Motivation

We first introduce the general framework of pre-
training SSL, and motivate the importance of SSL
in speech processing. SSL makes it possible to
leverage unlabeled audio data and avoid the costly
data labeling step, which is especially helpful for
low-resource languages.

2.2 Backgrounds and development trajectory

Representation learning is not an entirely new idea.
This tutorial will briefly review what has been done
before the wave of SSL in the speech community
and the relations and differences between SSL and
previous representation learning approaches. These
approaches include clustering and mixture models
(e.g., HMM, GMM) (Jansen and Church, 2011; Lee
and Glass, 2012; Chung et al., 2013; Zhang and
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Glass, 2010), and stacked representation learners
(e.g., RBM, NAE, NCE, SparseCoding) (Mohamed
and Hinton, 2010)∗(Driesen and Van hamme, 2012;
Hazen et al., 2009; Sivaram et al., 2010).

2.3 Speech SSL Approaches

Then, we discuss the design and implementation
details of existing speech SSL approaches, which
can be categorized into three types, Generative,
Contrastive, and Predictive approaches. Gen-
erative approaches learn SSL representations by
reconstructing input features given historical or
unmasked ones. Representative models in this
type include APC (Chung et al., 2019; Chung and
Glass, 2020a,b), VQ-APC (Chung et al., 2020), De-
CoAR (Ling et al., 2020)∗, DeCoAR 2.0 (Ling
and Liu, 2020)∗, Mockingjay (Liu et al., 2020;
Chi et al., 2021)∗, TERA (Liu et al., 2021b)∗,
MPC (Jiang et al., 2019, 2021), pMPC (Yue
and Li, 2021), speech-XLNet (Song et al., 2020)
NPC (Liu et al., 2021a), and PASE+ (Pascual
et al., 2019; Ravanelli et al., 2020). Contrastive
approaches pre-train representations to distin-
guish negative examples from real ones. Pop-
ular contrastive models consist of CPC (Oord
et al., 2018), wav2vec (Schneider et al., 2019),
vq-wav2vec (Baevski et al., 2020a), wav2vec
2.0 (Baevski et al., 2020b), and Wav2vec-c (Sadhu
et al., 2021). Predictive approaches, such as
HuBERT (Hsu et al., 2021)∗, follow BERT pre-
training through predicting discrete labels given
input data.

In addition to the above three types, we will dis-
cuss the similarities and dissimilarities between
SSL for speech and other modalities such as CV
and NLP. We will also investigate studies in learn-
ing from multi-modal data as the naturally pair-
ing of modalities in videos can potentially benefit
representation learning without annotation. The
discussion helps audience better connect works in
adjacent communities and inspire more innovation.

2.4 Benchmarking, Toolkit, and Analysis

We will investigate existing benchmarks (e.g.,
SUPERB (wen Yang et al., 2021)∗, LeBench-
mark (Evain et al., 2021) and ZeroSpeech (Dunbar
et al., 2020)) and analyses (e.g., (Pasad et al., 2021;
wen Yang et al., 2020)∗) for SSL speech models
to understand their performance and what are en-
coded in representations. This tutorial will also
include a demo to introduce the usage of the self-

supervised speech representation toolkit: s3prl7,
and how to use s3prl in ESPNet8, such that audi-
ences interested in this research direction can try
out their ideas easily.

2.5 From representation learning to zero
resources

To illustrate the critical role of SSL in democra-
tizing speech and language technologies for low-
resourced use cases, we further discuss two top-
ics, unsupervised speech recognition and text-
less NLP, and their relation to SSL. Unsupervised
speech recognition (Liu et al., 2018; Chen et al.,
2019)∗ (Yeh et al., 2018; ; Baevski et al., 2020b;
Chung et al., 2018; Chung et al.) aims at solving
speech recognition problem for the extremely low-
resource languages, where only unpaired speech
and text are available. We will discuss two research
questions: 1) In such a situation, can machine still
learn how to transcribe speech into text? 2) How
can SSL models help unsupervised speech recogni-
tion?

Previously, connecting an NLP application to
speech inputs meant that researchers had to first
train an automatic speech recognition (ASR) sys-
tem, which is available for just a handful of lan-
guages. The goal of textless NLP is to bring NLP
and speech technology to languages that do not
have ASR systems available or that do not even
have written form, which contribute to around half
of the languages in the world. In this topic, we will
examine how to skip ASR and work in an end-to-
end fashion, from the speech input to speech/text
outputs, for scaling language and speech technolo-
gies to more languages (Polyak et al., 2021a,b)∗.

2.6 Conclusion and future directions

We will conclude this tutorial with some possible
future research directions. Prompt Tuning: As
SSL models become larger, fine-tuning their pa-
rameters becomes challenging, which makes the
idea of prompt tuning appealing. Prompt tuning
has been widely studied for text (Liu et al., 2021c),
but how to apply the technology to Speech SSL
models is still unclear. Small Footprint: SSL
speech models are usually gigantic. In order to
make the technology more widely applicable, it is
critical to develop small footprint SSL speech mod-
els. Prevent Attack: To build more robust SSL

7https://github.com/s3prl/s3prl
8https://github.com/espnet/espnet
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speech models, how to prevent the models from
all kinds of attacks, including adversarial attacks
and privacy attacks, will be an important research
question. Bias issue: Because the training data of
SSL speech models is unlabeled, it is not trivial to
control the distributions of the SSL training data.
The influence of biased data on SSL speech models
and impact of the biased models on downstream
tasks are not sufficiently studied and might pose
risk on the application of SSL.

3 Diversity

The proposed tutorial is highly relevant to the spe-
cial theme of ACL about language diversity. One
of the main focuses of the tutorial is leveraging
SSL to reduce the dependence of speech and lan-
guage technologies on labeled data, and to scale up
the technologies especially for under-represented
languages and use cases. We will also discuss the
new challenges and ethical consideration brought
by SSL to communities, such as heavy memory
footprint, expensive computation for pre-training
and inference, and carbon emission. These top-
ics aim at stimulating discussion and investment
in allowing more use cases, in terms of quantity
and diversity, to benefit from the advancement of
speech and language technologies with the appli-
cation of SSL. Hence, ACL would be preferred
because of the alignment of themes. NAACL-
HLT/EMNLP/COLING are also acceptable due
to the importance and relevance of SSL techniques
for speech and language community.

In addition to the themes of tutorial, the pre-
senters are also diverse in countries and genders.
There are both senior and junior instructors, and
come from academia and industry. With the diverse
background of presenters, we aim to offer attendees
a comprehensive review and encourage diversified
discussion.

4 Attendee prerequisites and reading list

We will introduce every speech and language task
discussed in the tutorial and require no domain
knowledge about these tasks from attendees. In-
stead, the attendees should understand derivatives
as found in introductory Calculus, possess basic
knowledge in machine learning concepts such as
classification, model optimization, gradient de-
scent, pre-training, and Transformer. We also en-
courage the audience to read the papers of some
well-known SSL techniques before the tutorial,

which are listed below: (Ericsson et al., 2021;
Rogers et al., 2020; Liu et al., 2021c; Qiu et al.,
2020). Those papers focus on CV or NLP, so the
content does not highly overlap with the tutorial,
but the audience can learn more from the tutorial if
they already have general ideas about SSL.

5 Tutorial Logistics

There is no previous tutorial on similar topics.
Given our experiences from related ICML and
NeurIPS workshops in 2020 (we observed 13 in-
vited talks, 28 accepted papers, and over 150 par-
ticipants combined) and the growing interests in
SSL from academy, we estimate the number of par-
ticipants to be between 100 and 200. We do not
have special requirements for technical equipment
and we will allow the publication of our slides and
recording of the tutorial in the ACL Anthology.

6 Biographies of Presenters
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Department of Computer Science & Information
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TERSPEECH 201910, SIPS 2019, INTERSPEECH
2020, ICASSP 2021, ACL 2021.

Abdelrahman Mohamed is a research scientist
at Facebook AI research (FAIR) in Seattle. Before
FAIR, he was a principal scientist/manager in Ama-
zon Alexa AI team. From 2014 to 2017, he was
in Microsoft Research Redmond. He received his
PhD from the University of Toronto with Geoffrey
Hinton and Gerald Penn where he was part of the
team that started the Deep Learning revolution in
Spoken Language Processing in 2009. He is the
recipient of the IEEE Signal Processing Society
Best Journal Paper Award for 2016. His research
interests span Deep Learning, Spoken Language
Processing, and Natural Language Understanding.
He gave tutorials at the 4th International School
on Deep Learning, and Facebook AI bootcamp in
Dubai, UAE, 2021.

Shinji Watanabe is an Associate Professor at

9The tutorial has the most participants among the 14 tuto-
rials in ICASSP 2018.

10The tutorial also has the most participants among the 8
tutorials in INTERSPEECH 2019.
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Carnegie Mellon University. He was a research
scientist at NTT Communication Science Labora-
tories, Kyoto, Japan, from 2001 to 2011, a visiting
scholar in Georgia institute of technology, Atlanta,
GA in 2009, and a senior principal research sci-
entist at Mitsubishi Electric Research Laborato-
ries (MERL), Cambridge, MA USA from 2012
to 2017. He was an associate research profes-
sor at Johns Hopkins University, Baltimore, MD
USA from 2017 to 2020. His research interests
include automatic speech recognition, speech en-
hancement, spoken language understanding, and
machine learning for speech and language process-
ing. He has published more than 200 papers in peer-
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several awards, including the best paper award from
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Editor of the IEEE Transactions on Audio Speech
and Language Processing. He was/has been a mem-
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(SLTC), and Machine Learning for Signal Process-
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Tara Sainath received her PhD in Electrical
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tion. After her PhD, she spent 5 years at the Speech
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son Research Center, before joining Google Re-
search. She has co-organized a special session
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IEEE Speech and Language Processing Technical
Committee (SLTC) Newsletter. Her research in-
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adaptation methods.

Karen Livescu is an Associate Professor at TTI-
Chicago, a philanthropically endowed academic
computer science institute located on the Univer-
sity of Chicago campus. She completed her PhD
in 2005 at MIT in the Spoken Language Systems
group of the Computer Science and Artificial In-
telligence Laboratory. In 2005-2007 she was a
post-doctoral lecturer in the MIT EECS depart-
ment. Her main research interests are in speech

and language processing and related problems in
machine learning. Her recent work includes multi-
view representation learning, acoustic word em-
beddings, visually grounded speech modeling, and
automatic sign language recognition. Her recent
professional activities include serving as a program
chair of ICLR 2019 and a technical co-chair of
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gave tutorials at SLT 2014, the Machine Learning
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puter Science and Artificial Intelligence Laboratory
(CSAIL). His research is focused on spoken lan-
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reading comprehension, and low-resource speech
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SPEECH 2020, ICASSP 2021, ACL 2021.

Shu-wen Yang is currently pursuing his Ph.D.
degree in NTU. His research focuses on Self-
Supervised Learning (SSL) in speech. He is ded-
icated to establishing the benchmark in this field,
Speech processing Universal PERformance Bench-
mark (SUPERB), which focuses on SSL’s general-
izability across unseen data domains and tasks. He
is also the co-creator of the S3PRL toolkit which in-
cludes numerous recipes for both pre-training and
benchmarking for SSL in speech.

Katrin Kirchhoff is a Director of Applied Sci-
ence at Amazon Web Services, where she heads
several teams in speech and audio processing. Prior
to joining Amazon she was a Research Professor at
the University of Washington, Seattle, for 17 years,
where she co-founded the Signal, Speech and Lan-
guage Interpretation Lab. Her research interests are
in speech processing, conversational AI, and ma-
chine learning, including representation learning,
continual learning, and low-resource ASR. She has
previously served on the editorial boards of Speech
Communication and Computer, Speech, and Lan-
guage, and was a member of the IEEE Speech
Technical Committee.
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