
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 4497–4503
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

4497

QA4IE: A Quality Assurance Tool for Information Extraction 

  
 

Rafael Jimenez Silva1, Kaushik Gedela1, Alex Marr1, Bart Desmet1, Carolyn Rosé1,2, Chunxiao 
Zhou1 

1National Institutes of Health Clinical Center, Bethesda, Maryland, USA 
2Language Technologies Institute, Carnegie Mellon University, Pittsburgh, USA 

{rafael.jimenezsilva, kaushik.gedela, alex.marr, bart.desmet, carolyn.rose, chunxiao.zhou}@nih.gov 

Abstract 
Quality assurance (QA) is an essential though underdeveloped part of the data annotation process. Although QA is supported to some 
extent in existing annotation tools, comprehensive support for QA is not standardly provided. In this paper we contribute QA4IE, a 
comprehensive QA tool for information extraction, which can (1) detect potential problems in text annotations in a timely manner, (2) 
accurately assess the quality of annotations, (3) visually display and summarize annotation discrepancies among annotation team 
members, (4) provide a comprehensive statistics report, and (5) support viewing of annotated documents interactively. This paper offers 
a competitive analysis comparing QA4IE and other popular annotation tools and demonstrates its features, usage, and effectiveness 
through a case study. The Python code, documentation, and demonstration video are available publicly at https://github.com/CC-RMD-
EpiBio/QA4IE. 

Keywords: quality assurance, evaluation, discrepancy analysis 

1. Introduction 
For the past 30 years, benchmark tasks have driven forward 
progress in the field of Natural Language Processing 
(NLP). As larger datasets have become the norm in the 
field, the number of available annotation tools has 
increased accordingly (Atdağ and Labatut, 2013; Beasley 
and Manda, 2018; Neves and Ševa, 2021). Though some 
benchmark tasks leverage training data with naturally 
occurring labels, common gold standard corpus 
construction requires substantial annotation effort.  Despite 
advances in pipeline and model development, errors remain 
likely to occur. Therefore, there is a great need to develop 
tools that can help correct and improve annotated language 
resources. A comprehensive quality assurance tool helps 
guarantee the high quality of language resources and their 
downstream reliability for evaluation. 

In this paper we present QA4IE, a novel tool that addresses 
an important gap existing in other current annotation tools, 
namely comprehensive support for quality assurance. Due 
to the importance of QA in data annotation, most of the 
existing annotation tools include facilities for error 
checking (Cejuela et al., 2014; Cunningham et al., 2013; de 
Castilho et al., 2014; Grosman et al., 2020; Grundke et al., 
2016; Klie et al., 2018; Kummerfeld, 2019; LightTag, 
2021; Ogren, 2006; Stenetorp et al., 2012), though possibly 
perfunctory in nature. In contrast, QA4IE offers the 
following both for annotation and for information 
extraction: First, it offers automatic detection of potential 
problems in the annotation results. The user provides 
formatting standards that are used by QA4IE to validate the 
annotations and alert the user(s) to deviations from the 
standard. Second, QA4IE provides measures of agreement 
between annotators in terms of both token-level and entity-
level IRR measurements. Third, based on its comparison 
between annotations across annotators, QA4IE provides a 
visual display of the discrepancies between annotators. 
Fourth, QA4IE provides comprehensive summary statistics 
computed over annotations, including counts for each type, 
length distribution, and more. Fifth, users are provided with 

a corpus viewer that enables viewing annotations of the 
selected corpus interactively. In addition, a comprehensive 
QA report, including details of errors and warnings found, 
text and annotation statistics, annotation performance 
evaluation, and discrepancy analysis, can be exported in 
CSV or TXT format. 

In the remainder of the paper we will expand upon the 
desiderata that motivated work on QA4IE. In the next 
section, we describe in detail the technical foundation for 
the development of QA4IE. After that we offer a case study 
illustrating the use of QA4IE. Finally, we provide a 
competitive analysis, comparing QA4IE to existing tools. 
The article concludes with a summary and a plan for future 
work. 

2. Annotation Process Support Desiderata 
Text annotation specifically refers to the marking of text to 
highlight structure and substance, for a variety of language 
tasks that may be operationalized either as classification 
tasks or sequence labeling tasks. Common annotation tasks 
include rhetorical structure, concepts and relationships 
between them, syntactic dependencies, and so on. 
Annotation tools support the annotation process, enabling 
far greater efficiency and accuracy than would be possible 
without them (Ide and Pustejovsky, 2017; Pustejovsky and 
Stubbs, 2012). In this section we explore the challenges in 
annotation efforts that render spot checking insufficient and 
therefore motivate the need for tools with specific 
affordances for cataloguing potential errors and making 
them easy to find.   

The multi-level structure of natural language provides the 
opportunity for a variety of error types to occur. In the 
example of nested named entity recognition (NER) 
(Nadeau and Sekine, 2007), inconsistencies between 
annotators may occur in terms of annotation set names and 
the corresponding annotation schema, sub-entity 
annotations outside the parent entity annotations, 
impermissible entity overlap, inconsistent attributes, and so 
on.   



4498

What exacerbates the already difficult QA process is the 
demand for large scale annotated data, which requires that 
the annotation work be done by a team of annotators, not 
just a pair of annotators. In order to ensure the consistency 
of the annotation work, an inter-rater reliability (IRR) test 
is performed before the annotators are able to work 
independently (Artstein and Poesio, 2008). When the IRR 
is higher than the preset threshold and the main problems 
that cause inconsistency are resolved, the quality of each 
annotator's individual annotation work can be assured. 
Therefore, QA requires the provision of IRR metrics and 
calculations for teams of annotators.  

Due to the constraints of project timeline and budget, it is 
not always possible to resolve every potential error. 
Instead, annotation teams must work together to prioritize 
the most critical issues to address. This requires a QA tool 
to summarize and categorize annotation inconsistencies 
and identify the top issues for the annotation team to 
prioritize. In order to accomplish this, issues must be 
considered in the context of the big picture of the corpus as 
a whole. Thus, the QA tool needs to provide summary 
statistics to support this reflection.   

Validation of annotations against a pre-set standard is an 
incredibly important step that is largely not supported by 
existing tools. For example, it is typically not trivial to 
determine whether the original text has been modified in 
the annotation process, whether a sub-entity is beyond the 
scope of the parent entity, whether there are overlaps 
among entities/sub-entities that are not allowed, and so on.  

Regarding IRR, although most tools provide the function 
of calculating IRR, they often provide either the entity-
level or the token-level metrics, but not both, even though 
these two different levels of IRR metrics often provide 
complementary information and thus need to be considered 
together. In terms of discrepancy analysis, the presentation 
of annotation differences is often based on the assumption 
of one-to-one entity correspondence, which does not 
always hold (Cunningham et al., 2013). In addition, there 
is an absence of categorization for different types of 
discrepancies.  

In short, there is a great need for QA4IE, with its 
comprehensive and powerful QA features for supporting 
both the quality and efficiency of the annotation process, 
increasing our understanding of data and annotation, and 
thus providing an important guarantee for high-quality 
modeling and evaluation. A more detailed comparison of 
QA4IE with existing tools is provided in the Competitive 
Analysis in Section 5. 

3. QA4IE System Description 
QA4IE addresses all the desiderata discussed in the 
previous section. Information extraction includes Named 
Entity Recognition, Coreference Resolution, Named Entity 
Linking, Relation Extraction, Event Extraction, 
Terminology Extraction, and so on. In this paper, we use 
nested NER as an example to illustrate the features of 
QA4IE. Although the current version of QA4IE focuses on 
nested NER, these features can be easily applied to other 
information extraction tasks. QA4IE consists of five main 
components: Error checking and Validation, IRR, 
Discrepancy Analysis, Visualization, and Prioritization. In 
the following, we introduce each component one by one. 

3.1 Error Checking and Validation 
Error checking and Validation covers both the document 
and annotation levels. Document-level validation is the first 
and simplest part of QA, which sets the foundation for the 
subsequent portions. One aspect is to check whether all 
annotators are using the same basic data format for 
annotation consistently over the whole corpus. Although 
text may be pre-processed and distributed to each annotator 
in the same way before annotation, some annotation tools 
allow annotators to purposefully or accidentally change 
text during annotation. Differences in text may also occur 
if progress is stored locally rather than on a central server. 
These changes result in false positives in the discrepancy 
analysis. To address this, QA4IE checks if the text of the 
same document differs across the versions used by each of 
multiple annotators. In addition, QA4IE also check 
consistency in annotation set name across annotators 
working on the same annotation task. 

Annotation level Validation is where annotations are 
checked for compliance with corresponding annotation 
guidelines. In order to provide customized services for 
different annotation tasks, QA4IE offers a structured 
configuration file, in which the user can provide the 
following information: (1) the location of the annotation 
files; (2) the location of the output files; (3) the type of 
annotation task: QA4IE currently only has the option of 
sequence labelling (other options, such as text 
classification, are under development)  (4) and the 
character encoding type. (5) Finally, for sequence labeling, 
the user can specify the hierarchical structure among 
entities/sub-entities and which entities/sub-entities are 
allowed to overlap with each other. QA4IE also checks 
annotations under default assumptions. For example, by 
default, the annotations may not be allowed to go beyond 
the range of the text; or, the end index of an entity/sub-
entity may not be allowed to be equal to or less than its 
starting index. Annotation offsets that occur outside of the 
scope of the text may seem impossible. This is true for most 
original annotations. But annotation results often need 
some post-processing, such as converting format, filtering 
irrelevant content, etc. If the post-processing process 
allows modifying the indices of annotations, this 
unexpected error may arise. 

3.2 IRR 
IRR, which is also called inter-annotator agreement (IAA), 
is commonly used to measure the quality of annotation 
work. Assuming that the annotations from each annotator 
have been validated, the next step is to ensure some level 
of consensus among annotators. Cohen's kappa coefficient 
(Artstein and Poesio, 2008) is commonly used to measure 
IRR for classification tasks  because it is a chance-corrected 
metric. For sequence labeling, where chance agreement 
calculation is still an open problem, F1 score is usually used 
to approximate the IRR (Cunningham et al., 2013).  

3.3 Discrepancy Analysis 
IRR is just a measure of agreement that defines quality in 
terms of reproducibility across annotators. As a next step, 
the Discrepancy Analysis functionality is used to help the 
annotation team find out where the problems are, the 
reasons for the problems, and to distinguish between more 
and less important problems as part of their prioritization 
process. The discrepancy analysis in existing annotation  



4499

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mobility information structure. 
 
software is typically only a display of differences based on 
the assumption of one-to-one correspondence, i.e., each 
unit of one annotator’s annotation can be matched to a unit 
of another annotator’s annotation if both of them annotate 
the corresponding unit in the same text (Cunningham et al., 
2013). However, this assumption does not always hold. We 
find that for the annotation of long text span entities, the 
annotation style of each annotator is different, which often 
results in a many-to-many correspondence situation. This 
is because some annotators are accustomed to labeling a 
continuous long text span as several short entities, while 
others may be used to combining several adjacent short 
entities into one long entity.  

3.4 Visualization 
Visualization is then offered beyond simply pinpointing 
specific discrepancies between pairs of annotators. The 
display for checking one-to-one correspondences does not 
fully demonstrate the similarities and differences across 
multiple annotators. By partitioning the annotations of 
multiple annotators into clusters based on annotation 
overlap, QA4IE compares the annotations of multiple 
annotators within each resulting text span cluster, so that 
these more complex sets of differences between annotators 
can be seen at glance. To provide better feedback to the 
annotation team, QA4IE supports assignment of these 
clusters into the following categories: (1) not every 
annotator has annotated this; (2) split/combine, i.e., an 
entity annotated by one annotator overlaps with multiple 
entities of another annotator; (3) partial match; (4) 
corresponding entities have the same text span, but their 
attributes are different. QA4IE compares the discrepancies 
of each pair of annotators and the whole annotation team, 
and sorts the various types of discrepancies for the 
annotation team's reference. 

3.5 Prioritization 
Prioritization can be supported by enabling an annotation 
team to view identified issues in the context of the 
composition of the corpus. QA4IE also tallies the 
annotations of each annotator to better understand the 
characteristics of the task and the annotation style of each 

 
1 https://gate.ac.uk/sale/tao/splitch5.html#x8-920005.5 

annotator. Summary statistics include: (1) the number of 
various types of entities in each document; (2) number of 
entities with specific attributes; (3) length of entities, and 
(4) the length of entities with specific attributes.  

We will illustrate all features with details in the case study 
below. 

4. Case Study 

The current QA4IE is a Python based command-line tool 
that is intuitive and accessible. Anyone familiar with the 
command line interface can quickly master all of QA4IE's 
features. The user needs to provide the input folder for 
annotated GATE XML files, the output folder for QA 
reports, and the annotation schema specifications in a 
configuration file. GATE supports a range of file formats 
by default, including XML, and many more through 
plugins1 . Since the default format for QA4IE is GATE 
XML, we suggest using GATE as a preprocessing step to 
convert your annotations if they’re in a different format. 
Here we use some synthetic clinical notes as an example to 
demonstrate the application of QA4IE to a sequence 
labeling task. This task is to extract mobility information 
from the clinical notes by three annotators. The mobility 
information is organized as shown in Figure 1.  

Note mobility related annotations have a hierarchical 
structure, and that the schema file lists only the associated 
entities, sub-entities, and corresponding attributes, and 
does not specify the nested structure between entities and 
sub-entities. Therefore, we list all the entities and sub-
entities in the configuration file with the identifier []. The 
dependency of the sub-entities and their parent entities is 
indicated by “sub_entities=”. In Figure 2, the mobility 
entity contains three types of sub-entities: Action, 
Assistance, and Quantification. Based on the nested 
structure given in the configuration file, QA4IE can detect 
errors in the sub-entity that exceed its parent entity and 
output them to the quality assurance report. The types of 
entities/sub-entities that are allowed to overlap with each 
entity/sub-entity are listed after “overlaps=”, and the types 
of entities/sub-entities that are not listed are not allowed to 



4500

overlap with the entity/sub-entity by default. In addition, 
we also specify the type of task in the configuration file, 
i.e., sequence labeling or text classification, and character 
encoding type. 

Once the configuration file is ready, we can directly run 
QA4IE to perform the QA task. The main menu is shown 
in Figure 3. Regardless of the option selected, users have 
the flexibility to select specific text, annotators, entity/sub-
entity, and features according to their needs. 

Figure 2: Configuration file for mobility information 
extraction. 

 

 

 

 

 

 

Figure 3: QA4IE main menu. 

Document Validation includes two functions: “Text 
Differences” and “Set Name Difference”. If errors have 
been found, users can generate reports to output the text and 
indices of text fragments where discrepancies have been 
found, as well as differences in set names. 

 
 
 

 
 

Figure 4: Example of Document Validations 

Annotation Validations have several sub-options. 
"Annotation Overlaps" detects overlapping entities/sub-
entities that violate regulation. "Subentity Boundaries" 
finds sub-entities that are beyond the scope of their parent 
entities, while "Annotation Boundaries" checks if any 
annotation falls outside the annotation set. "Zero Length 
Annotations" and "Negative Length Annotations" catch 
entities/sub-entities whose end indices are less than or 
equal to the starting indices. "Document Scope" identifies 
annotations that are beyond the scope of the full text. 

"Validate Schema" checks if there are annotations that are 
not defined in the schema. 

 
 
 
 
 
 

 

Figure 5: Example of Annotation Validations 

Statistics is used to collect information on various 
distributions, including the number of various types of 
entity/sub-entity and their lengths in terms of mean, 
variance, and extreme values. The choice of types can be 
either entity/sub-entity without regard to feature, or 
entity/sub-entity with a specific feature. Basic statistical 
information is displayed directly on the screen. A more 
complete version can be exported to the output folder 

Figure 6: Example of Statistics 

Evaluation provides both token-level and entity-level 
metrics because they provide complementary information.  

Figure 7: Example of Evaluation 

Figure 7 shows the token-level metric as an example, 
giving the confusion matrix, precision, recall, and F1 score 
for a selected type of entity/sub-entity.  

Discrepancy Analysis is another highlight of QA4IE. Our 
Discrepancy Analysis has two unique features. As shown 
in Figure 8, QA4IE automatically categorizes discrepancies 
by text span and feature. This allows the annotation team 
to understand which are the main discrepancies that need to 
be resolved first. 

Figure 8: Discrepancy Analysis 
 



4501

file entity 
type 

cluster annotator1 annotator2 annotator3 discrepancy 

11111-
11111 

Mobility 9 Mobility 
 
"Going down steps 
4" 
 
(642-660) 
 
id=683 
 
Subject : Patient 
Type : Objective 
Timeline : Present 

Mobility 
 
"-Going down 
steps 4  
-Squatting 5 
-Sitting 15 
min. 6" 
 
(641-693) 
 
id=684 
 
Subject : 
Patient 
Type : 
Objective 
Timeline : 
Present 

Mobility 
 
"Going down 
steps 4" 
 
(642-660) 
 
id=683 
 
Subject : 
Patient 
Type : 
Objective 
Timeline : 
Present 

length  

11111-
11111 

Mobility 9 Mobility 
 
"Squatting 5" 
 
(663-674) 
 
id=685 
 
Type : Objective 
Subject : Patient 
Timeline : Present 

 
Mobility 
 
"Squatting 5" 
 
(663-674) 
 
id=685 
 
Type : 
Objective 
Subject : 
Patient 
Timeline : 
Present 

not annotated 
by all 
split combine 
split combine  

11111-
11111 

Mobility 9 Mobility 
 
"Sitting 15 min. 6" 
 
(676-693) 
 
id=686 
 
Type : Objective 
Subject : Patient 
Timeline : Present 

 
Mobility 
 
"Sitting 15 
min. 6" 
 
(676-693) 
 
id=686 
 
Type : 
Objective 
Subject : 
Patient 
Timeline : 
Present 

not annotated 
by all 
split combine  

 

Table 1. Cluster based Discrepancy Analysis 
In addition, unlike other annotation tools, QA4IE organizes 
discrepancies into clusters. As shown in Table 1, 
Annotator2 labels text with indices from 641 to 693 as one 
mobility entity, while Annotator1 and Annotator3 label 
them as three short mobility entities.  Although the number 
of entities and the length of the text span are different, it is 
obvious that they should be compared together. This is the 
only way to correctly identify that the main discrepancy 
here is the split/combine issue. However, none of the 
existing tools can do this because they are all based on one-
to-one correspondence. For example, the Annotation 
Difference tool in GATE can only compare the entities 
from 642 to 660 annotated by Annotator1 and Annotator3 
with the long entity annotated by Annotator2, while 
treating the other two short entities as completely unrelated 
ones. 

Due to space limitations, an exhaustive exposition of 
QA4IE’s features and results are beyond the scope of this 
paper. More details, as well as the demonstration video, 
have been placed on GitHub at https://github.com/CC-
RMD-EpiBio/QA4IE. 

5. Related Work: Competitive Analysis 
To the best of our knowledge, though all annotation tools 
include some semblance of QA, QA4IE is the first QA tool 
aimed to support QA of annotations for information 
extraction in a comprehensive manner.  
We contextualize our contribution in light of a recent 
review paper that provides a comprehensive assessment 
and summary of the existing popular annotation tools 
(Neves and Ševa, 2021). The authors initially reviewed 78 

annotation tools and developed five principles, namely 
available, web-based, installable, workable, and schematic, 
to select annotation tools for detailed evaluation. Based on 
these five principles, 15 annotation tools were evaluated. 
Here we expand on that analysis by adding dimensions 
related to QA. Specifically, we include error checking, 
IRR, and discrepancy analysis. We then re-evaluate the 
same 15 tools according to our dimensions by referencing 
published papers, tool websites, and user guides. 
According to that analysis, not all of the tools included 
quality control facilities according to our definition, and 
only seven included at least one of the three core QA 
features. We also similarly evaluated six additional 
annotation tools using the same QA dimensions, and 
summarized the QA features of the thirteen annotation 
tools with QA features in Table 2, alongside QA4IE. To 
make it easier to understand the detailed features of the 
fourteen tools, including QA4IE, we have provided a 
GitHub page with the URLs of all these tools at 
https://github.com/CC-RMD-EpiBio/QA4IE. 

Table 2 shows that most annotation tools do not have error 
checking capabilities. LightTag (LightTag, 2021), which is 
relatively rich in error checking features, only has some 
simple checks for formatting and consistency. QA4IE 
provides further checks for impermissible entity overlaps, 
annotation that violates nested structure, text inconsistency 
for the same document, and so on. It should be noted that 
Brat (Stenetorp et al., 2012) also provides a configuration 
file that is very feature-rich, but its configuration file is 
adopted to limit the choices of annotation to reduce errors, 
rather than checking for annotation errors. 

Most annotation tools use IAA to evaluate the quality of 
annotations. For text classification, kappa coefficient is the 
standard metric. For sequence labeling, F1 score has been 
preferred. F1 score at the entity level treats all entities 
equally regardless of their length. However, the existing 
entity-level F1 score usually assigns an arbitrary score for 
partial matches, which makes the evaluation biased. This 
problem is particularly serious in tasks with long entities 
where partial matches occur more frequently. Therefore, 
QA4IE provides both token-level and entity-level F1 scores 
together. This can give a more comprehensive and fair 
evaluation. 

As discussed earlier, QA4IE’s visualization capabilities go 
beyond the discrepancy analysis of existing annotation 
tools, which typically offer only difference visualization 
based on one-to-one entity correspondence. When 
discrepancies are examined across multiple annotators, all 
several types of discrepancies are combined and therefore 
more challenging to characterize at this level. QA4IE 
provides a better cluster-based discrepancy analysis and 
automatic categorization. 

6. Conclusion and future work 
QA4IE is an accessible and feature-rich quality assurance 
tool for information extraction. It provides more 
customized error checking, especially for annotation 
structures and constraints. In terms of discrepancy analysis, 
QA4IE extends one-to-one correspondence-based 
difference visualization to cluster-based discrepancy 
analysis. The discrepancy categorization feature of QA4IE 
is very useful for annotation improvement prioritization. 



4502

Currently QA4IE only handles annotations in XML format, 
so we plan to extend it to other common annotation 
formats. We will also explore new IAA metrics for 
sequence labeling, as both token-level and entity-level IAA 
metrics are flawed and do not have chance agreement 
correction. Although the GUI interface of a tool is not 
typically considered a core feature of QA, we still plan to 
provide this option in the near future. We have shared the 

current QA4IE code on GitHub and will release new 
versions based on users’ feedback. 

7. Acknowledgements 
This study was supported by the Social Security 
Administration- National Institutes of Health Interagency 
Agreements and by the National Institutes of Health 
Intramural Research program.

Table 2. Comparison of the quality assurance function of QA4IE with other common annotation tools

 

8. Bibliographical References 
Artstein, Ron, and Massimo Poesio. "Inter-coder 

agreement for computational linguistics. 
" Computational Linguistics 34.4 (2008): 555-596. 

Atdağ, Samet, and Vincent Labatut. "A comparison of 
named entity recognition tools applied to biographical 
texts." 2nd International conference on systems and 
computer science. IEEE, 2013.  

Azzopardi, Leif, Paul Thomas, and Alistair Moffat. 
"cwl_eval: An evaluation tool for information 
retrieval." Proceedings of the 42nd International ACM 
SIGIR Conference on Research and Development in 
Information Retrieval. 2019. 

Beasley, Lucas, and Prashanti Manda. Comparison of 
natural language processing tools for automatic gene 
ontology annotation of scientific literature. No. 
e27028v1. PeerJ Preprints, 2018. 

Cejuela, Juan Miguel, et al. "tagtog: interactive and text-
mining-assisted annotation of gene mentions in PLOS 
full-text articles." Database 2014 (2014). 

Cunningham, Hamish, et al. "Getting more out of 
biomedical documents with GATE's full lifecycle open 
source text analytics." PLoS computational biology 9.2 
(2013): e1002854. 

Dai, Xiang. "Recognizing complex entity mentions: A 
review and future directions." Proceedings of ACL 2018, 
Student Research Workshop. 2018. 

de Castilho, Richard Eckart, et al. "WebAnno: a flexible, 
web-based annotation tool for CLARIN." Proceedings of 
the CLARIN Annual Conference (CAC). 2014. 

Grosman, Jonatas S., et al. "Eras: Improving the quality 
control in the annotation process for natural language 
processing tasks." Information Systems 93 (2020): 
101553. 

Grundke, Maximilian, et al. "TextAI: Enhancing TextAE 
with Intelligent Annotation Support." SMBM. 2016.  

Ide, Nancy, and James Pustejovsky, eds. Handbook of 
linguistic annotation. Springer, 2017. 

Kim, Jin-Dong, et al. "Open Agile text mining for 
bioinformatics: the PubAnnotation ecosystem. 
" Bioinformatics35.21 (2019): 4372-4380. 

Klie, Jan-Christoph, et al. "The inception platform: 
Machine-assisted and knowledge-oriented interactive 
annotation." Proceedings of the 27th International 
Conference on Computational Linguistics: System 
Demonstrations. 2018. 

Kummerfeld, Jonathan K. "SLATE: a super-lightweight 
annotation tool for experts." arXiv preprint 
arXiv:1907.08236(2019).  

Lenzi, Valentina Bartalesi, Giovanni Moretti, and Rachele 
Sprugnoli. "CAT: the CELCT Annotation Tool." LREC. 
2012. 

LightTag, "LightTag," Online, 2021. [Online]. Available: 
https://lighttag.io 

 Neves, Mariana, and Jurica Ševa. "An extensive review of 
tools for manual annotation of documents." Briefings in 
bioinformatics 22.1 (2021): 146-163. 

Nadeau, David, and Satoshi Sekine. "A survey of named 
entity recognition and classification." Lingvisticae 
Investigationes30.1 (2007): 3-26. 

Ogren, Philip. "Knowtator: a protégé plug-in for annotated 
corpus construction." Proceedings of the Human 

Tool Name   Check  & Validation  IAA  Discrepancy Analysis  
Text 
diff  

Set 
name 

formatting  F1  1-1 
diff 

 cluster 
diff 

Discrepancy 
categorization      

Zero/neg length  overlap  scope  schema boundary Token  Entity  
   

GATE                 X   X      
ERAS  

     
 

  
        

Brat                    X      
LightTag    X  X    

 
     X   X  

  

MAT                    X      
Tagtog        

 
       X         

TextAE                 X        
Watson KS                          
WebAnno      X                    
Prodigy                          
SLATE                    X      
Knowtator                 X   X  

  

INCEpTION                         
QA4IE  X  X  X  X  X  X X  X  X   

 
X  X  



4503

Language Technology Conference of the NAACL, 
Companion Volume: Demonstrations. 2006. 

Pustejovsky, James, and Amber Stubbs. Natural Language 
Annotation for Machine Learning: A guide to corpus-
building for applications. " O'Reilly Media, Inc.", 2012. 

Shindo, Hiroyuki, Yohei Munesada, and Yuji Matsumoto. 
"PDFAnno: a web-based linguistic annotation tool for 
pdf documents." Proceedings of the Eleventh 
International Conference on Language Resources and 
Evaluation (LREC 2018). 2018 

Stenetorp, Pontus, et al. "BRAT: a web-based tool for NLP-
assisted text annotation." Proceedings of the 
Demonstrations at the 13th Conference of the European 
Chapter of the Association for Computational 
Linguistics. 2012. 

 


